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Symbolic Logic
Logic is the study of the methods and principles to distinguish correct from incorrect reasoning. Symbolic logic is logic applied to mathematics. In this chapter, we will study some symbolic logic topics. They are statement, statement connectives, tautologies, logical equivalents, arguments, quantifiers and complicated quantified statements.
1. Statements

Declarative sentence which is true or false but not both is called statements. The following are statements.
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  is  an  irrational number. (T)
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All equilateral triangles are isosceles (T)
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The following are not statements.

Give me your way.

Why do we study logic?

 Oh! My Lord.


He is a president of USA.
Lower case such as p, q, r, s, t will be used to represent statements. For example
p :  
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q :
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 is an isosceles.
r :  
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s :  11 is a prime number.
2.  Connectives

Two statements can be combined by a connective to produce a new statement called compound statement. Connectives used in symbolic logic are conjunction, disjunction, negation, condition, and bi-condition.

2.1 Conjunction.  If  p and q are statements, then the sentences ‘p and q’ is called the conjunction of p and q, symbolized  
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  (read p and q)

For a statement there are just two possible truth values, true (T) or false (F). if p and q both truth, then 
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is true. If one or both of p and q are false, then 
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 is false. The truth table below defines the truth values of 
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 for all possible truth value combinations of p and q.

	p
	q
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	F
	T
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	F
	F


Exercise   Find the truth value.

1.  “ 
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” is   _________________


2.  “ 
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 is  a prime number ” is   _________________

3.  “ 
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 and 
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 ” is  _________________


4.  “ 3 is even but 4 is odd ” is  _________________
2.2 Disjunction. If p and q are statements, then the sentence ‘p or q’ is called the disjunction of p and q, symbolized
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Unlike conjunctions there are at least two uses of “or” in English.  One of use is exclusive, meaning “either one but not both”. For example, the sentence
Are you awake or asleep?

cannot be answered yes because you cannot be both awake and asleep  at the same time.

Another use is inclusive, meaning  “either one or both”. For example, the sentence
Are you wearing a shirt or sweater?

could be answered yes. This would mean the answerer was wearing either a shirt, a sweater, or both.


Mathematicians define “or” to be inclusive; that is 
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 is true when either p or q is true, 
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is false just when p and q are false. The truth table for 
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 is thus defined below

	p
	q
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Example   “
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” is true because both are true.

“
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 is irrational” is true because “
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Exercises


1.  
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is rational 
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 is real is   __________________________

2.  
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is integer 
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 is a natural number is   ___________________

3.  
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 is ___________________


4.  
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 is  ___________________

2.3  Negation.  A negative of a sentence is formed in many ways. For example. If p is



Chicago is a city.

The negation of p is represented by each of the following.


~ p

Chicago is not a city


It is false that Chicago is a city


It is not true that Chicago is a city

As another example, the negation of following.


q : 2 is rational.


~ q

It is false that 2 is rational


2 is not rational


2 is irrational

The truth table of negation is defined below.

	p
	~ p

	T
	F

	F
	T


Definition. 
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Exercises

Write four different representations of the negations of each.
1.  p : 2 = 3


2.  p : 
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 is irrational

Find the truth value of each.

3.  
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4.  ~ (
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)  is irrational
Give an expression for each of the following which dose not involve a negation symbol.
5. 
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6.  
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2.4  Conditional. If p and q are statements, the sentence

If  p, then q  is symbolized  
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  (read p implies q)
p is called premise and q is called conclusion.

Mathematicians define a truth table for 
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 just as he dose for ~, 
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and 
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. But, the definition is not at all obvious. An example may help. First consider the sentence.

If it rains, I will stay at home.
Suppose a fellow student say this. When is he telling the truth and when is he lying? Examine the following four cases where

p  means  “ It rains ”. and   q  means  “ I will stay at home”.


1). p (true)    :  It rained.

     q (true)   :  He stayed at home.

2). p (true)    :  It rained.

     q (false)  :  He did not stay at home.

3). p (false)   :  It did not rain.

     q (true)    :  He stayed at home.

4). p (false)   :  It did not rain.

     q (false)  :  He did not stay at home.


In (1) it is reasonable to argue that the student was telling the truth ; his claim is true. 

In (2) it is easy to argue that he lied, and his claim is false.

In (3) and (4) you could not call him a lier since the promise is given only the case “it rains.”

The truth table for 
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 conforms to the previous examples.
There is nothing to debate about the definition, it is an agreement among mathematicians.

	
	p
	q
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	The numbers refer to the example.

	1
	T
	T
	T
	

	2
	F
	T
	F
	

	3
	T
	F
	T
	

	4
	F
	F
	T
	


The statements 
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 is called a conditional with

p  the antecedent  and   q  the consequent.

To summarize, a condition is true when the antecedent is false or the consequent is true. A conditional is false only when the antecedent is true and the consequent is false.
Exercise

Find the truth value.

1.  
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  ______________

2.  
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  ______________

In mathematics, 
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 is encountered in many forms. You should be familiar with each. The following have the same meaning :
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If  p, then q
p  implies q
q  provided  p
Examples.  Translate the form 
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 to other forms as above.
a) A polygon has no diagonals, then it is a triangle.

Using the following translation : 


p  :  A polygon has no diagonals


q  :  It is a triangle
the above sentence translates to a sentences of the type 
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, or If a polygon has no diagonals, then it is triangle.

b)  The function  f  is continuous when it is differentiable.
Using the following translations :


p  :  A function is differentiable

q  :  A function is continuous,
The sentence translates to the type 
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, or

If a function is differentiable, then it is continuous.

Exercise

Translate each sentence to the type “ If p, then q” or 
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. Identify the ancrecedent and the consequent.

1. There is no factorization of n whenever n is prime.

2. x is an integer if x is a natural number.
3. An integer is a rational number. Hint: Use a variable x and set symbols;  e.g., I, q.

4. A square is a rectangle.

5. Triangles are polygons.

6. 
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7. Squares are not triangles.

2.5  Bi-condition.  A sentence of the type
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is called a bi-condition, symbolized
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When p and q are statements the truth table for 
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	p
	q
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And is derived from the truth tables for  
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Exercise


1.  Complete the following truth table.

	p
	q
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	~ p
	~ q

	T
	T
	
	
	
	
	
	

	F
	T
	
	
	
	
	
	

	T
	F
	
	
	
	
	
	

	F
	F
	
	
	
	
	
	


2. The truth table for 
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 then follows ; complete it.
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Exercise   Find truth values of the following

3.  
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4.  
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 is real  
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 is irrational.
  
_______________________

5.  2 is real 
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  2 is irrational.

_______________________

6.  2 is real 
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 2 is rational.

_______________________


7.  
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 is rational  
[image: image86.wmf]«

   
[image: image87.wmf]p

is an integer.
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In mathematics 
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 is encountered in many forms. The following have the same meaning :
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p is equivalent to q


p if only if q


p iff q (“iff” is an abbreviation for “if only if”)


if p, then q and conversely

if q, then p and conversely

For example,
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if and only if 
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would be translated by


p : 
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q : 
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to
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Exercise

Translate to a sentence of the type 
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.

1.  
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if and only if  
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2.  
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3.  If a triangles is isosceles, then it must have two sides equal and conversely.
4.  
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5. f is continuous if and only if f is differentiable.

Combination of Connectives.  Combination of ~, 
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 often occur. A facility at recognizing them is essential for mathematical reading and proof.

Example.  We could translate


If p is prime, then if p is even p must be smaller than 7.

as follows :


p : p is prime


q : p is even


r : p must be smaller than 7.

The translate sentence would be
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That is,


p implies that q implies r.

Example. Translate


“If a is perpendicular to b and b is perpendicular to c, then a is parallel to c” 
Example.  Translate


“If lines l and m are not parallel, then l and m intersect”.

Exercise

Translate using    ~, 
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1. If p and q are integers and 
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 is a rational number.

2. If  ABC is a triangle and ABC is isosceles, then ABC has two equal sides.
3. If a, b, c, and x are real numbers, 
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, then the roots of 
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are real and equal.
4. If a is an integer, then a is even or a is odd.

5. f is differentiable and g is differentiable only if 
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 is different.

6. 
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7. 
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Example  If p and s are both true and q and r are both false, find truth values of the following compounded statements.
(1).  ( p
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 r                                (5).  (~p ) 
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(2).  p
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(3).  ~p
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(4).  ~( p
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Example  If p is true and q is false, is it possible to find truth value of each of the following statements?

(1).  ( p
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(4).  s 
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(2).  ( r
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(5).  p  
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(3).   q 
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(6).  ( p
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Example  Find all possible truth values of the following statements.

1.  ( p
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2.  p 
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Note   We will use capital letters such as P, or  R to represent compounded statements.

Example     P : p 
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     Q :  ( r
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     R : ~( p
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3.  Equivalence

Definition 
A combined statement P is said to be equivalent to a combined statement Q if and only if they have the same truth value for each corresponding case of statements in P and Q.

The equivalence of P and Q will be denoted by 
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Example
Show that  
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Example   Show that  
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Example   Show that  
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Example   Show that  
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Example  Consider whether the two combined statements are equivalent where 
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1. If 
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is even, then a is even.

2. If  a is odd, then 
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is odd.

Note If  
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, P and Q have the same meaning. We can replace Q by P and conversely.
Law of Logical Equivalence
The following laws can be proved by constructing truth tables.
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Distributive  Law 
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Properties of logical equivalence

Let P and Q be combined statements.

Property 1     :
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Next examples show how to apply laws and properties of logical equivalence.

Example      Show that 
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Example    Consider which combined statement is equivalent to  
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4.  Tautology
Tautology is a combine statement which is always true whatever

Example     Show that 
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 is a tautology.
Method 1

Method 2

Example     Show that 
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 is not a tautology.
Method 1

Method 2

Example  Consider which of the following combined statements is a tautology.
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Solution
Note If  
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We can use this property to check whether a combined statement is a tautology or not.
Example  Investigate whether  
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  is a tautology or not.
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     by Property 3
Therefore      
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  is a tautology.
The following are a list of tautologies which you can prove each of it by contracting truth table.
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Destructive Dilemma
5.  Negation
A combine statement P is said to be a negation of a combined statement Q if and only if each corresponding case of P has opposite truth value to that of Q.

Example  Show that 
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We construct truth table and observe truth value in each case.
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We use pattern of logical equivalence.
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 as  its  negation.
From list of logical equivalence, we will get a list of logical negation as following.

	
	statement
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Example  Given 
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Example Find a negation of    
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Example  Show that negation of  
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Therefore negation of  
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6.  Argument

An argument is a claim that from premises S1,S2,S3, ..., Sn we can make a conclusion Q  denoted by   S1,S2,S3, ..., Sn ├─ Q  
Two pattern of writing an argument.

1.      S1,S2,S3, ..., Sn ├─ Q   or

2.       S1
          S2
          S3
             (
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 Q

An argument can be valid or invalid.
An example of valid argument

                        1.  If it rains, the rode get wet.

                        2.  It rains.
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 The road get wet.                                                 

An example of invalid argument

                        1.  If John gets a fever, then he gets a headache.
                        2.  John gets a fever.
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  John gets a headache.
Definition An argument will be valid if and only if whenever  ( S1
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 Sn ) is true, then Q is true.
From definition, an argument will be valid if and only if
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 Q    is a tautology.

and definition an argument will not be valid when
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 Q    is not a tautology.

From list of tautology, we get the following laws of valid arguments.
(1)  premises  
1.  p
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(5)  premise  
1.  p    ( Addition)                    
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To show whether an argument is valid.
Method  1  Construct a truth table
We known that   S1 , S2 , S3 ,  ... , Sn   ├─ Q  is valid if and only if

( S1
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  Q  is a tautology.
So, if   ( S1
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  Q  is a tautology, then the argument is valid

and if   ( S1
[image: image604.wmf]Ù

S2
[image: image605.wmf]Ù

S3
[image: image606.wmf]Ù

  ... 
[image: image607.wmf]Ù

 Sn ) 
[image: image608.wmf]®

 Q  is not a tautology, then the argument is not valid.
Example  Consider whether the followings argument is valid or not.

                     1.  p
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                     2.  p
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Method  2   Conclude from premises to a conclusion by using tautology, laws of equivalences or laws of valid arguments.

Example  Proof that the followings arguments are valid.

                   1.  p
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7  Quantifiers
Consider the statements 

         For all  x,   sin2 x + cos2 x  =  1

         For some  x  for all  y, y + x  =  y

         All integers are real numbers.
         There exists some integers x such that 
[image: image619.wmf]2
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.
         To write these sentences we will use open statements and quantifiers.

Relative Universe  is a set which every element under  consideration belongs to this set.
Variable  is  a symbol that represents any element in the universe.
Open Sentence is a declarative sentence that 
                                 1).  contains at least one variable,
                                 2).  is not statements  and
                                 3).  will be a statement when the variables are replace by elements in the universe.
Open sentences are denoted by  P , Q , S , ...  
Example

                P( x ) :  x > 0                             U = R     

                
[image: image620.wmf]\

 P( 7 ) :  7 > 0                        ( T )                  P( -5 ) :  -5 > 0                           ( F )

                Q( x,y ) :  x + y  =  6                  U = R

                
[image: image621.wmf]\

Q( 3,4 ) :  3 + 4  =  6              ( F )

                R( x,y,z ) :  x2 + y2  <  z2             U = R
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 R( 4,7,2 ) :  42 + 72  <  22           ( F )

Open sentences can combined by connectives.

[ P( x ) 
[image: image623.wmf]Ù

 Q( x,y ) ] 
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 R ( x,y,z )         :     

Quantifiers
 We use  the symbols  

[image: image625.wmf]"

x
to represent  for all x,
for each x  or
every x.
                      


[image: image626.wmf]$

x 
 to represent   for some  x,
there exists some x   or
there exists at least one x.
Example  Let U =  set of all integers
P( x )  :  x is a prime number                               Q( x )  :  x is positive
R( x )  :  x is divided by 7                                    S( x )  :  x is a completing square
E( x )  :  x  is an even number                              T( x )  :  x > 2

H  :  12 < 5        

Write the following statements by using above open sentences.


1.  x is even and completing the square.


2.  x is a prime number and x > 2.


3.  If x is completing the square then x is even and x > 2.


4.  x is a prime number if and only if x is not  completing the square. 


5.  If x is even and x is divided by 7, then x is not a prime number.
Truth Values of 
[image: image627.wmf]x[P(x)]

"


Definition  
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x [P( x )]  is true when   x  is replaced by all  elements of universe and  all P(a) is true.
                   
[image: image629.wmf]"

x [P( x )]  is false when there exist b, one elements of U, such that P(b) is false.
Example    
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x [ x < 5 ]

Is true when     U  =  { 0 , 1 , 2 , 3 , 4  }.

Is false when    U  =  
[image: image631.wmf]I

.

Is true when  
[image: image632.wmf] U  =  I

.

Truth value of 
[image: image633.wmf]x[P(x)]

"

  can be changed when we change the universe.
Example    
[image: image634.wmf]"

x [ x > 3 ]

       Is false when      U  =  { 1 , 3 , 5 , 7 }.
       Is true when       U  =  { 4 , 5 , 6 , 7 , 8 }.
       Is false when      U  =  
[image: image635.wmf]I

.
Truth value of  
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x [P( x )]

Definition  
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x [P( x )]  is true when there exist 
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Î

 such that P(a) is true.
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x [P( x )] is false when  all P(a) is false for each 
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Î

.
Example    
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x [ x < 5 ]

       Is true when   U  =  
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  and is false when   U  =  { 7 , 8 , 9 }    

Tautology of Quantified Statements

Followings are list of true quantified statements for any universe. They can be proved by using the definition of truth value of  
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x [P( x )]    and   
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x [P( x )]

1.    ~
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x [P(x) ] 
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x [~P(x) ]

2.    ~
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x [P(x) ] 
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x [~P(x) ]

3.   
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x [P(x) ] 
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x [P(x) ]

4.   
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 P(y)

5.    P(y)
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x [P(x) ]

6.   
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x [P(x) 
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Q(x) ] 
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 (
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x [P(x) ] 
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x [P(x) ] )

7.   
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x [P(x)
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 Q(x)] 
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( 
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x [P(x)] 
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x [Q(x) ] )

8.   ( 
[image: image670.wmf]"

x [P(x)] 
[image: image671.wmf]Ú


[image: image672.wmf]"

x [Q(x)] ) 
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x [P(x)
[image: image675.wmf]Ú

Q(x)]

9.    
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x [P(x)
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Q(x)]
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x [Q(x)] )

10.  
[image: image682.wmf]"

x [P(x)
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Q(x)]
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x [Q(x)] )

11.   
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x [P(x)
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p]
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Logical  Equivalence
From the list of tautologies of quantified statement, we obtain the equivalent statements as follow:
~
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x [P(x) ]      
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x [~P(x) ]

~
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x [P(x) ]       
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x [~P(x) ]
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x [P(x) 
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Q(x)]      
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x [P(x) ] 
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x [Q(x) ]
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x [P(x)
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We know that 
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Therefore,
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, for  all x in U
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Example  Consider whether the following pairs of statements is equivalent or not.
(1).  
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x [ x > 0 
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 x2 > 0 ]   and   
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x [ x2 
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 0 
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 x 
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 0 ]

(2).  
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x [ x 
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 ( x + 2 = 5 )]   and   
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x [( x + 2 = 5 ) 
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 x 
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]

(3).  
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x [ x 
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 0 ]  and   
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x [ x > 0 }

(4).   ~
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x [ 
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 = 4 
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 x = 16 ]   and   
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x [ 
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 = 4  
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 x 
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Logical  Negation
From the list of tautologies, we get the following pair of negation statements.
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x [P(x) ]     is the negation of     
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x [~P(x) ]
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x [P(x) ]     is the negation of     
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x [~P(x) ]

Example    Find the negation of
1. 
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x [P(x)
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Q(x) ]

2.    
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x [P(x)
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Q(x) ]

3.   
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x [P(x)
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Q(x) ]

4.   
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x [Q(x) ]

5.    p
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x [P(x) ]

6.  
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x [P(x) 
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Q(x)]

Example     Find the negation of the following statement
1.  Some real numbers are positive.
2.  There exists some subsets of infinite set is infinite set.
3.  All squares are rectangles.
4.  If all people are good, then John is good.
5.  If  2+2  = 4 then there exists a number 
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 such that 
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´=

.
Truth Value of Open Sentences with Two Variables

Let 
[image: image758.wmf]P(x,y)

be an open sentence with two variable where A and B are Relative Universes of x and y respectively   
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x
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y[P( x,y )]   means   
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x[
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y[P( x,y )]]
We can also define
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x
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y[P( x,y )]  ,  
[image: image765.wmf]$

x
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y[P( x,y )]  ,  
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x
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y[P( x,y )]     in similar ways.
Definition   
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x
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y[P( x,y )]  is true if and only if for each 
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, 
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 is true  for all 
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.
Definition  
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x
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y[P( x,y )]  is false if and only if there exits 
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 and  
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      such that 
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 is false.
We can define the truth values of the following quantified statements in similar ways.
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x
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y[P( x,y )]  ,  
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x
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y[P( x,y )]  ,  
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x
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y[P( x,y )]
Example    Given  U =  { 0 , 1 , 2 }    ,   P( x,y )  :  x + y > 0,  find the truth value of 
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x
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y[P( x,y )].
Example    Given  U = Q,  find the truth value of   
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x [ x2 = x  
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 x2 – x – 56 = 0  ].
Example    Let   A = { 1 , 2 , 3 }  be relative universe of   x  and  y.  Find the truth value of
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x 
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y [P( x,y )],  where  P( x,y )  :   2 
[image: image791.wmf]( x + y ) .
Example    Let   U = { - 2 , - 1 , 0 , 1 , 2 }  be universe.
                         P( x,y )  :  2 < x + y < 4    and      Q( x,y )  :  xy > 0

                         find the truth value of  
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x
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y[P( x,y )
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 Q( x,y )].
Example    Find the quantified equivalent statement to the followings.
1. ~
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y[P( x,y )]     
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[image: image798.wmf]$

x
[image: image799.wmf]$

y[~P( x,y )]

2. ~
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x
[image: image801.wmf]$

y[P( x,y )]      
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3. ~
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y[P( x,y )]      
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4. ~
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y[P( x,y )]       
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5.      
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y[P( x,y )]     
[image: image811.wmf]º

     
[image: image812.wmf]"

y
[image: image813.wmf]"

x[P( x,y )]  

6.    
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y[P( x,y )]          
[image: image816.wmf]º

     
[image: image817.wmf]$

y
[image: image818.wmf]$

x[P( x,y )]

Example    Find negation of the following statements.
1).   
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y [ ( x+y ) 2 
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 x2 + y2 ]

2).   
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y
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x [ xy = 0 
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  x = 0
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y = 0 ]

3).   
[image: image826.wmf]$

x
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y [ x + y = 2 ]

4).    The sum of two rational numbers is a rational number.
5).   There exists x  and  y  such that   2x + y = 5 and 4x – y = 11.
6).    For all x and y    
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 =  
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.

In the case of quantified statements with more than two variables, we have to define relative universe for each variable and open sentence and determine its truth value in similar way as that of two variables.
Example

       1.  Find the truth value of   
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x
[image: image831.wmf]$

y
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z [ x + y + z  =  z, 
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=

.

       2.  Find the negation of   
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x
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y
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z [ z > y  
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 yz < x ].
Solution
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