

The Natural Logarithm

The traditional way of defining a logarithm, $\log_a b$, is to define it as that number u such that $a^u = b$. For example, $\log_{10} 100 = 2$ because $10^2 = 100$. However, this definition has a theoretical gap. The flaw is that we have not yet defined a^u when u is an irrational number, for example, $\sqrt{2}$ or π . This gap can be filled in, but that would require an extensive and sophisticated detour. Instead, we take a different approach that will eventually provide logically unassailable definitions of the logarithmic and exponential functions. A temporary disadvantage is that the motivation for our initial definition will not be obvious.

The Natural Logarithm

We are already familiar with the formula

$$\int x^r dx = \frac{x^{r+1}}{r+1} + C \qquad (r \neq -1)$$

The problem remains of finding out what happens when r = -1, that is, of finding the antiderivative of x^{-1} . The graph of y = 1/t, for t > 0, is shown in Fig. 25-1. It is one branch of a hyperbola. For x > 1, the definite integral

$$\int_{1}^{x} \frac{1}{t} dt$$

is the value of the area under the curve y = 1/t and above the t axis, between t = 1 and t = x.

Definition

$$\ln x = \int_{1}^{x} \frac{1}{t} dt \quad \text{for } x > 0$$

The function $\ln x$ is called the *natural logarithm*. The reasons for referring to it as a logarithm will be made clear later. By (24.2),

(25.1)
$$D_x(\ln x) = \frac{1}{x}$$
 for $x > 0$

Fig. 25-1

 $^{^{\}dagger}$ Some calculus textbooks just ignore the difficulty. They assume that a^u is defined when a > 0 and u is any real number and that the usual laws for exponents are valid.

Hence, the natural logarithm is the antiderivative of x^{-1} , but only on the interval $(0, +\infty)$. An antiderivative for all $x \neq 0$ will be constructed below in (25.5).

Properties of the Natural Logarithm

- (25.2) $\ln 1 = 0$, since $\ln 1 = \int_1^1 \frac{1}{t} dt = 0$. (25.3) If x > 1, then $\ln x > 0$.

This is true by virtue of the fact that $\int_{1}^{x} \frac{1}{t} dt$ represents an area, or by Problem 15 of Chapter 23.

- (25.4) If 0 < x < 1, then $\ln x < 0$. $\ln x = \int_{1}^{x} \frac{1}{t} dt = -\int_{x}^{1} \frac{1}{t} dt$ by (23.8). Now, for 0 < x < 1, if $x \le t \le 1$, then 1/t > 0 and, therefore, by Problem 15 of Chapter 23, $\int_{x}^{1} \frac{1}{t} dt > 0$.
- (25.5) (a) $D_x(\ln|x|) = \frac{1}{x}$ for $x \neq 0$ (b) $\int \frac{1}{x} dx = \ln |x| + C \quad \text{for } x \neq 0$

The argument is simple. For x > 0, |x| = x, and so $D_x(\ln |x|) = D_x(\ln x) = 1/x$ by (25.1). For x < 0, |x| = -x, and so

$$D_x(\ln|x|) = D_x(\ln(-x)) = D_u(\ln u)D_x(u)$$
 (Chain Rule, with $u = -x > 0$)
$$= \left(\frac{1}{u}\right)(-1) = \frac{1}{-u} = \frac{1}{x}$$

EXAMPLE 25.1:
$$D_x(\ln|3x+2|) = \frac{1}{3x+2}D_x(3x+2)$$
 (Chain Rule)
= $\frac{3}{3x+2}$

(25.6) $\ln uv = \ln u + \ln v$

Note that

$$D_x(\ln(ax)) = \frac{1}{ax}D_x(ax)$$
 (by the Chain Rule and (25.1))
$$= \frac{1}{ax}(a) = \frac{1}{x} = D_x(\ln x)$$

Hence, $\ln(ax) = \ln x + K$ for some constant K (by Problem 18 of Chapter 13). When x = 1, $\ln a = 1$ $\ln 1 + K = 0 + K = K$. Thus, $\ln (ax) = \ln x + \ln a$. Replacing a and x by u and v yields (25.6).

(25.7)
$$\ln\left(\frac{u}{v}\right) = \ln u - \ln v$$

In (25.6), replace u by $\frac{u}{v}$.

(25.8)
$$\ln \frac{1}{v} = -\ln v$$

In (25.7), replace u by 1 and use (25.2).

(25.9) $\ln(x^r) = r \ln x$ for any rational number r and x > 0. By the Chain Rule, $D_x(\ln(x^r)) = \frac{1}{x^r}(rx^{r-1}) = \frac{r}{x} = D_x(r \ln x)$. So, by Problem 18 of Chapter 13, $\ln(x^r) = r \ln x + K$ for some constant K. When x = 1, $\ln 1 = r \ln 1 + K$. Since $\ln 1 = 0$, K = 0, yielding (25.9).

EXAMPLE 25.2: $\ln \sqrt[3]{2x-5} = \ln (2x-5)^{1/3} = \frac{1}{3} \ln (2x-5)$.

- (25.10) In x is an increasing function. $D_x(\ln x) = \frac{1}{x} > 0$ since x > 0. Now use Theorem 13.7.
- (25.11) $\ln u = \ln v$ implies u = v. This is a direct consequence of (25.10). For, if $u \neq v$, then either u < v or v < u and, therefore, either $\ln u < \ln v$ or $\ln v < \ln u$.
- $(25.12) \quad \frac{1}{2} < \ln 2 < 1$

Fig. 25-2

The area under the graph of y = 1/t, between t = 1 and t = 2, and above the t axis, is greater than the area $\frac{1}{2}$ of the rectangle with base [1, 2] and height $\frac{1}{2}$. (See Fig. 25-2.) It is also less than the area 1 of the rectangle with base [1, 2] and height 1. (A more rigorous argument would use Problems 3(c) and 15 of Chapter 23.)

(25.13) $\lim_{x \to +\infty} \ln x = +\infty$

Let *k* be any positive integer. Then, for $x > 2^{2k}$, $\ln x > \ln (2^{2k}) = 2k \ln 2 > 2k(\frac{1}{2}) = k$

by (25.10) and (25.9). Thus, as $x \to +\infty$, ln x eventually exceeds every positive integer.

(25.14) $\lim_{x \to 0^+} \ln x = -\infty$
Let u = 1/x. As $x \to 0^+$, $u \to +\infty$. Hence,

$$\lim_{x \to 0^{+}} \ln x = \lim_{u \to +\infty} \ln \left(\frac{1}{u} \right) = \lim_{u \to +\infty} -\ln u \quad \text{(by (25.8))}$$
$$= -\lim_{u \to +\infty} \ln u = -\infty \quad \text{(by (25.13))}$$

(25.15) Quick Formula II: $\int \frac{g'(x)}{g(x)} dx = \ln|g(x)| + C$ Put the Chair Pule and (25.5) (a) D ($\ln|g(x)|$) = 1

By the Chain Rule and (25.5) (*a*), $D_x(\ln|g(x)|) = \frac{1}{g(x)}g'(x)$.

EXAMPLE 25.3:

(a)
$$\int \frac{2x}{x^2+1} dx = \ln|x^2+1| + C = \ln(x^2+1) + C$$

The absolute value sign was dropped because $x^2 + 1 \ge 0$. In the future, we shall do this without explicit mention. (b) $\int \frac{x^2}{x^3 + 5} dx = \frac{1}{3} \int \frac{3x^2}{x^3 + 5} dx = \frac{1}{3} \ln|x^3 + 5| + C$

(b)
$$\int \frac{x^2}{x^3 + 5} dx = \frac{1}{3} \int \frac{3x^2}{x^3 + 5} dx = \frac{1}{3} \ln|x^3 + 5| + C$$

SOLVED PROBLEMS

1. Evaluate: (a) $\int \tan x dx$; (b) $\int \cot x dx$; (c) $\int \sec x dx$.

(a)
$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{-\sin x}{\cos x} \, dx$$
$$= -\ln|\cos x| + C \quad \text{by Quick Formula II.}$$

$$= -\ln\left|\frac{1}{\sec x}\right| + C = -(-\ln|\sec x|) + C = \ln|\sec x| + C$$

(25.16)
$$\int \tan x \, dx = \ln|\sec x| + C$$

(b)
$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \ln|\sin x| + C$$
 by Quick Formula II.

(25.17)
$$\int \cot x \, dx = \ln|\sin x| + C$$
$$\sec x + \tan x$$

(25.17)
$$\int \cot x \, dx = \ln|\sin x| + C$$
(c)
$$\int \sec x \, dx = \int \sec x \, \frac{\sec x + \tan x}{\sec x + \tan x} \, dx$$

$$= \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx = \ln|\sec x + \tan x| + C$$
 by Quick Formula II.
(25.18)
$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

(GC) Estimate the value of ln 2.

A graphing calculator yields the value ln 2 ~ 0.6931471806. Later we shall find another method for calculating In 2.

(GC) Sketch the graph of $y = \ln x$.

A graphing calculator yields the graph shown in Fig. 25-3. Note by (25.10) that ln x is increasing. By (25.13), the graph increases without bound on the right, and, by (25.14), the negative y axis is a vertical asymptote. Since

$$D_x^2(\ln x) = D_x(x^{-1}) = -x^{-2} = -\frac{1}{x^2} < 0$$

the graph is concave downward. By (25.13) and (25.14), and the intermediate value theorem, the range of ln x is the set of all real numbers.

Fig. 25-3

- **4.** Find: (a) $D_{y}(\ln(x^4 + 7x))$; (b) $D_{y}(\ln(\cos 2x))$; (c) $D_{y}(\cos(\ln 2x))$.
 - (a) $D_x(\ln(x^4+7x)) = \frac{1}{x^4+7x}(4x^3+7) = \frac{4x^3+7}{x^4+7x}$
 - (b) $D_x(\ln(\cos 2x)) = \frac{1}{\cos 2x}(-\sin 2x)(2) = -\frac{2\sin 2x}{\cos 2x}$
 - $= -2\tan 2x$ (c) $D_x(\cos(\ln 2x)) = (-\sin(\ln 2x)) \left(\frac{1}{2x}\right)(2) = -\frac{\sin(\ln 2x)}{x}$
- 5. Find the following antiderivatives. Use Quick Formula II when possible.

(a)
$$\int \frac{1}{8x-3} dx$$
; (b) $\int \frac{4x^7}{3x^8-2} dx$; (c) $\int \frac{x-4}{x^2+5} dx$; (d) $\int \frac{x}{x^2-4x+5} dx$

(a)
$$\int \frac{1}{8x-3} dx = \frac{1}{8} \int \frac{8}{8x-3} dx = \frac{1}{8} \ln |8x-3| + C$$

(b)
$$\int \frac{4x^7}{3x^8 - 2} dx = \frac{1}{6} \int \frac{24x^7}{3x^8 - 2} dx = \frac{1}{6} \ln|3x^8 - 2| + C$$

(c)
$$\int \frac{x-4}{x^2+5} dx = \int \frac{x}{x^2+5} dx - \int \frac{4}{x^2+5} dx$$
$$= \frac{1}{2} \int \frac{2x}{x^2+5} dx - 4 \frac{1}{\sqrt{5}} \tan^{-1} \left(\frac{x}{\sqrt{5}}\right)$$

$$= \frac{1}{2} \ln (x^2 + 5) - \frac{4\sqrt{5}}{5} \tan^{-1} \left(\frac{x}{\sqrt{5}} \right) + C$$

(d) Complete the square in the denominator: $\int \frac{x}{x^2 - 4x + 5} dx = \int \frac{x}{(x - 2)^2 + 1} dx.$ Let u = x - 2, du = dx.

$$\int \frac{x}{(x-2)^2 + 1} dx = \int \frac{u+2}{u^2 + 1} du = \int \frac{u}{u^2 + 1} du + \int \frac{2}{u^2 + 1} du$$
$$= \frac{1}{2} \ln (u^2 + 1) + 2 \tan^{-1} u + C = \frac{1}{2} \ln (x^2 - 4x + 5) + 2 \tan^{-1} (x - 2) + C$$

6. Logarithmic Differentiation. Find the derivative of $y = \frac{x(1-x^2)^2}{(1+x^2)^{1/2}}$.

First take the natural logarithms of the absolute values of both sides:

$$\ln |y| = \ln \left| \frac{x(1-x^2)^2}{(1+x^2)^{1/2}} \right| = \ln |x(1-x^2)^2| - \ln |(1+x^2)^{1/2}|$$

$$= \ln |x| + \ln |(1-x^2)^2| - \frac{1}{2}\ln (1+x^2)$$

$$= \ln |x| + 2\ln |1-x^2| - \frac{1}{2}\ln (1+x^2)$$

Now take the derivatives of both sides:

$$\frac{1}{y}y' = \frac{1}{x} + \frac{2}{1 - x^2}(-2x) - \frac{1}{2}\frac{1}{1 + x^2}(2x) = \frac{1}{x} - \frac{4x}{1 - x^2} - \frac{x}{1 + x^2}$$
$$y' = y\left(\frac{1}{x} - \frac{4x}{1 - x^2} - \frac{x}{1 + x^2}\right) = \frac{x(1 - x^2)^2}{(1 + x^2)^{1/2}}\left(\frac{1}{x} - \frac{4x}{1 - x^2} - \frac{x}{1 + x^2}\right)$$

7. Show that $1 - \frac{1}{x} \le \ln x \le x - 1$ for x > 0. (When $x \ne 1$, the strict inequalities hold.)

When x > 1, 1/t is a decreasing function on [1, x] and so its minimum on [1, x] is 1/x and its maximum is 1. So, by Problems 3(c) and 15 of Chapter 23,

$$\frac{1}{x}(x-1) < \ln x = \int_{1}^{x} \frac{1}{t} dt < x-1$$
 and so $1 - \frac{1}{x} < \ln x < x-1$.

For 0 < x < 1, $-\frac{1}{t}$ is increasing on [x, 1]. Then, by Problems 3(c) and 15 of Chapter 23,

$$-\frac{1}{x}(1-x) < \ln x = \int_{1}^{x} \frac{1}{t} dt = \int_{x}^{1} \left(-\frac{1}{t}\right) dt < -1(1-x)$$

Hence, $1 - \frac{1}{x} < \ln x < x - 1$. When x = 1, the three terms are all equal to 0.

SUPPLEMENTARY PROBLEMS

- **8.** Find the derivatives of the following functions.
 - (a) $y = \ln (x+3)^2 = 2 \ln (x+3)$.

Ans.
$$y' = \frac{2}{x+3}$$

(b)
$$y = (\ln(x+3))^2$$

Ans.
$$y' = 2 \ln(x+3) \frac{1}{x+3} = \frac{2 \ln(x+3)}{x+3}$$

(c)
$$y = \ln [(x^3 + 2)(x^2+3)] = \ln (x^3 + 2) + \ln (x^2+3)$$

Ans.
$$y' = \frac{1}{x^3 + 2}(3x^2) + \frac{1}{x^2 + 3}(2x) = \frac{3x^2}{x^3 + 2} + \frac{2x}{x^2 + 3}$$

(d)
$$y = \ln \frac{x^4}{(3x-4)^2} = \ln x^4 - \ln (3x-4)^2 = 4 \ln x - 2 \ln (3x-4)$$

Ans.
$$y' = \frac{4}{x} - \frac{2}{3x - 4}(3) = \frac{4}{x} - \frac{6}{3x - 4}$$

(e)
$$y = \ln \sin 5x$$

Ans.
$$y' = \frac{1}{\sin 5x} \cos(5x)(5) = 5 \cot 5x$$

(f)
$$y = \ln(x + \sqrt{1 + x^2})$$

Ans.
$$y' = \frac{1 + \frac{1}{2}(1 + x^2)^{-1/2}(2x)}{x + (1 + x^2)^{1/2}} = \frac{1 + x(1 + x^2)^{-1/2}(1 + x^2)^{1/2}}{x + (1 + x^2)^{1/2}(1 + x^2)^{1/2}} = \frac{1}{\sqrt{1 + x^2}}$$

(g)
$$y = \ln \sqrt{3 - x^2} = \ln (3 - x^2)^{1/2} = \frac{1}{2} \ln (3 - x^2)$$

Ans.
$$y' = \frac{1}{2} \frac{1}{3 - x^2} (-2x) = -\frac{x}{3 - x^2}$$

(h)
$$y = x \ln x - x$$

Ans.
$$y' = \ln x$$

(i)
$$y = \ln (\ln (\tan x))$$

Ans.
$$y' = \frac{\tan x + \cot x}{\ln(\tan x)}$$

9. Find the following antiderivatives. Use Quick Formula II when possible.

(a)
$$\int \frac{1}{7x} dx$$

Ans.
$$\frac{1}{7} \ln |x| + C$$

(b)
$$\int \frac{x^8}{x^9 - 1} dx$$

Ans.
$$\frac{1}{9} \ln |x^9 - 1| + C$$

(c)
$$\int \frac{\sqrt{\ln x + 3}}{x} dx$$

Ans. Use Quick Formula I. $\frac{2}{3}(\ln x + 3)^{3/2} + C$

(d)
$$\int \frac{dx}{x \ln x}$$

Ans.
$$\ln |\ln x| + C$$

(e)
$$\int \frac{\sin 3x}{1 - \cos 3x} dx$$

Ans.
$$\frac{1}{3} \ln |1 - \cos 3x| + C$$

$$(f) \int \frac{2x^4 - x^2}{x^3} dx$$

Ans.
$$x^2 - \ln|x| + C$$

(g)
$$\int \frac{\ln x}{x} dx$$

Ans.
$$\frac{1}{2}(\ln x)^2 + C$$

(h)
$$\int \frac{dx}{\sqrt{x}(1-\sqrt{x})}$$

Ans.
$$-2 \ln |1 - \sqrt{x}| + C$$

10. Use logarithmic differentiation to calculate y'.

(a)
$$y = x^4 \sqrt{2 - x^2}$$

Ans.
$$y' = x^4 \sqrt{2 - x^2} \left(\frac{4}{x} - \frac{x}{2 - x^2} \right) = 4x^3 \sqrt{2 - x^2} - \frac{x^5}{\sqrt{2 - x^2}}$$

(b)
$$y = \frac{(x-1)^5 \sqrt[4]{x+2}}{\sqrt{x^2+7}}$$

Ans.
$$y' = y \left(\frac{5}{x-1} + \frac{1}{4} \frac{1}{x+2} - \frac{x}{x^2+1} \right)$$

(c)
$$y = \frac{\sqrt{x^2 + 3}\cos x}{(3x - 5)^3}$$

Ans.
$$y' = y \left(\frac{x}{x^2 + 3} - \tan x - \frac{1}{3x - 5} \right)$$

(d)
$$y = \sqrt[4]{\frac{2x+3}{2x-3}}$$

Ans.
$$y' = -\frac{3y}{4x^2 - 9}$$

11. Express in terms of $\ln 2$ and $\ln 3$: (a) $\ln(3^7)$; (b) $\ln \frac{2}{27}$.

12. Express in terms of $\ln 2$ and $\ln 5$: (a) $\ln 50$; (b) $\ln \frac{1}{4}$; (c) $\ln \sqrt{5}$; (d) $\ln \frac{1}{40}$.

Ans. (a)
$$\ln 2 + 2 \ln 5$$
; (b) $-2 \ln 2$; (c) $\frac{1}{2} \ln 5$; (d) $-(3 \ln 2 + \ln 5)$

13. Find the area under the curve $y = \frac{1}{x}$ and above the x axis, between x = 2 and x = 4.

14. Find the average value of $\frac{1}{x}$ on [3, 5].

Ans.
$$\frac{1}{2} \ln \frac{5}{3}$$

15. Use implicit differentiation to find y': (a) $y^3 = \ln(x^3 + y^3)$; (b) $3y - 2x = 1 + \ln xy$.

Ans. (a)
$$y' = \frac{x^2}{y^2(x^3 + y^3 - 1)}$$
; (b) $y' = \frac{y^2x + 1}{x^3y - 1}$

16. Evaluate $\lim_{h\to 0} \frac{1}{h} \ln \frac{2+h}{2}$.

Ans.
$$\frac{1}{2}$$

- 17. Check the formula $\int \csc x \, dx = \ln|\csc x \cot x| + C$.
- **18.** (GC) Approximate $\ln 2 = \int_1^2 \frac{1}{r} dt$ to six decimal places by (a) the trapezoidal rule; (b) the midpoint rule; (c) Simpson's rule, in each case with n = 10.

19. (GC) Use Newton's method to approximate the root of $x^2 + \ln x = 2$ to four decimal places.