PART Il: Cardinals, Ordinals, Transfinite Induction

Chapter 6

Cardinal Numbers

6.1 INTRODUCTION

It is natural to ask whether or not two sets have the same number of elements. For finite sets the
answer can be found by simply counting the number of elements. For example, each of the sets

{a!b7 c7d}’ {2’ 3,5,7}7 {x7y727 t}

has four elements. Thus these sets have the same number of elements. However, it is not always
necessary to know the number of elements in two finite sets before we know that they have the same
number of elements. For example, if each chair in a room is occupied by exactly one person and there is
no one standing, then clearly there are “just as many”” people as there are chairs in the room.

The above simple notion, that two sets have “‘the same number of elements” if their elements can be
“paired-off”’, can also apply to infinite sets. In fact, it has the following startling results:

(a) Infinite sets need not have the “same number of elements’’; some are “more infinite” than others.

(b) There are “just as many”’ even integers as there are integers, and “just as many” rational numbers Q
as positive integers P.

(¢) There are “more” points on the real line R than there are positive integers P; and there are “more”
curves in the plane R? than there are points in the plane.

This chapter will investigate and prove the above results. First we will formally define when two
sets, finite or infinite, have the same number of elements or, in other words, the same cardinality. Lastly,
we define addition and multiplication for these ‘“‘cardinal numbers”, and show that many of their
properties reflect corresponding properties of sets.

We remark that, at one time, all infinite sets were considered to have the same number of elements.
The German mathematician Georg Cantor (1845-1918) gave the above alternative definition which
revolutionized the entire theory of sets.

6.2 ONE-TO-ONE CORRESPONDENCE, EQUIPOTENT SETS

Recall that a one-to-one correspondence between sets 4 and B is a function f: 4 — B which is
bijective, that is, which is one-to-one and onto. In such a case, each element a € 4 is paired with a
unique element b € B given by b = f(a). We sometimes write

a—b
to denote such a pairing.
Remark: Frequently, a child counts the objects of a set by forming a one-to-one correspondence

between the objects and his fingers. An adult counts the objects of a set by forming a one-to-one
correspondence between the objects and the set

{1,2,3,...,n}
In fact, if one is asked the question:
“How many days are there until next Saturday?”

the response is often to actually pair the remaining days with one’s fingers.
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The following definition applies.
Definition 6.1: Sets 4 and B are said to have the same cardinality or the same number of elements, or to
be equipotent, written
A=~ B
if there is a function f: 4 — B which is bijective, that is, both one-to-one and onto.
Recall that such a function f is said to define a one-to-one correspondence between 4 and B.

Since the identity function is bijective, and the composition and inverse of bijective functions are
bijective, we immediately obtain the following theorem:

Theorem 6.1: The relation ~ of being equipotent is an equivalence relation in any collection of sets.
That is:

(i) A4 = A for any set A.
(i) If 4 =~ B, then B~ A.
(iii) If A~ Band B= C, then 4 =~ C.
EXAMPLE 6.1

(a) Let A and B be sets with exactly three elements, say,
A=1{2,3,5}, and B = {Marc, Erik, Audrey}

Then clearly we can find a one-to-one correspondence between 4 and B. For example, we can label the
elements of A as the first element, the second element, and the third element, and label B similarly. Then
the rule which pairs the first elements of A4 and B, pairs the second elements of 4 and B, and pairs the third
elements of A4 and B, that is, the function f: 4 — B defined by

f(2) =Marc,  f(3) = Erik, f(5) = Audrey

is one-to-one and onto. Thus 4 and B are equipotent.
The same idea may be used to show that any two finite sets with the same number of elements are
equipotent.

() Let A={a,b,c,d} and B={1,2,3}. Then 4 and B are not equipotent. For suppose there were a rule for
pairing the elements of 4 and B. If there were four or more pairs, then an element of B would be used twice,
and if there were three or fewer pairs then some element of 4 would not be used. In other words, since 4 has
more elements than B, any function f: A — B must assign at least two elements of 4 to the same element of B,
and hence f would not be one-to-one.

In a similar way, we can see that any two finite sets with different numbers of elements are not equipotent.

(¢) LetI=][0,1], the closed unit interval, and let S be any other closed interval, say S = [a, b] where a < b. The
function f: I — S defined by

Jx)=(b-a)x+a

is one-to-one and onto. Thus I and S have the same cardinality. Therefore, by Theorem 6.1, any two closed
intervals have the same cardinality.

(d) Consider the set P = {1,2,3,...} of positive integers and the set E = {2,4,6,...} of even positive integers. The
following defines a one-to-one correspondence between P and E:

P={1, 2, 3, 4, 5 . .}
A A A A
E={2, 4 6 8 10, . . .}

In other words, the function f: P — E defined by f(n) = 2n is one-to-one and onto. Thus P and E have the
same cardinality.

More generally, if K = {0,k,2k,3k,...} is the set of multiples of a positive integer k, then f: P — K
defined by f(n) = kn is a one-to-one correspondence between P and K. Therefore P and K have the same
cardinality.
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Parts (a) and (b) of the above Example 6.1 show that finite sets are equipotent if and only if they
contain the same number of elements. Thus, for finite sets, Definition 6.1 corresponds to the usual
meaning of two sets containing the same number of elements.

On the other hand, Example 6.1(d) shows that the infinite set P has the same cardinality as a proper
subset of itself. This property is characteristic of infinite sets. In fact, we state this observation formally.

Definition 6.2: A set S is infinite if it has the same cardinality as a proper subset of itself. Otherwise S is
finite.

Familiar examples of infinite sets are the counting numbers (positive integers) P, the natural num-
bers (nonnegative integers) N, the integers Z, the rational numbers Q, and the real numbers R.

There might be a temptation to think that all infinite sets have the same cardinality; but we will show
later that this is definitely not true.

We conclude this section with the following example, which tells us that any two sets have the same
cardinality, respectively, to two disjoint sets.

EXAMPLE 6.2 Consider any two sets 4 and B. Let A' = 4 x {1} and B’ = B x {2}. Then
A~A" and B=xB'
For example, the functions
f(la)=(a,1),ae 4 and  g(b)=(b,2), beB
are each bijective. Although 4 and B need not be disjoint, the sets 4’ and B’ are disjoint, i.e.,
A'NB' =g
Specifically, each ordered pair in A’ has 1 as a second component, whereas each ordered pair in B’ has 2 as a second
component.

6.3 DENUMERABLE AND COUNTABLE SETS

The reader is familiar with the set P = {1,2,3,...} of counting numbers or positive integers. The
following definitions apply.

Definition 6.3: A set D is said to be denumerable or countably infinite if D has the same cardinality as P.

Definition 6.4: A set is countable if it is finite or denumerable, and a set is nondenumerable if it is not
countable.

Thus a set S is nondenumerable if S is infinite and S does not have the same cardinality as P.

EXAMPLE 6.3
(a) Any infinite sequence
a),a,as,. ..

of distinct elements is countably infinite, for a sequence is essentially a function f(n) = a, whose domain is P.
So if the a, are distinct, the function is one-to-one and onto. Thus each of the following sets is countably
infinite:

{1,1/2,1/3,...,1/n,.. .}
{1,-2,3,-4,...(-1)"'n,...}
{(1,1),(4,8),(9,27),...,(n%n°),...}
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(). Consider the product set P x P as exhibited in Fig. 6-1. The set P x P can be written as an infinite sequence as
follows:

{L,D, 20, 1,2), (1,3), (2,2),...}

This sequence is determined by “following the arrows” in Fig. 6-1. Thus P x P is countably infinite for the
reasons stated in (a).
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Fig. 6-1

(¢) Recall that N={0,1,2,...} = PU{0} is the set of natural numbers or nonnegative integers. Now each
positive integer a € P can be written uniquely in the form

a=2"(2s+1)
where r,s € N. Consider the function f: P — N x N defined by
f(a) = (r» .S)

where r and s are as above. Then f is one-to-one and onto. Thus N x N is denumerable (countably infinite) or,
in other words, N x N has the same cardinality as P. Note that P x P is a subset of N x N.

The following theorems apply.
Theorem 6.2: Every infinite set contains a subset which is denumerable.
Theorem 6.3: A subset of a denumerable set is finite or denumerable.
Corollary 6.4: A subset of a countable set is countable.
Theorem 6.5: Let A4;, 4,, A3, ... be a sequence of pairwise disjoint denumerable sets. Then the union

A UA,UA3U---=U(4;:i e P}
is denumerable.

Corollary 6.6: A countable union of countable sets is countable.

Observe that Corollary 6.6 tells us that if each of the sets 4, A,, 43, ... is countable then the union

AlUAUA3U---

is also countable.
The next theorem gives a very important, and not entirely obvious, example of a denumerable
(countably infinite) set.
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Theorem 6.7: The set Q of rational numbers is denumerable.

Proof: Note that Q = Q" U {0} UQ~ where Q' and Q™ denote, respectively, the sets of positive
and negative rational numbers. Let f: Q* — P x P be defined by

fp/9) = (p,9)

where p/q is any element of Q* expressed as the ratio of two relatively prime positive integers. Then f is
one-to-one and so QF has the same cardinality as a subset of P x P. By Example 6.3(b), P x P is
denumerable; hence, by Theorem 6.3, the infinite set Q" is denumerable. Similarly Q™ is denumerable.
Thus the set Q of rational numbers, the union of Q*, {0}, and Q~, is also denumerable.

Remark: Theorem 6.7 tells us that there are just as many rational numbers as there are positive
integers, that is, that Q has the same cardinality as P.

6.4 REAL NUMBERS R AND THE POWER OF THE CONTINUUM

Not every infinite set is countable. The next theorem (proved in Problem 6.15) gives a specific and
extremely important example of such a set.

Theorem 6.8: The unit interval I = [0, 1] is nondenumerable.
Observe that this theorem also tells us that infinite sets need not have the same cardinality.
The following definition applies.
Definition 6.5: A set A4 is said to have the power of the continuum if A has the same cardinality as the

unit interval I = [0, 1].

Besides the unit interval I, all the other intervals also have the power of the continuum. There are
several such kinds of intervals. Specifically, if @ and b are real numbers with a < b, then we define:

closed interval: [a,b] ={x€eR:a<x<b}
open interval: (a,b) ={xeR:a<x<b}
half-open intervals: [a,b)={x€eR:a<x<b}

(a,b) ={xeR:a<x<b}
Example 6.1(c) shows that any closed interval [a, b] has the power of the continuum. Problem 6.3 shows
that any open or half-open interval also has the power of the continuum.
Real Numbers R

Lastly, we note that the set R of real numbers also has the power of the continuum. Specifically,
consider the function f: R — D where D = (—1,1) and f is defined by

f(x)

Figure 6-2 is the graph of this function. Clearly the values of f belong to (—1, 1) since |x| < 1 + |x|. Itis
not difficult to show that f is both one-to-one and onto. Thus the set R of real numbers has the same
cardinality as the open interval D = (—1, 1), and hence R has the power of the continuum.

.
14 x|

Remark: Some texts define a set 4 to have the power of the continuum if it has the same cardinality
as R rather than the unit interval I. By the above remark, both definitions are equivalent. The use here
of I rather than R is motivated by Theorem 6.8.
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X

f(x)=1+|x|

Fig. 6-2

6.5 CARDINAL NUMBERS

Frequently, we want to know the “‘size” of a given set without necessarily comparing it to another
set. For finite sets, there is no difficulty. For example, the set 4 = {a, b, ¢} has 3 elements. Any other set
with 3 elements is equipotent to 4. On the other hand, for infinite sets it is not sufficient to just say that
the set has infinitely many elements since not all infinite sets are equipotent. To solve this problem, we
introduce the concept of a cardinal number.

Each set A is assigned a symbol in such a way that two sets 4 and B are assigned the same symbol if
and only if they are equipotent. This symbol is called the cardinality or cardinal number of A, and it is
denoted by

|A], n(A4), or card(A4)

We will use [4|. Thus:

|4] = |B| ifand onlyif A=B

One may also view a cardinal number as the equivalence class of all sets which are equipotent.

Finite Cardinal Numbers

The obvious symbols are used for the cardinal numbers of finite sets. That is, 0 is assigned to the
empty set ¥, and # is assigned to the set {1,2,...,n}. Thus:

|4l =n ifand only if A=~ {1,2,...,n}

Alternatively, the symbols 0,1,2,3,... are assigned, respectively, to the sets

@, {2}, @, {2}, (2, {2}, (D, {TH, -

Although the natural number » and the cardinal number »n are technically different things, there is no
conflict using the same symbol in these two roles. The cardinal numbers of finite sets are called finite
cardinal numbers.
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Transfinite Cardinal Numbers, ¥, and ¢

Cardinal numbers of infinite sets are called infinite or transfinite cardinal numbers.
The cardinal number of the infinite set P of positive integers is

R,

which is read aleph-nought. This notation was introduced by Cantor. (The symbol R is the first letter
aleph of the Hebrew alphabet.) Thus:

4] =Ry ifandonlyif A=xP

In particular, we have |Z| = X, and |Q| = ®y. (The significance of 0 in ¥, is discussed in Chapter 8.)
The cardinal number of the unit interval I = [0, 1] is denoted by:

Cc

and it is called the power of the continuum. Thus:

4] =¢ ifand only if A=xI

In particular, we have |R| = ¢, and the cardinal number of any interval is c.

The following statements follow directly from the above definitions:

(a) A is denumerable or countably infinite means |4| = Ry.
(b) A is countable means |A4| is finite or |4| = R,.
(¢) A has the power of the continuum means |4| = c.

6.6 ORDERING OF CARDINAL NUMBERS

One frequently wants to compare the size of two sets. This is done by means of an inequality
relation which is defined for cardinal numbers as follows.
Definition 6.6: Let 4 and B be sets. We say that
4] < |B|
if A has the same cardinality as a subset of B or, equivalently, if there exists a one-to-
one (injective) function f: 4 — B.
As expected, |4| < |B| is read:
“The cardinal number of A is less than or equal to the cardinal number of B.”
As usual with the symbol <, we have the following addition notation:
|4| < |B| means |4] < |B| but |4| # |B|
|4| > |B] means |B| < |4|
|A4| > |B| means |B| < |4]

LR N1

Again, as usual, the symbols <, >, > are read “less than”, “greater than or equal to”, and “greater
than”, respectively.

We emphasize that the above relations between cardinal numbers are well defined, that is, the
relations are independent of the particular sets involved. Namely, if 4 ~ A’ and B ~ B’, then

|4| < |B| if and only if |4'| < |B'| and |4| < |B|if and only if |4'| < |B’|
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EXAMPLE 6.4

(a) Let A bea proper subset of a finite set B. Clearly, |4| < |B|. Since 4 is a proper subset of B, where 4 and B are
finite, we know that |4| # |B|. Thus |4| < |B|. In other words, for finite cardinals m and n, we have m < n as
cardinal numbers if and only if m < n as nonnegative integers. Accordingly, the inequality relation < for
cardinal numbers is an extension of the inequality relation < for nonnegative integers.

(b) Let n be a finite cardinal. Then n < ¥ since any finite set A is equipotent to a subset of P and |4| # |P|. Thus
we may write

O0<l<2< - <Ny
(¢) Consider the set P of positive integers and the unit interval I, that is, consider the sets
P={1,2,3,...} and I={xeR:0<x<1}

The function f: P — I defined by f(n) = 1/n is one-to-one. Therefore, |P| < |I]. On the other hand, by
Theorem 6.7, |P| # |I|. Therefore, ®; = |P| < |I| = ¢. Accordingly, we may now write

0<l<2<---<¥<e

(d) Let A be any infinite set. By Theorem 6.2, 4 contains a subset which is denumerable. Accordingly, for any
infinite set 4, we always have ¥, < |4].

Cantor’s Theorem

The only transfinite cardinal numbers we have seen are N, and ¢. It is natural to ask if there are any
others. The answer is yes. In fact, Cantor’s theorem, which follows, tells us that the cardinal number of
the power set 2(A4) of any set A is larger than the cardinal number of the set A4 itself; namely:
Theorem 6.9 (Cantor): For any set 4, we have |4| < |2(4)|.

This important theorem is proved in Problem 6.18.

Notation: If o = |A4|, then we let 2* = |2(A4)|. This no doubt comes from the fact that if a finite set
A has n elements then 2(A4) has 2" elements.

Accordingly, Cantor’s theorem may be restated as follows.

Theorem 6.9 (Cantor): For any cardinal number o, we have a < 2°.

Schroeder—Bernstein Theorem, Law of Trichotomy
Note first that the relation < for cardinal numbers is reflexive and transitive. That is:

(i) For any set 4, we have |4| = |4].
(i) If |4]| <|B| and |B| < |C], then |4| < |C|.

The second property (transitivity) comes from the fact that if f/: 4 — B and g: B — C are both one-to-
one, then the composition go f: A — C is also one-to-one.

Since we have used the familiar < notation, we would hope that the relation < for cardinal numbers
possesses other commonly used properties of the relation < for the real numbers R and the integers Z.
One such property follows:

If @ and b are real numbers such
that ¢ < b and b < a, then a = b.
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This property certainly holds for finite cardinal numbers. If 4 is a proper subset of a finite set B, then
|4} < |B|. Therefore, for finite sets 4 and B, the only way that we can have |4| < |B| and |B < |4] is that
A and B have the same number of elements, that is, that |4| = |B|.

On the other hand, it is possible for a proper subset of an infinite set to have as many elements as the
entire set. For example, consider the infinite sets

E={2,46,..} and P={1,23,.}

As illustrated in Example 6.1(d), the subset E does have the same cardinality as P. Accordingly, the
above property for infinite cardinal numbers is not obvious. But it is still indeed true in view of the
celebrated Schroeder—Bernstein theorem which follows.

Theorem 6.10 (Schroeder—Bernstein): If |4| < |B| and |B| < |A4|, then |4| = |B|.

In other words, if o and (3 are cardinal numbers such that a < 8 and 8 < «, then o = 3. This
important theorem, proved in Problem 6.19, can be stated in the following equivalent form.

Theorem 6.11: Let X, Y, X; be sets such that X D Y D X; and X = X;. Then X = Y.

Another familiar property of the relation < for the real numbers R, called the law of trichotomy, is
the following: '

If @ and b are real numbers, then exactly one of the following is true:
a<hb, a=>nb, a>b

It is clear that the above property holds for finite cardinal numbers. Again, it is not obvious that it holds
for infinite cardinal numbers. The fact that it does is the content of the next theorem.

Theorem 6.12 (Law of Trichotomy): For any two sets 4 and B, exactly one of the following is true:
|4l < |Bl, |4]=1B|, |4]>|B|

In other words, if o and ( are cardinal numbers, then either o < 3, @ = 3, or @ > 3. The proof of
this theorem uses transfinite induction which is discussed in Chapter 9; hence the proof will be postponed
until then.

Continuum Hypothesis

By Cantor’s theorem, Ry < 2" and, as noted previously, 8y < ¢. The next theorem (proved in
Problem 6.20) tells us the relationship between 2™ and c.

Theorem 6.13: 2% = c.

It is natural to ask if there exists a cardinal number § which lies “between” Ry and ¢. Originally,
Cantor supported the conjecture, which is known as the continuum hypothesis, that the answer to the
above question is in the negative. Specifically:

Continuum Hypothesis: There exists no cardinal number 3 such that

Wy <pfB<ec

In 1963 it was shown by Paul Cohen that the continuum hypothesis is independent of our axioms of
set theory in somewhat the same sense that Euclid’s fifth postulate on parallel lines is independent of the
other axioms of geometry.
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6.7 CARDINAL ARITHMETIC

The collection of all cardinal numbers can be considered to be a superset of the finite cardinal
numbers (nonnegative integers)

0,1,2,3,...

This section shows how certain arithmetic operations on the finite cardinals can be extended to all the
cardinal numbers.

Cardinal Addition and Multiplication

Addition and multiplication of the counting numbers N are sometimes treated from the point of
view of set theory. The interpretation of 2+ 3 = 5, for example, is given by the picture in Fig. 6-3.
Namely, the union of two disjoint sets, one having two elements and the other having three elements, is a
set with five elements. This idea leads to a completely general definition of addition of cardinal numbers.

+ (xxx) = (xx xxx)

Fig. 6-3

Definition 6.7: Let o and 3 be cardinal numbers and let 4 and B be disjoint sets with o = |4| and
B =|B|. Then the sum of @ and 8 is denoted and defined by
a+f=|(4UB)

Two comments are appropriate with this definition. First of all, the addition of cardinal numbers is
well-defined. That is, if 4’ and B’ are also disjoint sets with cardinality o and f respectively, then

[(4"UB")| =|(4U B)|

Second, if 4 and B are any two sets, then 4 x (1) and B x {2} are disjoint. Accordingly, there is no
difficulty in finding disjoint sets with given cardinalities.

EXAMPLE 6.5
(a) Let m and n be finite cardinal numbers. Then m + n corresponds to the usual addition in N.
(b) Let n be a finite cardinal number. Then n + ¥, = ¥, since
n+R =1{1,2,...,n}U{n+1,n+2,...} =R
() Ry + Ry =N since
Ry + R =1{2,4,6,...} U{1,3,5,..} =%
(d) c¢+c=csince

c+e=|[0Ju,1]l=¢c

The definition of cardinal multiplication follows.

Definition 6.8: Let o and (3 be cardinal numbers and let 4 and B be sets with @ = |4| and 8 = |B|. Then
the product of a and ( is denoted and defined by

af =|A x B

As with addition, multiplication of cardinal numbers is well-defined. (Observe that, in the definition
of cardinal multiplication, 4 and B need not be disjoint.)
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EXAMPLE 6.6

(a) Let m and n be finite cardinal numbers. Then mn corresponds to the usual multiplication in N.

(b) Since N x N is countably infinite, RoRy = Ry.

(¢) Theorem 6.15 below tells us that the cartesian plane R? has the same cardinality as R. That is, cc = c.

Table 6-1 lists properties of the addition and multiplication of cardinal numbers and gives the
corresponding properties of sets under union and cartesian product. We state this result formally.

Theorem 6.14: The addition and multiplication of cardinal numbers satisfy the properties in Table 6-1.

Table 6-1

Cardinal numbers Sets
1) (a+B)+ry=a+(B+7) (1) (AUB)UC=AU(BUC)
2 a+p=p+a () AUB=BUA
@) (aB)y = a(By) () (AxB)xCmAx(BxC)
@) af=La (4 AxB=BxA
S aB+7)=aB+ay (5) Ax(BUC)=(AxB)U(4xC)
6) Ifa<p thena+y<B+7y (6) If 4 C B, then (AUC) C (BUC)
(7) If a <8, then ay < By (7) If AC B, then (4 xC)C(BxC)

We emphasize that not every property of addition and multiplication of finite cardinals holds for
cardinal numbers in general. For example, cancellation holds for finite cardinal numbers, that is,
(i) Ifa+b=a+c,thenb=c.
(ii)) If ab = ac and a # 0, then b = c.

On the other hand, using Example 6.5 and Example 6.6, we have

(1) o+ Ry =Ry =Ry + 1, but Ry # 1.

(i) RoRy =Ry =Ry 1, but Ry # 1.
Accordingly, the cancellation law is not true for the operations of addition and multiplication of infinite
cardinal numbers.

On the other hand, the addition and multiplication of infinite cardinal numbers turn out to be very
simple. We state the following theorem whose proof lies beyond the scope of this text.

Theorem 6.15: Let o and § be nonzero cardinal numbers such that f is infinite and o < 8. Then
a+tf=af=p

That is, given two nonzero cardinal numbers, at least one of which is infinite, their sum or product is
simply the larger of the two. Examples 6.5 and 6.6 verify some instances of the theorem.

Exponents and Cardinal Numbers
First we note that if 4 and B are sets, then
AB
denotes the set of all functions from B (the exponent) into 4. This notation comes from the fact that if 4

and B are finite sets, say, |4| = m and |B| = n, then there are m" functions from B into 4. This is
illustrated in the next example, where |4| = 2 and |B| = 3.
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EXAMPLE 6.7 Let 4 = {1,2} and B = {x,y,z}. Then 4% consists of exactly eight functions, which follow:
{(x’l)’(yvl)v(zvl)}v {(x71)7(y»1)7(272)}7 {(xvl)’(y72)7(zvl)}7 {(x71)7(y72)a(272)},
{2,001z} {(x%2),01),z2)}  {(*x2,0,2.1)}  {(x2),0,2),(z2)}

That is, there are 2 choices for x, 2 choices for y, and 2 choices for z, and hence there are 23 = 8§ functions altogether.

Exponents are introduced into the arithmetic of cardinal numbers in the next definition and, as
illustrated above, this definition agrees with the case when 4 and B are finite sets.

Definition 6.9: Let o and 3 be cardinal numbers and let 4 and B be sets with @ = [4| and 8 = |B|. Then
a to the power (3 is denoted and defined by

of = | 4%

Remark: Previously, if & = |4|, then we used the exponent notation 2% = |2 (4)| where 2(A) is the
power set (collection of all subsets) of a set 4. We note that there is a one-to-one correspondence
between the subsets X of 4 and functions f: 4 — {0, 1} as follows:

1 ifaeX
f(“):{o ifad X

Thus there is no contradiction between the two notations.
The following familiar rules for working with exponents continue to hold.

Theorem 6.16: Let «, 8,~ be cardinal numbers. Then:

1) (aB) =a75". 3) (0/3)7 =a”.
) dPa? = 4 Ifa<pf thena’ <p.

EXAMPLE 6.8 Using the rules for exponentiation we can make the following calculations:
(@) cM=2%)% =M N

(b) = (zN))c . 2&)«: —2°

Solved Problems

EQUIPOTENT SETS, DENUMERABLE SETS, CONTINUUM
6.1. Consider the following concentric circles:
C={(xy):X+y*=d}, C={xy):52+y"=b}
where, say, 0 < a < b. Establish, geometrically, a one-to-one correspondence hetween C; and C,.

Let x € C,. Consider the function f/: C, — C; where f(x) is the point of intersection of the radius from
the center of C,, (and C)) to x and C), as shown in Fig. 6-4. Note that f is both one-to-one and onto. Thus
f defines a one-to-one correspondence between C; and C,.
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£0,1,1/2,1/3,.} U 4

/) 0 \C'a )
N |

{1/2,1/3,1/4,1/5,..} U4

14

Fig. 64 Fig. 6-5

6.2. Prove: (a)[0,1]=~(0,1); (b)[0,1]=10,1); (c) [0,1]= (O,1].
(a) Note that
[0,1]={0,1,1/2,1/3,...3U 4
0,1) ={1/2,1/3,1/4,..} U 4
where
A=1[0,1]\ {0,1,1/2,1/3,...} =(0,1) \ {1/2,1/3,...}
Consider the function f: [0, 1] — (0,1) defined by the diagram in Fig. 6-5. That is,

1/2 ifx=0
f(x)=<1/(n+2) ifx=1/nneP
% if x#0,1/n,neP

The function f is one-to-one and onto. Consequently, [0, 1] = (0,1).
(b) The function f: [0,1] — [0, 1) defined by
_[1/(n+1) ifx=1/nneP
f(x)*{x if x# 1/n,neP

is one-to-one and onto. [It is similar to the function in part (a).] Hence [0, 1] ~ [0, 1).

(¢) Letf:[0,1) — (0,1] be the function defined by f(x) =1—x. Then f is one-to-one and onto and,
therefore, [0,1) ~ (0,1]. By part (b) and Theorem 6.1, we have [0, 1] = (0, 1].

6.3. Prove that each of the following intervals (where a < b) has the power of the continuum, i.e., has
cardinality c:

(1) [a,6],  (2) (a,8),  (3)[a,b),  (4) (a,b]
The formula f(x) = a + (b — a)x defines a bijective mapping between each pair of sets:

(1) [0,1) and [a, ] (3) [0,1) and [a,b)
(2) (0,1) and (a,b) (4) (0,1] and (a,d)

Thus, by Theorem 6.1 and Problem 6.2, every interval has the same cardinality as the unit interval I = [0, 1],
that is, has the power of the continuum.
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6.4.

6.5.

6.6.
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Prove Theorem 6.1: The relation 4 = B in sets is an equivalence relation. Specifically:

(1) A4 = A for any set 4.
(2) If A~ B, then Bx A.
(3) If A~ Band B= C, then 4 ~ C.

(1) The identity function 1, : 4 — A is bijective (one-to-one and onto); hence 4 ~ 4.

(2) Suppose 4 ~ B. Then there exists a bijective function f: 4 — B. Hence f has an inverse function
/7% B — A which is also bijective. Hence B~ A. Therefore, if A ~ B then B~ A.

(3) Suppose 4 =~ B and B= C. Then there exist bijective functions f: 4 — B and g: B— C. Then the
composition function gof: 4 — C is also bijective. Hence A4 ~ B. Therefore, if 4 ~ B and B~ C,
then 4 =~ C.

Prove Theorem 6.2: Every infinite set 4 contains a subset D which is denumerable.
Let f: 2(A) — A be a choice function. Consider the following sequence:

a) =f(A)
ay = f(A\{a1})
a3 =f(A\{a1,a})

Since A is infinite, 4A\{a;,a,,...,a,_;} is not empty for every n € P. Furthermore, since f is a choice
function,

a, % q; for i<n

Thus the a, are distinct and, therefore, D = {ay,a,, ...} is a denumerable subset of A.
Essentially, the choice function f* “chooses” an element a; € A4, then chooses an element @, from the
elements which “remain” in 4, and so on. Since A is infinite, the set of elements which “remain” in A4 is

nonempty.

Prove: (a) For any sets 4 and B, 4 x B~ B x A.
(b) For any sets 4, B, C,
(AXB)xCx~AxBxC=Ax (BxC)
(¢)If A~ Cand B~ D, then A x B~ C x D.
(a) Letf: A x B— Bx A be defined by
f((a,b)) = (b,0a)

Clearly f is bijective. Hence 4 x B~ B x A.
(b) Let f: (A x B)x C— Ax Bx C be defined by

S((a,b),¢) = (a,b,¢)
Then £ is bijective. Hence (4 x B) x C~ A x Bx C. Similarly, 4 x (Bx C)~ A4 x Bx C. Thus
(AXB)xCx=AxBxC~Ax(BxC)
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6.7.

6.8.

6.9.

6.10.

(¢) Letf:4— Cand g: B— D be one-to-one correspondences. Define 7: 4 x B— C x D by
h(a,b) = (f(a),&(b))

One can easily check that & is one-to-one and onto. Hence 4 x B~ C x D.

Prove: Let X be any set and let C(X) be the family of characteristic functions of X, that is, the
family of functions /: X — {0,1}. Then 2(X) ~ C(X) where 2(X) is the power set of X, i.e., the
collection of subsets of X.

Let A be any subset of X, i.e., let 4 € #(X). Let f: Z(X) — C(X) be defined by
Sf(A4) = x4

that is, / maps each subset 4 of X into the characteristic function x, of A4 (relative to X). [Recall
X4 : X — {0,1} is defined by f(x) =1 if and only if x € 4.] Then f is both one-to-one and onto. Hence
P(X) ~ C(X).

Suppose A4 is an infinite set and F is a finite subset of 4. Show that 4\F = 4. In other words,
removing a finite number of elements from an infinite set does not change its cardinality.

Suppose F = {a,,a,,...,a,}. Choose a denumerable subset D = {a,ay,...,a,,a,41,...} of A so that
the first n elements of D are the elements of F. Let g: 4 — A\F be defined by

gla)=aifa¢g D and glay) =ay,nifaeD

Then g is one-to-one correspondence between 4 and A\F. Thus 4 ~ 4\F.

Prove Theorem 6.3: A subset of a denumerable set is either finite or denumerable.
Consider any denumerable set, say,
Az{al,az,a3,...} (1)

Let B be a subset of 4. If B = (7, then B is finite. Suppose B # 0. Let b, be the first element in the sequence
in (/) such that b, € B; let b, be the first element which follows b, in the sequence in (/) such that b, € B; and
so on. Then B = {b,,b,,...}. If the sequence by, b,, ... ends, then B is finite. Otherwise B is denumerable.

Prove: A countable union of finite sets is countable.

Let € = {S; : i € P} be a countable collection of finite sets, and let C = U;S;. If C is empty, then C is
countable. Suppose C # &. Define 4, = S, 4, = $;\S;, 43 = S3\S,, and so on. Then the sets 4; are
finite and pairwise disjoint. Say,

4, = {all’a127”-7alnl}, Ay = {0217a22)'-~a2n2}7'-'
Then the union B = U;4; can be written as a sequence as follows:
B= {all7al27' --aaln|7a2lva22""$a2n2""}

That is, first we write down the elements of A, then the elements of 4,, and so on. Formally, define
f: D — P as follows:

Sflag) =m+m+ - +n_yy

Then f is bijective. Hence B is countable. However, B is also the union of the sets in %; that is, B = C.
Therefore, C is countable, as claimed.
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6.11.

6.12.

6.13.

6.14.
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Prove Theorem 6.5: Let A;, A4, As,... be a sequence of pairwise disjoint denumerable sets.
Then the union S = U;4; is denumerable.

Suppose
Ay ={an,ap,ai3,...},  Ay={ay,ap,an,...}, ...
Define D, = {a;; : i+ j=n,n > 1}. For example,
Dy ={an}, Dy={ap,an}, Ds={an,ap,an}, ...

Note that each D, is finite. In fact, D, hasn — 1 elements. By Problem 6.10, T = {J(D; : j > 1) is countable.
On the other hand, the union of the finite D’s is the same as the union of the A4’s, thatis, T = S. Thus S is
countable.

Show that R ~ R*. (The sets of positive and negative real numbers are denoted, respectively, by
R" and R™))

The function f(x) = x/(1 + |x|) is a one-to-one correspondence between R~ and the open interval
(—1,0). Hence the function A defined by

x
= if

h(x):{1+|x|+1 if x<0
x+1 if x>0

is a one-to-one correspondence between R and R*. Hence R ~ R™.

Suppose 4 is any uncountable set and B is a denumerable subset of 4. Show that A\B~ 4. In
other words, removing a denumerable set from an uncountable set does not change its cardin-
ality.

Suppose B = {by, by, bs,...}. The set 4\B is infinite (indeed uncountable) and contains a denumerable
subset, say, D = {d|,dy,ds,...}. Let A* = A\(BUD). Then A4 and A4\B are the following disjoint unions,

A=A"UDUB=A"U{dy,dy,ds,...} U{b,by,b3,...}
A\B=A"UD = A"U{dy,dy,d;,...}

Define f: A — A\B as in Fig. 6-6, that is,

f(a) =a ifae A
Sf(dn) = dpy — 1 ) neP
S (by) = iy nepP

Then f is one-to-one and onto; hence A\B =~ 4.

A= A* U {dh d2» d3’ } V) {bb sz b39 }
“. A‘l
A\B= A* U {d}, dy, dy, d,, ds, dg, ...}

Fig. 6-6

Prove: The plane R? is not the union of a countable number of lines.

Let . be any countable collection of lines. Since there are ¢ vertical lines and & is countable, there is a
vertical line T such that T ¢ .. Now each line in .% can intersect T in at most one point. Thus there are
only a countable number of points in T which lie on lines in . Hence there is a point p € T C R? which
does not line on any line in .%Z.
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6.15. Prove Theorem 6.8: The unit interval I = [0, 1] is not denumerable.

Method 1: Assume I is denumerable. Then
I = {Xl,X2,X3,...}

that is, the elements of I can be written in a sequence.
Now each element in I can be written in the form of an infinite decimal as follows:

xy =0.apapa---ay, -
Xy = 0.ay1ap0a03 - az, -+ -

where a; € {0, 1,...,9} and where each decimal contains an infinite number of nonzero elements. Thus we
write 1 as 0.999... and, for those numbers which can be written in the form of a decimal in two ways, for
example,

1/2=0.5000... =0.4999...

(in one of them there is an infinite number of nines and in the other all except a finite set of digits are zeros),
we write the infinite decimal in which an infinite number of nines appear.
Now construct the real number

Y =0.bbybs--b,---
which will belong to I, in the following way:
Choose by so by # a;; and by #0. Choose b, so b, # ay; and b, #0. And so on.

Note y # x; since by # ay; (and by # 0); y # x, since b, # ap, (and b, # 0), and so on. That is, y # x, for all
n € P. Thus y ¢ I, which contradicts the fact that y € I. Thus the assumption that I is denumerable has led
to a contradiction. Consequently, I is nondenumerable.

Method 2: [This second proof of Theorem 6.8 uses Problem 6.17(b).]
Assume I is denumerable. Then, as above,
I= {XI,X2,X3, 557 }

that is, the elements of I can be written in a sequence.
Now construct a sequence of closed intervals I, ], ... as follows. Consider the following three closed
subintervals of [0, 1]:

0,173,  [1/3,2/3,  [2/3,1] ()

where each has length 1/3. Now x; cannot belong to all three intervals. (If x; is one of the endpoints, then it
could belong to two of the intervals, but not all three.) Let I} = [a}, b,], be one of the intervals in (/) such
that x; ¢ I;. Now consider the following three closed subintervals of I; = [ay, b;]:

[a, a1 +1/9], lay +1/9, a1 +2/9], [a) +2/9, b)] )
where each has length 1/9. Similarly, let I, be one of the intervals in (2) with the property that x, does not
belong to /;. Continue in this manner. Thus we obtain a sequence of closed intervals,

L2L2LD- - 3
such that x,, & I, for all n € P.

By the above property of real numbers, there exists a real number y € I = [0, 1] such that y belongs to
every interval in (3). But since

y € I= {xl’x2vx3a-~-}

we must have y = x,, for some m € P. By our construction y = x,, ¢ I,,, which contradicts the fact that y
belongs to every interval in (3). Thus our assumption that I is denumerable has led to a contradiction.
Accordingly, I is nondenumerable.
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6.16. Prove that R® ~ R and, more generally, that R” ~ R.
Since R = S = (0, 1), it suffices to show that the open unit square
SP={(x,y):0<x<1,0<y<1)=(0,1)x (0,1)
has the same cardinality as S = (0,1). Any point (x,y) € S can be written in the decimal form

(x,) = (0.d\drd3,---,0.e1e503 - - *)

where each decimal expansion contains an infinite number of nonzero digits (e.g., for 1/2 write 0.4999...
instead of 0.5000... 0. The function

f(x,y) = 0.dye,drerdses - -

is one-to-one by the uniqueness of decimal expansions. Furthermore, the function g: S — S? defined by
g(x) = (x,1/2) is one-to-one. Accordingly, by the Schroeder-Bernstein Theorem 6.10, S ~ S. Thus
R’~R.

Therefore, R> ~ R?> x R ~ R x R ~ R. Similarly, by induction, R” ~ R.

6.17. A sequence [}, I,,... of intervals is said to be “nested” if ; 2 I, D ....

(a) Give an example of a nested sequence of open intervals I, whose intersection is empty.

(b) Prove the Nested Interval Property of the real numbers R: A nested sequence I; = [ay, by],
I, = [ay, b], ... of closed intervals is not empty.

(a) LetI, =(0,1/k). Then (I : k € P) = . [This follows from the fact that, for any ¢ > 0 there exists
a k such that 1/k < c.]

(b) Let A ={ay,a,,...}. Since the intervals are nested, 4 is bounded and every by, is an upper bound of A.
By the completion property of R, y = sup(A4) exists. Thus, for every k, a, < y < b;. Thus y belongs to
every interval, and hence [, Iy # J.

CARDINAL NUMBERS AND THE INEQUALITY OF CARDINAL NUMBERS
6.18. Prove Cantor’s Theorem 6.9: For any set 4, we have |4| < |2(4)|.

The function g: 4 — 2(A) which sends each element a € 4 into the set consisting of a alone, i.e., which
is defined by g(a) = {a}, is one-to-one. Thus |4| < |2(4)|.

If we now show that |4| # |#(A4)|, then the theorem will follow. Suppose the contrary, that is, suppose
|A] = |2(A)| and that f: 4 — P(A) is one-to-one and onto. Let a € 4 be called a “‘bad” element if a is not a
member of the set which is its image, i.e., if a ¢ f(a). Now let B be the set of “bad” elements. That is,

B={x:xeA,x¢f(x)}

Now B is a subset of 4, that is, B € 2(4). Since f: A — P(A) is onto, there exists an element b € 4
such that f(b) = B. Is b a “bad” element or a “good” element? If b€ B then, by definition of B,
b ¢ f(b) = B, which is impossible. Likewise, if b ¢ B, then b € f(b) = B, which is also impossible. Thus
the original assumption, that |4| = |#(4)|, has led to a contradiction. Hence the assumption is false, and so
the theorem is true.



CHAP. 6] CARDINAL NUMBERS 159

6.19.

6.20.

Prove Theorem 6.11 (which is an equivalent formulation of the Schroeder-Bernstein theorem
6.10): Let X,Y, X, be sets such that X O Y O X; and X = X;. Then X =~ Y.

Since X =~ X, there exists a one-to-one correspondence (bijection) f: X — X,. Since X D Y, the
restriction of f to Y, which we also denote by f, is also one-to-one. Let f(Y) = Y,. Then Y and Y, are
equipotent,

X2Y2X 27,

and f: Y — Y, is bijective. Butnow Y D X; D Yj and Y = Y,. For similar reasons, X; and f(X,) = X, are

equipotent,
X2YoXxi oY, 24X,

and f: X; — X, is bijective. Accordingly, there exist equipotent sets X, X, X,,... and equipotent sets

Y, Y, Y,,... such that
X2Y2X, 21 2X2Y,2X:2Y32...

and f: X} — Xy and f: Yy — Y, are bijective.
Let
B=XNnYnX,nY,nX,nY,N...

Then
X=X\Y)u(r\xX))uXx\r,)u---uB

Y=\X)UX\Y)U(\X;)U---UB
Furthermore, X\ Y, X;\ Y}, X3\Y>,... are equipotent. In fact, the function
S+ (Xi\Ye) = (X1 \Yies1)

is one-to-one and onto.
Consider the function g: X — Y defined by the diagram in Fig. 6-7. That is,

(B = f(x) if xeX\Y,orxeX\Y
)=\ x if xe Y, \X, orxe B

Then g is one-to-one and onto. Therefore X =~ Y.

Fig. 6-7

Prove Theorem 6.13: ¢ = 2“0'

Let R be the set of real numbers and let 2(Q) be the power set of the set Q of rational numbers, i.e., the
family of subsets of Q. Furthermore, let the function /: R — 2(Q) be defined by

fla)={x:x€Q,x < a}

That is, / maps each real number a into the set of rational numbers less than a. We shall show that f is one-
to-one. Leta,b € R, a # b and, say, a < b. By a property of the real numbers, there exists a rational number

r such that
a<r<b

Then r € f(b) and r & f(a); hence f(b) # f(a). Therefore, f is one-to-one. Thus |R| < |2(Q)|. Since |[R| =¢
and |Q| = N, we have

CSZRO

Now let C(P) be the family of characteristic functions f: P — {0, 1} which, as proven in Problem 6.8, is
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equivalent to #(P). Here P={1,2,...}. Let I=]0,1], the closed unit interval, and let the function

F : C(P) — I be defined by
F(f) =0/(1)f(2/3) -

an infinite decimal consisting of zeros or ones. Suppose f,g € C(P) and f # g. Then the decimals would be
different, and so F(f) # F(g). Accordingly, F is one-to-one. Therefore,

12(Q)| = |C(P)| < 1|
Since |Q| = Ry and [I| = ¢, we have

Both inequalities give us

6.21. Let S = (0,1), the open unit interval, and let T be the set of real numbers in S which have an
infinite number of threes in their decimal expansion. Show that |T| = |S].

Let x € S and suppose x = 0.djd>d; ---d,---. Let the function f: S — T be defined by

Then f is one-to-one and hence |S| < |T|. Since T is a subset of S, we have |T| < |S|. By the Schroeder—
Bernstein theorem, |T'| = |S|.

6.22. Let S denote the open unit interval (0, 1), and let S* denote the set of all denumerable sequences
(x1,%,x3,...) where x; € S. (a) Prove |S”| = |S|. (b) Prove the set R” of all denumerable
sequences of real numbers has cardinality c. .

(a) Let (x1,x,x3,...) € S*. Consider the decimal expansions:
x; = 0.dy dipdi3dyy - -
Xy = 0.dy1dpadrzdyy - -
x3 = 0.d31d3pdzdyy - -

And so on

Associate the sequence (xi, x;, x3,...) with the decimal number
0.dyy 1 dydyy 2 dyadypds) -+

where the subscripts in the successive blocks of digits d|, dy,d),, d3dyds,, . . . are obtained by “follow-
ing the arrows” in Fig. 6-1. (This procedure was used to show that P x P is countable.) This
association defines a one-to-one function from S“ into S. The function g: S — S defined by
f(x) = (x,x,x,...) is also one-to-one. By the Schroeder—Bernstein theorem |S“| ~ |S]|.

(b) Since R = S, it follows that |[R”| = |S¥| = |S| =c.

CARDINAL ARITHMETIC
6.23. Let A, A,, A3, A4 be any sets. Define sets B, B,, B3, B4 such that
|[A1| + | 42| + 43| + |44] = |By U B, U By U By|

Let Bl = Al X {1}, BZ = A2 X {2}, B3 = A3 X {3}, B4 = A4 X {4} Then Bk ~ Ak for k = 1,2,3,4.
Also, the By are disjoint, that is, B; N B; = J if i # j. Consequently, the above will be true.
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6.24. Let {A4;:i€ I} be any family of sets. Define a family of sets {B,; : i € I} such that B; ~ 4,, for
i€l and B,NB; = J for i #j.

6.25.

Let B; = A; x {i}. Then the family {B; : i € I} has the required properties.

Prove Theorem 6.14: The addition and multiplication of cardinal numbers satisfy the properties
in Table 6-1. That is, for cardinal numbers «, 3, v:

M
@
(©)
4)

M

2

3)

@

®)

©)

M

(@+B)+r=a+(B+7) () af+7)=acf+ay
a+pB=0+c 6) Ifa<pB, thena+y<B+7y
(aB)y = a(B) (7) If a < B, then ay < By

af = Ba

Let A4, B, C be pairwise disjoint sets such that o = |4|, = |B|, v =|C|.
We have:

(a+B)+v=|4AUB|+|C|=|(4UB)UC|
a+(B+7) =|4|+|BUC|=|4U(BUC)|
However, the union of sets is associative, i.e., (AUB)UC = AU (BUC). Hence
(@+f)+y=a+(B+7)
Since AU B = BU A, we have
a+f=|AUB|=|BUAd|=0+a
We have:
(B)y= |4 x B|C| = |(4 x B) x C|
o(By) = |4||B x C| =4 x (Bx C)|
However, by Problem 6.6(b), (4 x B) x C ~ A x (B x C). Hence
(af)y = a(B)
By Problem 6.6(a), A x B~ B x A; hence
af=|Ax B|=|Bx A| =fa
Note first that BN C = & implies (4 x B) N (4 x C) = &. Then:
a(B+7) = 4|[BUC| = |4 x (BUC)|
af+ay=|AxBl+|4AxC|=|(4xB)U (4 x C)
However, 4 x (BUC) = (4 x B)U (4 x C). Therefore,
a(f+9) =af+ay

Suppose a < 8. Then there exists a one-to-one mapping f: 4 — B, Let g: AU C — BU C be defined
by

_Jf(x) ifxe4d
“”‘{x if xe C

Then g is one-to-one. Accordingly, |4 U C| < |BU C| and so
w7y & f+g

Suppose a < 3. Then there exists a one-to-one mapping f: 4 — B. Let g : A x C — B x C be defined
by

g(a,c) = (fla),¢)
Then g is one-to-one. Accordingly, |4 x C| < |B x C| and so
ay < By
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6.26. Prove: Nc=c.

6.27.

Consider the integers Z = {...,—2,—1,0,1,2,...} and the half-open interval 4 = [0,1). Furthermore,
let f/: Z x A — R be defined by

f(n,a)=n+a

In other words, f({n} x [0,1)) is mapped onto [#,n+ 1). Then f is a one-to-one correspondence between
Z x A and R. Since |Z| = R, and |4| = |[R| = ¢, we have

Roe=|ZxA|=|R|=c

Prove: Let o be any infinite cardinal number. Then ®) + a = a.
We have shown that R + R; = ®;. Suppose « is uncountable, and a = |4|. By Problem 6.13, A\B~ A
where B is a denumerable subset of 4. Recall A = (4\B) U B and the union is disjoint. Hence

a=4|=|(A\B)UB| = |4A\B| +[B|=a+ R =R+

MISCELLANEOUS PROBLEMS

6.28.

6.29.

6.30.

Prove: The set £ of all polynomials
p(x) = ay+ a1x + @ + @, X" (1)
with integral coefficients, that is, where qy, a,. .., a,, are integers, is denumerable.

For each pair of nonnegative integers (n,m), let P(n,m) be the set of polynomials in (/) of degree m in
which

lao| +lar] + -+ + |am| = n
Note that P(n,m) is finite. Therefore
2P =(P(n,m) : (n,m) € N x N)

is countable since it is a countable family of countable sets. But £ is not finite; hence £ is denumerable.

A real number r is called an algebraic number if r is a solution to a polynomial equation
p(x) = ag + a;x + ax* + a,,x™ =0
with integral coefficients. Prove the set A of algebraic numbers is denumerable.
By the preceding Problem 6.28, that the set E of polynomial equations is denumerable:
E={p(x)=0, ps(x) =0, ps(x) =0,...}
Define
Ay = {x: x is a solution of p;(x) = 0}
Since a polynomial of degree n can have at most n roots, each A, is finite. Therefore
A=J{A4; : ke P}

is a countable family of countable sets. Accordingly, 4 is countable and, since A is not finite, A4 is
denumerable.

Explicitly exhibit ¥, pairwise-disjoint denumerable subsets of P = {1,2,3,...}.
Let p and g be distinct prime numbers. The sets
Sp:{p7p27p3""} and Sq: {q7q27q37"'}

are pairwise disjoint. One can show that the set {p|, p,, p3, ...} of prime numbers is an infinite subset of P
and hence has cardinality ®y. Thus the family {S,,,S,,,S,,,...} has the desired properties.
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Supplementary Problems

EQUIPOTENT SETS, COUNTABLE SETS, CONTINUUM
6.31. The set Z of integers can be put into a one-to-one correspondence with P = {1,2,3,...} as follows:

1 2 3 4 5 6 17

I 1 1 1 4 &
0 1 -1 2 -2 3 -3

Find a formula for the function f: P — Z which gives the above correspondence between P and Z.

6.32. P x P was written as a sequence by considering the diagram in Fig. 6-1. This is not the only way to write
P x P as a sequence. Write P x P as a sequence in two other ways by drawing appropriate diagrams.

6.33. Prove that the set S of rational points in the plane R? is denumerable. [A point p = (x,y) in R? is rational if
x and y are rational.]

6.34. Let S be the set of rational points in the plane R2. Show that S can be partitioned into two sets ¥ and H
such that the intersection of ¥ with any vertical line is finite and the intersection of H with any horizontal
line is finite.

6.35. Let .o/ ={A4;:i€ I} be a set of pairwise disjoint intervals in the line R. Show that .7 is countable.

6.36. Let B = {B;:ic I} be a set of pairwise disjoint circles in the plane R?. Show that 4 is countable.

6.37. A function f: P — P is said to have finite support if f(n) = 0 for all but a finite number of n. Show that the
set of all such functions is denumerable.

6.38. A real number x is called transcendental if x is not algebraic, i.e., if x is not a solution to a polynomial
equation

px)=ay+ax+ax’ 4+ +a" =0

with integral coefficients. (See Problem 6.29.) For example, 7 and e are transcendental numbers. Prove that
the set T of transcendental numbers has the power of the continuum.

6.39. Recall that a permutation of P = {1,2,3,...} is a bijective function o : P — P. Show that the set PERM(P)
of all permutations of P has the power of the continuum.

CARDINAL NUMBERS, CARDINAL ARITHMETIC

6.40. Suppose a and 3 are cardinal numbers such that o« < 3. Show that there exists a set S with a subset 4 such
that « = |4| and 8 = |S].

6.41. Show that Theorems 6.10 and 6.11 are equivalent. (Hence each proves the Schroeder—Bernstein theorem.)
6.42. Prove cRo =c.

6.43. Show that there are only ¢ continuous functions from R into R. (Assume that if / and g are such continuous
functions and f(q) = g(g) for all rational numbers ¢ in R, then f = g, that is, f(x) = g(x) for all x in R.)

6.44. Prove Theorem 6.16(2): Let «, 3, be cardinal numbers. Then o’ =’

6.45. Let o, 3,7 be cardinal numbers such that o < 3. Prove: (a) a* < g7, (b) 4* <A~
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6.46.

6.47.

6.48.

CARDINAL NUMBERS [CHAP. 6

Show that the cardinal inequality relations are well defined; that is, if 4 ~ 4’ and B ~ B’, show that:
(a) |4| < |B if and only if |4'| < |B'|. (b) |4| < |B| if and only if |4'| < |B’|.

Show that cardinal addition and multiplication are well defined, that is:

(a) Cardinal Addition: If A ~ A' and B ~ B’, where 4 and B are disjoint and A’ and B’ are disjoint, show
that |[4U B| = |4’ U B'|.
(b) Cardinal Multiplication: If A~ A' and B ~ B’, show that |4 x B| = |4’ x B'|.

Let % be the collection of all circles in the plane R?. Show that € has cardinality c.

MISCELLANEOUS PROBLEMS

6.49.

6.31.

6.32.

6.33.

6.35.

6.36.

(Heine-Borel Property of the real numbers R.) Let € = {I; : k € K} be a collection of open intervals which
covers a closed interval 4 = [a,b]. Show that & contains a finite subcover of A4, that is, a finite subcollection
of & is a cover of 4. [A collection {I, : k € K} of intervals is called a “cover” of a set 4 if 4 C |J, I;.]

Answers to Supplementary Problems

The following function f: P — P has the required property:

_ [ -n/2+1/2 if nisodd
fn) = {n/2 if n is even

Each diagram in Fig. 6-8 shows that P x P can be written as an infinite sequence of distinct elements as
follows:

(a) PXP:{(I’I)a 2,1), (2, 2)» ( ,2), (173)a (273)1"'}
() PxP={(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4),...}

0Ly 1GL,2)—(1,3)  (1,4) —> - GLH— (12 1, 3) L4

-
-

\
\
\

en—@2 @3 @9 - R A s 3) 2.4
(B, 1)=—(3,2)«—(3,3) 3,4 see @3, l)/(3 2)/(3 3)/(3, 4)
@) — (4,2)— (4,3)— (4,4)  --- @, 1)/(4, 2)/(4, 3)/<4, 4)
(@) ®)
Fig. 6-8

[QxQ|=[PxP|=[P|=N
Hint: Each interval contains a distinct rational number.

Hint: Each circle contains a distinct rational point in R2.
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6.38.

6.42.

6.43.

6.44.

6.45.

6.48.

6.49.

Hint: R is the union of the algebraic and transcendental numbers.
Hint: Use Problem 6.22
Hint: Use Problem 6.22 or 6.42.

Hint: Let o = |A4|, 3 = |B|,~y = |C| where Band C are disjoint. Let D =BUC. Then 8+~ = |BUC| = |D|.
Associate with each function f: D — A the pair fi: B — 4 and f,: C — A where f| = f|g and f, = f]|.. Show
that the map F(f) = (f1,/2) is bijective.

Hint: Let a = |A4|, 8 = |B|,¥ = |C| where we can assume 4 C B since o < .

(a) For each function f: C — A associate the function f": C — B defined by f’(x) = f(x). Show that the
map F(f) = g is one-to-one.

(b) For each function f: 4 — C associate a function f”: B — C which extends f, i.e., for each a € 4,
f'(a) =f(a). Show that the map F(f) = is one-to-one.

Since each circle in € is determined by its center (x,y) and radius r, ¥ ~ R x R x R" = R.

Suppose no finite subcollection of € is a cover of 4. Let p; be the midpoint of the interval 4 = 4, = [ay, b;].
At least one of [a;,p;] and [p;, b;] cannot be covered by a finite subcollection of & or else the whole interval
A; will be, and let A, = [a,,b,] be that subinterval. Similarly, let p, be the midpoint of the interval
Ay = |ay, by], and let A3 = [a3, b3] be one of the two intervals [ay, py] and [p,, b,] which cannot be covered
by a finite subcollection of ¢, and so on. Thus we have a sequence A4, A,, ... of nested closed intervals, and
each cannot be covered by a finite subcollection of 4. Furthermore, lim d, = 0 where d, = b, — a,, is the
length of 4,. By Problem 6.17(b), there exists a real number y in every A, Since € is a cover of A, y belongs
to some element of €, say y € I; where [; = (c,d). Let e be the distance from y to the closest endpoint of /.
Then there exists d; such that d; < e. This means 4; C /;. This contradicts the fact that 4; cannot be covered
by a finite subcollection of ¥. Thus the original assumption that no finite subcollection of & covers 4 leads
to a contradiction, and so a finite subcollection of € covers A.



