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3 Progenties of rtriomatic Systems

Now that the reader has been introduced to several particular systems
of axioms he should be able to understand an abstract discussion of
axiomatic systems in general. There are three important concepts usually
associated with any axiomatic system: consistency, independence, and
completeness. A discussion of these topies, using the systems introduced
in Chapter 2 as examples, will provide answers to the questions raised in
that chapter.

3.1 Consistency

If the purpose of language is to communicate, it is self-defeating if
something is said and then ‘“‘un-said.” This is what is done when one says
“P and not-P.” In order to express this more precisely, let us first review
what has previously been said about sentences.

First, recall that not all sentences are true or false. Even when such
nonsense as ‘“All triangles are courageous” and such exclamations as
“Shut the door!” are excluded, a very important type of sentence remains,
one to which we cannot apply the words true or false. For example, when
one says, ‘“‘He has red hair’” or “X is an even number,” such sentences,
strictly speaking, cannot be said to be either true or false. In today’s
parlance, they are called open senfences. That is, they are sentences that
become statements, become true or false, when the ‘“‘variables’” in the
sentence are assigned some definite referent. Thus, ‘“‘George Brown has
red hair” and “Seven is an even number” are no longer open sentences;
they are statements, or propositions (we use the two words synonymously);
they are sentences that are either true or false. All sentences in mathe- .
matics are (or should be) either open sentences or statements.
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38  Properties of Axiematic Systems

With this agreement, the classical laws of logic hold:
The Law of Contradiction: No statement can be both true and false.

The Law of Excluded Middle: Every slalement 1s either true or false.

Now let us return to our first point. If P is a statement, then when we
say “P and not-P” we are not merely making a false statement; we are
saying something and retracting it. We are in effect saying nothing or, to
put it another way, we are breaking our rules of language and thus
speaking nonsense. Therefore, in a system of axioms one may permit any
number of statements to be false if oné ¢hooses but one must never allow
any two stafements to be of thetype “P” and “not-P.” This can be said
more’ succmctly if we introduce the following definition:

Deﬁmtwn An axiom system is consistent iff there do not exist in the
system any two axioms, any axiom ‘and theorem, or any two theorems of
the form P and “not-P.”

Using this definition we can now summarize: it is absolutely essen-
tial for an axiomatic system to be consistent.

Very well, but how does one determine this? What is being said, in
effect, is that for an axiomatic system to be consistent it must be impos-
sible to ever prove a theorem contradicting another theorem or axiom.
Unless one has reason to believe that one has already proved every single
theorem that it is possible to prove from a given set of axioms, there is no
way of knowing whether or not a contradiction will be discovered just
ahead. And even if one knew one had derived every theorem, might there
not be so many of them, or might they not be so complex or so subtle, that
a contradiction might rest inextricably hidden among them? How can
one be sure? This is a question to which there is no definitive answer.

There is, however, a pragmatic test for consistency that mathematicians
have been using for years. To explain precisely how the test works, it will
be helpful to introduce a few definitions and then to use the axiomatic
systems of the preceding chapter to illustrate the test.

The systems introduced as Axiom Set 1 and Axiom Set 2 are “abstract
systems’’ as long as the terms “‘point’”’ and “line’ are taken as undefined.
As long as these terms remain undefined the axioms are open sentences. It
is not until some meaning is given to the undefined terms that one may
legitimately ask whether the axioms are true or false.

Definition. By an interpretation of an axiomatic system we mean:
the assignment of meanings to the undefined technical terms in such a
way that the axioms become either true or false.
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Definition. An interpretation that makes an axiom true is said to
satisfy that axiom. If there exists an interpretation in which every axiom
in a set becomes true, then the set is said to be satisfiable.

Definition. If a set is satisfiable, then such an interpretation is called
a model.

Test for Consistency: If there exisls @ model for a set of axioms, the
set s consistent.

The existence of a model as a test for consistency may be justified as
follows. If one can find such a model, then all axioms in the system become
true statements. Hence all statements implied by the axioms—that is,
all theorems—must become true statements because it is impossible for a
true statement to imply a false statement. If each axiom is true, then the
conjunction of all axioms is a true statement and anything implied by
this conjunction of statements must itself be true by the laws of logic.

Some examples should clarify how the model test for consistency works.

3.2 Models for Consistency

Suppose that a college offers the following challenge to its best students.
The top three members of each class, sophomore, junior, and senior, will
be given an all-expense-paid trip to nine countries whose political attitudes
toward the United States are either neutral or negative. On their return
they must debate and discuss what they have learned.

To make the project challenging, the three discussion teams will be
made up solely of classmates. To make it fair, but not too time-con-
suming, the teams are divided into sets of three, with one member of each
class on a team and each of the three teams to spend one week in a country.
They will regroup in such a way that no two men are ever on the same
team; the new teams will then spend one week in another country. For
clarity, the students make up the following chart:

~
{

Sophomores: Alan, Bob, Charley 4 3 e ,_J’ S gie T G

Juniors: Dick, Frnie, Fred D= e
Seniors: George, Herm, Irving o
Algeria: Alan, Dick, George

Bulgaria: Bob, Ernie, Irving L e &
Cambodia: Charley, Fred, Herm = A
Dominican Republic: Alan, Ernie, Herm o6k Je
Egypt: Bob, Fred, George '
Finland: Charley, Dick, Irving
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Chana: Alan, I'red, Irving
Hungary: Bob, Dick, Herm
India: Charley, Ernie, George

The interpretation should be obvious: “point” = student; ‘line” =
team; “belonging to’” = is a member of.

This interpretation will be seen to be a model for Axiom Set 1. The
reader should checlk carefully to be convinced that each of the axioms of
the system is satisfied by this interpretation. The same holds for the
following three models, which are listed for future reference:

Model II (9 points, 12 lines)

e 1 411122 2 3 %
2 5 45 6 45 6 4 5 6 8
36 9 7 8 7 8 9 89 79

o

In this model “points” are numbers and “lines” are columns of numbers.

Model III (16 points, 20 lines)

—

i5 1 1112 2 2 2 3 3 3 3 4 4 4 4 910
26 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 81112
37 9101112101112 91115 913 14 9 13 10 14 13
48 13 14 15 16 16 13 14 15 12 16 10 14 15 12 16 11 16 15

Model IV (Infinite points, lines)
"Ordinary Euclidean geometry

Tven if it is now apparent that these are indeed models and that
therefore all theorems provable in the system must be true, doubts remain
as to the reliability of using such criteria. This is especially so when the
model has an infinite number of elements, as in Model IV. How does one
know that it really satisfies Axioms la and 1b and the others? It would
take an infinite number of checks to find out. How does one know that
the very model being used to guarantee consistency is not itself inconsist-
ent? In such cases only a relative type of test for consistency has been
found. All that can be said is that if Euclidean geometry is consistent,
then so is that system for which it is a model—and in several thousand
years no one has discovered an inconsistency in Euclidean geometry;
therefore, it is probably consistent. Unfortunately, such relative tests
will always be required when one is dealing with any system with an
infinite number of elements. In the case of finite models such as the first
three given above, it is not too difficult to check for hidden problems
because one can check every case. Such models have sometimes been
said to be “absolute’” tests for consistency.
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Let us look at a few more models, this time for Axiom Set 2.

Suppose that a mathematics department has seven faculty members
and suppose they decide to form seven committees to study and determine
the best way to teach specific topics in axiomatic geometry. It is agreed,
for the sake of fairness, that each member will be the chairman of one
committee and serve on exactly two others and that each committee will

have exactly three members. They draw up the following chart:
]

Commuttee to Study Chazrman Members !
Axioms Appolonius Bolyai Ceva
Betweenness Bolyai ' Desargues Fano
Congruence : Ceva Desargues Euclid
Dissection theory Desargues Appolonius Gauss
Equivalence relations FEuelid Appolonius Fano
TFinite systems Fano Gauss Cev
Geometries, infinite Gauss Euelid ‘ BOI;L:‘:&

With the interpretation that “‘points” are the mathematicians and
“lines” the committees as listed in each row, an examination of this chart
will show that every axiom of Set 2 is satisfied. Switching the members in
the second and third columns may be of help in checking but it is not
necessary. Call this Model V.

As another interpretation consider the following. A manufacturer is
interested in making a trinket made up of seven beads, each of a different
color. He wishes to join them to seven wires in such a way that there are
three beads on each wire and three wires through each bead. He makes up
the following list: amber, yellow, red, blue, green, orange, and violet. The
trinket looks like Figure 3.1.

FIGURE 3.1
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With the interpretation that “point” = bead, “line’” = wire, and the
wires and beads arranged as in Figure 3.1, they can be listed:

Wy = {b! Y, O] W, = {ax 9, 0} Wi = {O’;, Y, T] Wi= {bJ a, T}
Ws = {a': b? U} We = {yJ g, IU} W7 = {Ga Ty ?"}

One finds on examination that this is another model for System 2. Call it
Model VI. .
For another interpretation, take the following array of numbers:

1 2 3 45 6 7
2 3 4 5 6 71
4 5 6 7 1 2 3
in which a “point” = a number and “line”” = a column. Since this inter-

pretation also makes all the axioms true, it may be considered Model VII.
For a final interpretation:

AB CDEVJFGHTIJT KL M
B CDE F GHI J KILMA
DEF G HI J KL MADB C
J KL MA B CDUEUV F G H I
where once again “point’”’ = letter of the alphabet and ‘‘line” = column.

This interpretation also makes each of the axioms a true statement; call it
Model VIII.

We have now listed eight models, four models for each of our two axiom
sets. Bach model is sufficient to show the consistency of its respective
system. In addition, it should be apparent that all eight interpretations
are models for Axiom Set 3. It is not necessary to gather so much evidence;
all one needs to show consistency is a single model. However, in later
discussions, we shall find other uses for some of the models listed in this
section.

3.3 Independence

After a set of axioms has been chosen and it has been determined that
they are consistent, the next question that arises is whether each state-
ment is truly primitive—that it cannot be derived from the other members
of the set of axioms. Stated another way, how can it be known that one of
the axioms is not a theorem? When phrased in this way it might lead one
to counter with another question, namely, “What if it is?"’ If it is, nothing
is seriously wrong; at worst it might be difficult to prove and is simply left
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3.8 Independence 43

as an axiom. On the other hand, a proof might be supplied. In either case
the system suffers no irreparable damage.

Does this mean that independence, as defined in the next definition,
is an unnecessary property in an axiom system? Evidently. But there
are many mathematicians who, for aesthetic and logical reasons, try to
reduce an axiom set to a set of independent axioms. In fact, such an
attempt plays a significant role in the history of mathematics, as will be
apparent later.

Let us consider a new problem. Suppose one wishes to choose an inde-
pendent set of axioms. How does one go about such a task? We might
start with the following definition:

Definition. A statement is said to be independent in a set of statements
if it is impossible to derive it from the other members of the set.

This is not a very practical definition, for how can one tell whether or
not a statement is provable? If it has not been proven, might it still not
be provable? Asin the case of consistency, there is a test for independence.

Test: If an aziom set is consistent and of, when the statement being
tested 1s replaced by its denial there exists a model for the new set, then the
statement being tested vs tndependent.

Thatis, if Ay, -+ + , 4; -+, Anis consistent and if 44, -+ + + , not-4;,
-+ -, A, is consistent, then 4, is independent. For if the original system
_ is consistent and 4; is a theorem, then it is implied by the other axioms,
; and the contradiction of A; together with the other axioms could not
J " possibly be consistent; that is, there would exist no model for such a set.
of statements.
Let us illustrate this in Axiom Set 1. We shall find models showing the
independence of each of the axioms in the set.
The following interpretation shows the independence of

Axiom la:

| I = {Py, Ps, Ps}
‘ mz{P‘hPﬁ}Pﬁ}

The “interpretation” is precisely what is given; namely, the two sets as.
“lines” and the six elements as “points.” For the interpretation to test
the independence of Axiom la it must satisfy the negation of Axiom la
and must satisfy each of the other axioms. It certainly satisfies the nega-
tion of the first axiom because the points P; and P,, for example, do not

~ have a line containing them. A careful check will show that it satisfies
the other axioms.
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It should be pointed out that in negating an axiom one does not need to
limit the negation to the true contradictory of the given statement; a
contrary may he used as well. The difference between them, one will recall
from an earlier discussion, is that of two contradictories one is true and
the other is false; whereas of two contrary statements both cannot be true
but it is possible for both to be false. Because a contrary will suffice to neg-
ate an axiom, one can deny Axiom 1b by finding an interpretation with two
lines, three lines, four lines, and so forth, containing two given points.

Now let us find a model showing the independence of Axiom 1h.
Taking the easy axioms first, we know the following: the model must
have a line, the line must have at least three points, and there must exist
a point not on the line. Now, to deny Axiom 1b, there must exist at least
two lines containing the same two points; and, in order for the lines to be
distinet, they must contain a third distinet point. So one might start with:

T 4: 1
5 4
6 5

Y o -
5.k <7 &;, As before, the numbers are “points” and the columns “lines.” In this
B&’&\ interpretation, Axiom 1b is negated; Axioms 2, 3, and 4 are satisfied.

Y\ / But what of each of the others, which must also be satisfied? To satisfy
5a and 5b there must exist a unique parallel through any point not on

a given line, and to satisfy la there must exist lines containing points

1 and 6 and any other points that happen to be generated in the process
of satisfying the rest of the axioms. So one arrives at the independence

model for
Axiom 1b:
1 4 1 2 2 1 2 1 3 1
2 5 4 3 4 3 4 3 4 2
3 6 5 6 5 6 6 5 5 6

(Note: We can add {1, 3, 4}; {2, 5, 6]; {1, 5, 61; {2, 3, 4}; 12, 3, 5};
{1, 4, 6}; {3, 5, 6}; {1, 2, 4] and still satisfy the system.)

To complete the test for the independence of the axioms in Axiom Set
1 we cite the following models. In each instance the interpretation should
be checked to verify that it is indeed a model for the independence of the
axiom in question.

Axiom 2: 1 31 2 21
2 4 4 4 3 3
=112, 3}

Axiom 4: a single point; no line

Axiom 3;
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Axiom 5a: Any one of the models for the consistency of the
Axiom Set 2. Thus we may take Models V, VI, VII, or VIII of the
preceding section.

In checking to see that the interpretation is indeed a model showing
the independence of Axiom 4, the question arises as to how this inter-
pretation satisfies the other axioms. The answer lies in the fact that all

of the other axioms are of the form “If . . . then . . .”; in order for
them to be false, there must exist a line such that . . . or there must
exist two points such that . . . . If lines do not exist, if two points do not

exist, the statements cannot be false; hence they are true. This is some-
times called vacuous satisfaction.

Axiom 5b: Finally, for Axiom 5b we present the following rather com-
plicated model:

15 5 1 1 1 1 1 2 2 2 2 2 3 3

2 6 19 5 16 7 8 12 5 6 7 8 11 &5 6

3 7 15 9 6 19 10 15 16 10 12 9 13 12 19

4 8§ 10 13 11 14 18 17 18 14 15 19 14 9
17

3 3 3 4 4 4 4 4 6 7 8 9 13 17
7 8 10 5 6 7 8§ 9 12 9 11 10 14 18
i1 17 16 11 15 10 12 18 18 16 14 11 15 19
15 13 17 13 16 14 13 .17 12 16

18 19

It can be seen that this model has 19 points and 29 lines and that not
every line has the same number of points.

It is instruetive to attempt to find an independence model for Axiom 5b
that has the same number of points on a line. While the proof of Theorem
11 uses Axiom 5b, is it necessary to use it? If it is, it would seem that
without Axiom 5b we cannot prove that every line must have the same
number of points. On the other hand, the exercises following the proof of
Theorem 11 indicate that the same theorem holds in Axiom System 2,
which has no Axiom 5b. Furthermore, if the proof of the independence of
Axiom 5b were incompatiblé with all lines having the same number of
points, what then of the consistency of the System of Young where we
stipulate that all lines have three points? An answer to this problem might
be found in the solution to Exercise 3.3.111.

In conclusion, it should be pointed out once again that independence,
unlike consistency, is not essential to a system. While it is true that for
aesthetic or logical reasons one might attempt to adopt independent



46 Properties of Axiomatic Systems

statements as axioms, it is often not done. If a theorem is difficult to
prove and is assumed as an axiom the system will not itself be ruined.

EXERCISES 3.3

1. From the following list select models showing the independence of each
axiom in Axiom Set 2.

Interpretations:
1.1 4 11 1 2 2 2 3 3 3 7
2 5 4 5 6 4 5 6 4 5 6 8
36 97 87 8989 79
2. A single point; no line.
3. 1= [Py, Py, Pi}; m = | Py, Py, Ps}.
4.1 3 1 2 2 1
2 4 4 4 3 3
5. Three points; no line.
6. 1 = {Py, Po};m = {Py, Py}; & = {Py, P}
7.1 4 1 2 2 1 2 1 3 1
2 5 4 3 4 3 4 3 4 2
36 56 5 6 6 5 5 6
8. k = {Pi}; 1 = {Py, Po};m = {Py, Pu};n = {Py, Ps}
9. k = [P3, Py, Pi};1 = {P1, Py, Ps};m = {Py, Py, P4}
10. I = {P1, Ps, Pa}.
11.1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3
12. | = {Py, Py, P3}; m = [Py Ps, Pg}

II. Consider the following axiom system:

1. If I and m are any two distinet lines, they have at least one point in
common.

2. If P, and P, are any two distinet points, they have at least one line
through them.

3. If P; and P, are any two distinet points, they have at most one line
through them. »

4. Not all points are on the same line.

5. There exist exactly three distinet points.

(a) By trying to find independence models for each axiom, one should be
able to determine that one of the axioms is not independent.

(b) Prove it as a theorem.
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III. The following two models are possible models for the independence
of Axiom 5b of Axiom Set 1. Test each to see if it is.

1. 11 2 3 1 2 3 412 356 712 3 5
2 4 4 46 7 5 810 $ 8 88 8 9 9 9 9
3 56 7 7 5 6 9 8111213 14 15 11 12 13 14
6 7 2 3 4 5 6 3 46 71 5 7 1 4 2
9 910 10 10 10 10 11 11 11 11 12 12 12 13 13 14
15 10 13 14 15 11 12 15 12 13 14 14 15 13 15 14 15
2111111111 2 2 2 2 2 2 2 2
2 4 5 612 13 15 17 10 4 5 610 11 14 15 16
3 7 8 914 16 18 19 11 8§ 9 712 13 18 19 17
3 333 333 3 4 4 4 4 4 4
4 5 610 11 12 16 17 510 11 12 13 18
9 7 813 14 15 19 18 6 14 15 16 17 19
5 5 5 5 5 6 6 6 6 6
10 11 12 13 14 10 11 12 13 14
15 16 17 18 19 16 17 18 19 15
9T T T TF 8 8 8 8 8
810 11 12 13 15 10 11 12 14 15
9 17 18 19 14 16 18 19 13 16 17
9 9 9 99

10 11 13 14 16
19 12 15 17 18

3.4 Completeness

If a system contains a statement which is expressible in the technical
terms and relations of an axiom system and which cannot be proved to be
true or false, the system obviously lacks a statement of axiom status, an
independent statement. This was apparent in Axiom Set 3, when we found
that it was not possible to prove or disprove certain statements. Recall

‘that from Axiom Set 3 we could not prove either of the following: there

exist at least eight points; there exist at most seven points. Yet one is
true if and only if the other is false; hence, one must be true. This is not
to suggest that one of these two statements should be adopted as an
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axiom but, rather, that when there are such statements that can be
neither proved or disproved, the system lacks an independent statement
and is incomplete according to the following definition:

Definition. An axiom system is tncomplete if it is possible to add an

. independent axiom (phraseable in the system’s technical vocabulary). If

it is impossible to add such a statement, the system is complete.

We shall always assume that the independent axiom can be phrased
in the system’s technical vocabulary and that we need not repeat this
requirement except for emphasis. If it were ignored, one would get such
trivial situations as in Axiom Set 1, where the statement “All redheaded
truck drivers are six feet tall,”” if added to that system, is an independent
statement. We wish to avoid this.

We must now question whether it is in fact possible to find all of the
independent statements of a system. Is it possible to prove or disprove
every statement expressible within the vocabulary of the system? Is it
possible to know when a system is complete? The definition is of little use,
for how does one determine when the conditions of the definition have
been met, namely, that all the possible independent statements phraseable
in the system’s terms have been discovered?

This problem is more tractable when approached in a slightly different
way. Instead of looking at the system as an abstraction, one should con-
sider some interpretation of it. Suppose, for example, one wishes to set up
the axioms of Euclidean geometry. The problem is then specific: if one
regards points and lines as undefined things, can one state a set of axioms
from which the theorems implied will be those of Euclidean geometry
alone and essentially different from any other geometry? Stated differ-
ently, can an abstract system be so completely characterized that it applies
to essentially one and only one concrete interpretation, has, that is,
an essentially unique model? If so, the system is said to be categorical.

In order to see how this approach supplies an answer to the problem,

" it is necessary to have a more precise definition of “categorical.” To give

such a definition, several new concepts must be introduced, concepts
which in and of themselves are very useful in mathematics: one-one
correspondence and isomorphism.

If the elements of two sets can be paired off in such a way that each
element of one set oceurs exactly once, matched with exactly one element
of the other set, there is said to exist a one-one correspondence between the
two sets.

If there exists a correspondence between two sets S; and S, such that
every statement which is true when made about elements of S; is also
true when made about the corresponding elements of Ss, the correspond-
ence is said to preserve relations.
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Definition. Two models of an axiomatic system are said to be 180-
morphic with respect to that system if there exists at least one one-one

correspondence between the elements of the system which preserves
relations.

This concept is important enough to cover in more detail, rather than
digress now, however, we shall postpone it until the next section, where
we shall attempt to elarify it with several illustrations.

We are now able to state:

Definition. Whenever an axiomatic system is such that any two
models are isomorphic, the system is said to be categorical.

And finally we can state the test:

Test: If a system s categorical, then it is complete.

To prove the statement in the test, suppose an axiomatic system is
categorical but not complete. If not complete, then there exists a state-
ment “4,” such that it and “not-4,” are consistent with the given set of
axioms. Thus there exist models for the system {4y, 4,, - - + A,} and
for {A1, As, © -+ - not-A,}, hence showing that A, is independent in the
system. If it is now further supposed that the system is categorical, these
two models must then be isomorphic; hence, corresponding statements in
the two systems are either both true or both false. But this is impossible
by the assumption that “4,” is true in one and “not-4,” is true in the
other. This assumption must therefore be false; hence, if a system is
categorical, it is complete.

In a preceding section it was seen that Axiom Set 3 is satisfied by every
one of the models that satisfies Sets 1 and 2. As axioms were added the
variety of interpretations decreased until, finally, when we included
Axiom 6, we arrived at the System of Young, which is satisfied only by a
model with nine points and twelve lines. Similarly, when we add Axiom 6
to Axiom Set 2 we get a system satisfied only by a model with seven points
and seven lines. In these latter systems every two models satisfying one
system are essentially the same; they are merely different symbols for the
same things; they are, in a word, isomorphic. Hence, these last two
systems are complete.

In conclusion, it should be pointed out that completeness is not only
unessential but generally undesirable. One of the great advantages of an
abstract axiomatic system is that in proving one theorem we are in effect
proving many theorems. For every interpretation that satisfies the sys-
tem, any theorem proved for the uninterpreted system becomes true in
the interpreted system; therefore, the greater variety of models one can
find for a system, the greater range of application it has. On the other
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hand, the “more” complete a system is, the fewer essentially different
models one can find, the narrower is its range of applications. If one

wishes to study one particular system intensively, completeness is useful;
otherwise, it is not.

3.5 Examples of Isomorphisms

Consider Models I and IT of Seetion 3.2

I: Sophomores: Alan, Bob, Charley

m: Juniors: Dick, Ernie, Fred

n: Seniors: George, Herm, Irving

o: Algeria: Alan, Dick, George

p: Bulgaria: Bob, Ernie, Irving

g: Cambodia: Charley, Fred, Herm

r: Dominican Republic:  Alan, Ernie, Herm

s: Egypt: Bob, Fred, George

t: Finland: Charley, Dick, Irving

: Ghana: ‘Alan, Fred, Irving

»: Hungary: Bob, Dick, Herm

w: India: Charley, Ernie, George
U m' n o pf Q', T A T
1 4 1 1 1 2 2 2 33 37
2 5 4 5 6 4 5 6 4 5 6 8
36 9 7 8 7 8 9 8 9 7 9

As we know, the students are the “points’ in one system and the numbers
the “points” in the other. There are literally hundreds of ways in which a
one-one correspondence between these two sets can be set up. Suppose we
choose the following two:

(A) (B)
Alan &1 Alan «1
Bob — 2 Bob — 2
Charley < 3 Charley < 3
Dick <« 4 Dick 4
Ernie <5 Ernie <5
Fred <6 Fred <6
George <> 9 George < 7
Herm <7 Herm <8

Irving <8 Irving «9
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In order now to display an isomorphism, the “lines’” must be corre-
sponded in such a way that relations are preserved. For example, since
Alan, Bob, and Charley belong to /, one must first of all be sure that there
exists a line containing their “corresponding points,” that is, that there
exists a line containing 1, 2, and 3. These lines must then be made to
correspond. Thus correspondence (A) is accompanied by the following:

(A7)
I < r <o
m <> m’ s &8
7 > w b =t
o < n U p
p e v e q
g <« w > u

Once the correspondence (A) has been determined, any change in (A')
would cause the relation-preserving property to be lost. There is another
way in which one can fail to preserve relations. Consider the correspond-
ence given by (B). Because o contains Alan, Dick, and George, then by
(B) there should exist a line containing 1, 4, and 7. But there is no such
line in Model II; hence (B) fails to begin with. Of all the possible corre-
spondences that can be set up between two models, there are usually
many that preserve (all) relations (if the models are isomorphic), many
that preserve some relations and, usually, some correspondences in which
no relations are preserved. To show that there is an isomorphism, however,
only one correspondence that preserves relations need be found.

EXERCISES 3.5
1. Suppose that the following is a model for Axiom Set 1 and set up a
relation preserving one-one correspondence between it and Model II:

11112 2 2 3 3 3 45
2 4 6 8 45 7 456 76
3 57 96 8 9 97 889

2. Set up a relation preserving one-one correspondence between:

(a) Model V and Model VI in Section 3.2.
(b) Model I and itself
(e) Model VII and itself
3. Can you find a one-one correspondence preserving no relations
between:
(a) Model V and Model VI
(b) Model I and Model IT
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REVIEW EXERCISES
Answer true or false and explain or justify your answer.

1. A good test for consistency of a system is to derive all the theorems
possible and, if no contradictions are uncovered, the system is consistent.

2. If two systems have the same number of elements they are
isomorphie.

3. It is possible for a theorem to be implied by one axiomatic system
and its contradictory by another axiomatic system.

4. In an axiomatic system completeness is always desirable.

5. In an axiomatic system independence is always desirable.

6. An inconsistent axiomatic system might imply a statement and its
contradictory.

7. If an axiomatic system is satisfiable its model must be finite.

8. The test for independence involves consistency.

9. Completeness, independence, and consistency—as determined by
the tests—all depend on the concept of satisfiability.




