
CHAPTER 54

474

Double and Iterated Integrals

The Double Integral
Consider a function z = f (x, y) that is continuous on a bounded region R of the xy plane. Define a parti-
tion � of R by drawing a grid of horizontal and vertical lines. This divides the region into n subregions 
R1, R2, . . . , Rn of areas Δ1A, Δ2A, . . . , Δ n A, respectively. (See Fig. 54-1.) In each subregion, Rk, choose a 
point Pk(xk, yk) and form the sum

 f x y A f x y A f x y Ak k k
k

n

n n n( , ) ( , ) ( , )Δ Δ Δ
=

∑ = + +
1

1 1 1
…   (54.1)

Define the diameter of a subregion to be the greatest distance between any two points within or on its bound-
ary, and denote by d� the maximum diameter of the subregions. Suppose that we select partitions so that 
d� → 0 and n → +∞. (In other words, we choose more and more subregions and we make their diameters 
smaller and smaller.) Then the double integral of f (x, y) over R is defined as

 f x y dA f x y A
R

n k k k
k

n

( , ) lim ( , )∫∫ ∑=
→+∞ =

Δ
1

  (54.2)

Fig. 54-1

This is not a genuine limit statement. What (54.2) really says is that f x y dA
R

( , )∫∫  is a number such that, for 

any �� > 0, there exists a positive integer   n0 such that, for any n ≥ n0 and any partition with d n� < 1 0/ , and any 

corresponding approximating sum f x y Ak k
k

n

k( , )
=

∑
1

Δ , we have

 f x y A f x y dAk k
k

n

k

R

( , ) ( , )
=

∑ ∫∫−
1

Δ < �� 

When z = f (x, y) is nonnegative on the region R, as in Fig. 54-2, the double integral (54.2) may be inter-
preted as a volume. Any term f(xk, yk) Δk A of (54.1) gives the volume of a vertical column whose base is of 
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CHAPTER 54  Double and Iterated Integrals 475

area ΔkA and whose altitude is the distance zk = f (xk, yk) measured along the vertical from the selected point 
Pk(xk, yk) to the surface z = f (x, y). This, in turn, may be taken as an approximation of the volume of the 
vertical column whose lower base is the subregion Rk and whose upper base is the projection of Rk on the 
surface. Thus, (54.1) is an approximation of the volume “under the surface” (that is, the volume with lower 
base R and upper base the surface cut off by moving a line parallel to the z axis along the boundary of R). It 
is intuitively clear that (54.2) is the measure of this volume.

The evaluation of even the simplest double integral by direct summation is usually very difficult.

Fig. 54-2

The Iterated Integral
Consider a volume defined as above, and assume that the boundary of R is such that no line parallel to the x 
axis or to the y axis cuts it in more than two points. Draw the tangent lines x = a and x = b to the boundary 
with points of tangency K and L, and the tangent lines y = c and y = d with points of tangency M and N. (See 
Fig. 54-3.) Let the equation of the plane arc LMK be y = g1(x), and that of the plane arc LNK be y = g2(x).

Divide the interval a ≤ x ≤ b into m subintervals h1, h2,..., hm of respective lengths Δ1x, Δ2x, . . . Δmx by 
the insertion of points x1, x2, . . . , xm−1 so that a bm m= < < < < < =−ξ ξ ξ ξ ξ0 1 2 1. . . . Similarly, divide the 
interval c ≤ y ≤ d into n subintervals k1, k2, . . . , kn of respective lengths Δ1y, Δ2y, . . . , Δny by the insertion 
points h1, h2, . . . , hn−1 so that c dn n= < < < < < =−η η η η η0 1 2 1. . . . Let lm be the greatest Δix and let mn be 
the greatest Δ j y. Draw the parallel lines x = x1, x = x2, . . . , x = xm−1 and the parallel lines y = h1, y = h2, . . . , 
y = hn−1, thus dividing the region R into a set of rectangles Rij of areas Δi x Δj y, plus a set of nonrectangles 
along the boundary (whose areas will be small enough to be safely ignored). In each subinterval hi select a 
point x = xi and, in each subinterval kj select a point y = yj, thereby determining in each subregion Rij a point 
Pij(xi, yj). With each subregion Rij associate, by means of the equation of the surface, a number zij = f(xi, yj), 
and form the sum
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  (54.3)

 Now, (54.3) is merely a special case of (54.1). So, if the number of rectangles is indefinitely increased 
in such a manner that both lm → 0 and m n → 0, the limit of (54.3) should be equal to the double integral 
(54.2).

In effecting this limit, let us first choose one of the subintervals, say hi, and form the sum
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of the contributions of all rectangles having hi as one dimension, that is, the contributions of all rectangles 
lying on the ith column. When n → + ∞, mn → 0,
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Fig. 54-3

Now summing over the m columns and letting m → + ∞, we have
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  (54.4)

Although we shall not use the brackets hereafter, it must be clearly understood that (54.4) calls for the 
evaluation of two simple definite integrals in a prescribed order: first, the integral of f (x, y) with respect to y 
(considering x as a constant) from y = g1(x), the lower boundary of R, to y = g2(x), the upper boundary of R, 
and then the integral of this result with respect to x from the abscissa x = a of the leftmost point of R to the 
abscissa x = b of the rightmost point of R. The integral (54.4) is called an iterated or repeated integral.

It will be left as an exercise to sum first for the contributions of the rectangles lying in each row and then 
over all the rows to obtain the equivalent iterated integral

 f x y dx dy
h y

h y

c

d
( , )

( )

( )

1

2∫∫   (54.5)

where x = h1(y) and x = h2(y) are the equations of the plane arcs MKN and MLN, respectively.
In Problem 1, it is shown by a different procedure that the iterated integral (54.4) measures the volume 

under discussion. For the evaluation of iterated integrals, see Problems 2 to 6.
The principal difficulty in setting up the iterated integrals of the next several chapters will be that of 

inserting the limits of integration to cover the region R. The discussion here assumed the simplest of regions; 
more complex regions are considered in Problems 7 to 9.

SOLVED PROBLEMS

1. Let z = f (x, y) be nonnegative and continuous over the region R of the xy plane whose boundary consists of the 
arcs of two curves y = g1(x) and y = g2(x) intersecting at the points K and L, as in Fig. 54-4. Find a formula for the 
volume V under the surface z = f (x, y).
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Fig. 54-4

Let the section of this volume cut by a plane x = xi, where a < xi < b, meet the boundary of R at the points 
S(xi, g1(xi)) and T(xi, g2(xi)), and let it meet the surface z = f(x, y) in the arc UV along which z = f(xi, y). The area 
of this section STUV is given by

 A x f x y dyi ig x

g x

i

i

( ) ( , )
( )

( )
= ∫

1

2

 

 Thus, the areas of cross sections of the volume cut by planes parallel to the yz plane are known functions 

A x f x y dy
g x

g x

i

i

( ) ( , )
( )

( )
= ∫

1

2

 of x, where x is the distance of the sectioning plane from the origin. By the cross-section 

formula of Chapter 30, the required volume is given by

 V A x dx f x y dy dx
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This is the iterated integral of (54.4).

In Problems 2–6, evaluate the integral on the left.
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7. Evaluate dA
R
∫∫ , where R is the region in the first quadrant bounded by the semicubical parabola y2 = x3 and the 

line y = x.
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The line and parabola intersect in the points (0, 0) and (1, 1), which establish the extreme values of x and y on 
the region R.

Solution 1 (Fig. 54-5): Integrating first over a horizontal strip, that is, with respect to x from x = y (the line) 
to x = y2/3 (the parabola), and then with respect to y from y = 0 to y = 1, we get

 dA dx dy y y dy y
R

y

y

∫∫ ∫∫ ∫= = − = −
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Fig. 54-5

Solution 2 (Fig. 54-6): Integrating first over a vertical strip, that is, with respect to y from y = x3/2 (the 
parabola) to y = x (the line), and then with respect to x from x = 0 to x = 1, we obtain

 dA dydx x x dx x x
R
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x

∫∫ ∫∫ ∫= = − = −
3 20
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Fig. 54-6

8. Evaluate dA
R
∫∫  where R is the region between y = 2x and y = x2 lying to the left of x = 1.

Integrating first over the vertical strip (see Fig. 54-7), we have

 dA dydx x x dx
R

x

x

∫∫ ∫∫ ∫= = − =
2

2
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1
2

0

1
2
32( )  

Fig. 54-7
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When horizontal strips are used (see Fig. 54-8), two iterated integrals are necessary. Let R1 denote the part of 
R lying below AB, and R2 the part above AB. Then

 dA dA dA dx dy dx dy
R R R

y

y

y∫∫ ∫∫ ∫∫ ∫ ∫= + = + =
1 2

2 2

1
5

12
/ /
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4

2
3

1

2

0

1
 

Fig. 54-8

9. Evaluate x dA
R

2∫∫  where R is the region in the first quadrant bounded by the hyperbola xy = 16 and the lines 

y = x, y = 0, and x = 8. (See Fig. 54-9.)

Fig. 54-9

 It is evident from Fig. 54-9 that R must be separated into two regions, and an iterated integral evaluated for 
each. Let R1 denote the part of R lying above the line y = 2, and R2 the part below that line. Then

 

x dA x dA x dA x dx dy x
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As an exercise, you might separate R with the line x = 4 and obtain

 x dA x dydx x dydx
R

x x
2 2
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10. Evaluate e dx dyx

y

2

3

3

0

1

∫∫  by first reversing the order of integration.

The given integral cannot be evaluated directly, since e dxx2∫  is not an elementary function. The region R of 
integration (see Fig. 54-10) is bounded by the lines x = 3y, x = 3, and y = 0. To reverse the order of integration, 
first integrate with respect to y from y = 0 to y = x/3, and then with respect to x from x = 0 to x = 3. Thus,
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Fig. 54-10

SUPPLEMENTARY PROBLEMS

11. Evaluate the iterated integral at the left:

(a) dx dy
1

2

0

1
1∫∫ =   (b) ( )x y dx dy+ =∫∫ 0

3

0

2
9  

(c) ( )x y dydx2 2

1

2
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4
70
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x
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0

1
1
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(e) x y dx dy
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/ 2

01

2
3
4

3 2/
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x
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0

1
7
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x
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4
1
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θπ
3 2

0

1

0

2
49
32cos
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−
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12. Using an iterated integral, evaluate each of the following double integrals. When feasible, evaluate the iterated 
integrals in both orders.

(a) x over the region bounded by y = x2 and y = x3 Ans. 1
20  

(b) y over the region of part (a)   Ans. 1
35  

(c) x2 over the region bounded by y = x, y = 2x, and x = 2 Ans. 4
(d) 1 over each first-quadrant region bounded by 2y = x2, y = 3x, and x + y = 4 Ans. 8

3 ; 46
3  

(e) y over the region above y = 0 bounded by y2 = 4x and y2 = 5 − x Ans. 5

(f ) 1
2 2y y−

 over the region in the first quadrant bounded by x2 = 4 − 2y Ans. 4

13. In Problems 11(a) to (h), reverse the order of integration and evaluate the resulting iterated integral.
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