The Natural Logarithm

The traditional way of defining a logarithm, log b, is to define it as that number u such that a* = b. For
example, log,, 100 = 2 because 10> = 100. However, this definition has a theoretical gap. The flaw is that
we have not yet defined a* when u is an irrational number, for example, ~/2 or m. This gap can be filled in,
but that would require an extensive and sophisticated detour.” Instead, we take a different approach that will
eventually provide logically unassailable definitions of the logarithmic and exponential functions. A tempo-
rary disadvantage is that the motivation for our initial definition will not be obvious.

The Natural Logarithm

We are already familiar with the formula

r+l

[xrdx = T iC rz-))

r+1

The problem remains of finding out what happens when r = — 1, that is, of finding the antiderivative of x ..
The graph of y = 1/¢, for £ > 0, is shown in Fig. 25-1. It is one branch of a hyperbola. For x > 1, the definite

integral
‘1
N

is the value of the area under the curve y = 1/t and above the ¢ axis, between t =1 and 7 = x.
Definition

x]
Inx= _[l ;dt for x>0

The function In x is called the natural logarithm. The reasons for referring to it as a logarithm will be made
clear later. By (24.2),

(25.1) D (Inx)= % for x>0

area= Inx

Fig. 25-1

¥ Some calculus textbooks just ignore the difficulty. They assume that a* is defined when a > 0 and u is any real number and that the
usual laws for exponents are valid.
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Hence, the natural logarithm is the antiderivative of x~!, but only on the interval (0, +c). An antiderivative
for all x # 0 will be constructed below in (25.5).

Properties of the Natural Logarithm

(25.2) In1=0,since In 1= Jlldt ~0.

(253) Ifx>1, thenlnx>0""
. . <1
This is true by virtue of the fact that L ?dt represents an area, or by Problem 15 of Chapter 23.

(25.4) IfO<x<1,thenlnx<O.
x] 1 .
Inx= -[1 ;dt :—fl;dt by (23.8). Now, for 0 < x < 1, if x <r < 1, then 1/f > 0 and, therefore, by

Problem 15 of Chapter 23, jl%dt >0.

(25.5) (a) D (Inll)= % for x #0

(b) J‘%dx=ln IxXI+C forx#0

The argument is simple. For x > 0, |x| =x, and so D (Inlxl)=D (In x)=1/x by (25.1). For x <0, Ix| = —x,
and so

D (Inlxl)= D (In (=x))= D,(Inu)D (u)  (Chain Rule, with u = —x > 0)
1 I 1
=(;)<‘1)=3=;

EXAMPLE 25.1: D (Inl3x+2l)= ﬁ D (3x+2) (Chain Rule)

3
T 3x+2

(25.6) Inuv=Inu+1Invo

Note that
D (In(ax)) = %DX (ax) (by the Chain Rule and (25.1))
1 1
= E(a) = ; = Dx(lnx)

Hence, In (ax) = In x + K for some constant K (by Problem 18 of Chapter 13). When x = 1, In a =
In1+ K=0+K=K. Thus, In (ax) =In x + In a. Replacing a and x by « and v yields (25.6).

(25.7) ln(%j =Inu—1Inv
In (25.6), replace u by %
(25.8) m% =—Inv

In (25.7), replace u by 1 and use (25.2).



(25.9)

CHAPTER 25 The Natural Logarithm

In (x") = r In x for any rational number r and x > 0.
By the Chain Rule, D (In (x")) = %(rx"") = % =D (rlnx). So, by Problem 18 of Chapter 13, In (x") =
r1n x + K for some constant K. When x=1,In 1 =r1In 1 + K. Since In 1 =0, K =0, yielding (25.9).

EXAMPLE 25.2: Iny2x—-5=In(2x-5" =+In(2x-5).

(25.10)

(25.11)

(25.12)

(25.13)

(25.14)

(25.15)

In x is an ilncreasing function.
D (Inx)= <> 0 since x > 0. Now use Theorem 13.7.
In u =1In vimplies u = .

This is a direct consequence of (25.10). For, if u # v, then either u < » or v < u and, therefore, either
Inu<Invorln v<lnu.

1
2<1n2<1

»
>»

-
-

1/, =~

~——

Fig. 25-2

The area under the graph of y = 1/¢, between ¢ = 1 and ¢ =2, and above the 7 axis, is greater than the
area + of the rectangle with base [1, 2] and height +. (See Fig. 25-2.) It is also less than the area
1 of the rectangle with base [1, 2] and height 1. (A more rigorous argument would use Problems
3(c) and 15 of Chapter 23.)

lim In x = 4o

X—>too

Let k be any positive integer. Then, for x > 2%,
Inx>In(2*)=2kIn2>2k(})=k

by (25.10) and (25.9). Thus, as x = + <o, In x eventually exceeds every positive integer.
lim Inx = —eo

x—0"

Let u = 1/x. As x — 0", u—+oo. Hence,

x—0" U—>+o0

lim Inx = lim ln(l) =lim—Inu (by (25.8))
u U—>+4oo

=—IlimInu=—co (by (25.13))

U—>too

Quick Formula II: _[ :gg ((;C)) dx=1Inlg(x)l+C

By the Chain Rule and (25.5) (a), D (Inlg(x))= ﬁg'(x).
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EXAMPLE 25. 3'

(a) j =l +11+C=In (x> +1)+C
The absolute value sign was dropped because x>+ 1 2 0. In the future, we shall do this without explicit mention.
® | 3+5d —3j —glnlx +51+C

SOLVED PROBLEMS

1. Evaluate: (a) Jtanxdx; (b) Jcotxdx; (© Jsecxdx.

sin x —sinx

(a) Jtanxdx = J cosxdx =) Cosx

=—Inlcosx|+C by Quick Formula I

=—In|——|+C=—(=Inlsecxl)+ C =Inlsecxl+ C

secx
(25.16) JtanxdlenlsecxI+C

cosx
() Jeotxdr=| e
(25 17) Jcotxdx Inlsinx|+C

secx + tanx
Jsecxdx = Jsec —_—
secx +tanx

dx=Inlsinxl+C by Quick Formula II.

J-sec X +secxtanx
- secx + tan x
(25.18) 'fsecxdx =Inlsecx +tanxl+C

dx =1Inlsecx +tanxl+C by Quick Formula II.

2. (GC) Estimate the value of In 2.
A graphing calculator yields the value In 2 ~ 0.6931471806. Later we shall find another method for
calculating In 2.

3. (GC) Sketch the graph of y =1n x.
A graphing calculator yields the graph shown in Fig. 25-3. Note by (25.10) that In x is increasing. By
(25.13), the graph increases without bound on the right, and, by (25.14), the negative y axis is a vertical
asymptote. Since

D}(lnx)=D (x")=—x?= —% <0

the graph is concave downward. By (25.13) and (25.14), and the intermediate value theorem, the range of In x is
the set of all real numbers.

2k

Fig. 25-3
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4. Find: (a) D (In (x*+ 7x)); (b) D_(In(cos 2x)); (¢) D_(cos (In 2x)).

@ D, (In(x*+7x)=———— - 7 (4 +7)_—4f1+7)7€
. 2sin2
(b) D,(n (cos2x))=m(—sm 20(2) =~ CZISZ;C
=—2tan2x 1 in(In?2
(¢) D, (cos (In2x)) = (—sin (1n2x))( )(2)_ sin (;1 X)

5. Find the following antiderivatives. Use Quick Formula II when possible.

(@ [grgdv: ) [R v @) [E=4an: @ [~
() j8x1_3dx=%j8x8_3dx=%1n|8x—3|+c
b [755 dr=¢ 2B dr=4In B - 214 C
© -[ o +45 dx _-[ xz):-5dx_j xzi-S dx
=% xzz_f_sdx—4%tan‘(%j

=—1n( 2+5)—£ta ‘(%]

(d) Complete the square in the denominator: J. <
Letu=x-—2, du=dx.

J(x—;)2+1dx=-[;:-:-21du_-[u +1du Ju22+1 du

=@ +D+2tan'u+C=<In (x> —4x+5)+2tan'(x—-2)+C

— X
2—4x+5d’“‘J(x—z)2+1d’“'

x(1—x%)?
(1 + x2)1/2 ‘
First take the natural logarithms of the absolute values of both sides:

6. Logarithmic Differentiation. Find the derivative of y=

x(1—x2)?

m =Inlx(1- X2)2| —Inl(1+ x2)1/2|

Inlyl=1In

=Inlxl+1nl(1-x?)*l—$In (14 x?)

=Inlxl+2In1—x*—+1n (1+ x?)

Now take the derivatives of both sides:

1
PR 2( 2%)= 21 et p Al ey

(1 4x  x _x(1—-x?)? 1 4x x
YENY T2 T 1+ T A+ x 1-x2 1+x2

1
7. Show that 1— X <Inx<x—1 forx>0.(When x # 1, the strict inequalities hold.)

When x > 1, 1/t is a decreasing function on [1, x] and so its minimum on [1, x] is 1/x and its maximum is 1.
So, by Problems 3(c) and 15 of Chapter 23,

1 x] 1
—(x—l)<1nx=_[—dt<x—1 and so l-—<lnx<x-1.
X 1t X
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ForO<x<1, —% is increasing on [x, 1]. Then, by Problems 3(c) and 15 of Chapter 23,

1 Xl 1 1
—;(1—x)<1nx=j] ;dtzjx(—;)dt<—1(l—x)

1
Hence, 1— < <Inx <x—1. When x = 1, the three terms are all equal to 0.

SUPPLEMENTARY PROBLEMS

8. Find the derivatives of the following functions.
(@ y=Inx+3y=2In(x+3).

2

Ans. y' = m

(b) y=(n(x+3)y

Ans. y'=21n(x+3)%:%

© y=In[(3+2)(x+3)] =In (x* +2) + In (x*+3)

1 1 3x? 2x
Ans. y=—— (3% =
ey x3+2(3x)+x2+3(2x) 2t 7+3
_ X 42 = _ _
@ y=Ingz—gm=Inxt ~In Gx =4 =4lnx—2In G- 4)
, 4 2 4 6
Ans. Y=y 3g =55

(e) y=InsinSx

,_ 1 _
Ans. y'= mcos(Sx)(S) =5cotS5x

) y=In@x+J1+x?)

, 1A+ )220 Tx(+x) 2 (a2 ]

A . = =
ns x+(1+x2)1/z x+(1+x2)1/2 (1+x2)1/2 \/l+x2

(8) y=InB—x>=InG-x»)"=LIn(3-x?)

1 1 X
23-x2 (—2x)——3_x2

Ans.  y'=

(h) y=xInx-x
Ans. y' =Inx

(i) y=In(n (tan x))

, tanx+cotx

Ans. ~ In(tanx)



@

9.
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Find the following antiderivatives. Use Quick Formula II when possible.

(a) J%dx
1

Ans. 7ln|xI+C
x8

(b) [

Ans. FInlx’=1+C

© J‘\/lnjcc+ 3 dx

Ans.  Use Quick Formula I. 2(Inx+3)*?>+C

dx
xInx

@ |

Ans.  InllnxI+C

sin3x
Q) j 1—cos3x

Ans.  %Inll—cos3xl+C
2x* = x?
() [T

Ans. x*—Inlxl+C

In x

(@ [==dx

X

Ans. +(nx)*+C

dx
h X
® [ Fa7m

Ans.  2Inll—+/xI+C

10. Use logarithmic differentiation to calculate y’.

(@ y=x*v2-x2

Ans. y’:x“\/Z—xz(i ol )=4x3\/2—x2

x 2-x?

(= 1Pxt2

®) y= x2+7

Ans , 5 +l 1 X
B (2 R S, R
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11.

12.

13.

14.

15.

16.

17.

18.

19.

Jx?+3cosx

(©) )’=W

Ans Y __1
BRI I B P
2x+3
@ y:42x—3
3y
Ans. =
ns-y 4x*-9

Express in terms of In 2 and In 3: (a) In(37); (b) In 2—27

Ans.

Express in terms of In 2 and In 5: (a) In 50; (b) ln%; (©) In+/5; (d) 1n41—0.

Ans.

Find the area under the curve y = % and above the x axis, between x =2 and x = 4.

Ans.

(a)71n3;(b)In2-31n3

(@)In2+21In5;(b)—21In2;(c) %1n5;(d)—(31n2+1n5)

In2

Find the average value of % on [3, 5].

Ans.

Use implicit differentiation to find y”: (a) y* =In (x* + y*); (b) 3y — 2x =1 + In xy.

Ans.

Evaluate lim% 1

Ans.

In

w|n

1
2

y/z .xz : (b l:y2x+1
RS

2+h
e A

1
2

Check the formula '[csc xdx =Inlcscx—cotxl+C.

(GC) Approximate In2= J‘IZ%dz to six decimal places by (a) the trapezoidal rule; (b) the midpoint rule;

(c) Simpson’s rule, in each case with n = 10.

Ans.

(GC) Use Newton’s method to approximate the root of x> + In x = 2 to four decimal places.

Ans.

(a) 0.693771; (b) 0.692835; (c) 0.693147

1.3141



