2 Finite Geometries
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We are now about to examing ‘twow systems of axioms that exemplify,
in miniature, the structure and characteristics of many modern axwmatlc
systems. These systems, both of which were introduced at the turn of the
twentieth century, have by now attained the stature of classics in the
history of mathematics. Except for phrasing (and one omission—we have
left out one axiom that will be added at the end of the chapter), they are
the sys’cems of J. W. Young and G. Fano. We will see that the two systems
have much in common while being quite different. By analyzmg, com-
paring, and modifying them, it is hoped that one will gain a better
understanding of exactly what an axiomatic system is.!

2.1 Axiom Sets 1 angl 2

In first stating the two sets of axioms, we present them in what might
be called their “natural” or common language phrasing. Young’s axiom
set is listed first:

Axiom Set I

1. There is exactly one line through any two points.
2. Every line contains at least three points.

3. There exists at least one line.

4. Not all points are on the same line.

1By an “axiomatic system,” “gystem of axioms,” we mean the entire
structure made up of axioms, theorems and definitions. By an ”a.xmm set’’ we
mean merely “the set of axioms.” It may not be good English to use “axiom’ as
an adjective, but it is commeon in mathematics.
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5. Through a point not on a given line, there is exactly one line which
does not.meet the given line.

Axiom Set 2

1. There exists at least one line.
2. Every line contains at least three points.

3. There is exactly one line through any two pomts
4. Not all points are on the same line.

5. Any two lines have a point in common. —
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Even a cursory glance at the lists shows us that they have much in
common. Indeed, except for the order in which they occur, the first four
axioms are the same in both sets. And even at this stage of our presentation
it should be obvious that a system of axioms is not essentially changed
when the order in which the axioms are written down is rearranged. The
sets differ, then, only in the fifth axiom; it shall be interesting to see how
much this affects each system, how it introduces new theorems into each
system; before attempting proofs, however, we would like to make some
changes for the sake of clarity.

First, a word about the use of “point”’ and “line.” In modern systems
the words “point” and ““line” are often not used at all, at least not in the
first presentatlon Instea.d one might simply use “z’s” and ““y’s”’; another
favorite substitute is such nonsense words as “abba“ and “dabba " This
is to stress the fact that the words “point’’ and “line’ are truly undefined
terms and that no other properties whatsoever can be assumed about
these terms except what is given by the axioms.

An offshoot of this is that, whatever a “point” is, a “line” is going to be
some kind of collection of “points’ (because they are undefined terms, it
could be the other way around). Thus, whatever “points” are, they can
be considered as elements of some universal set; a “line” may then be
regarded as some undefined subset of the universal,set. With this approach,
new words may be substituted for “point” and “line” respectively, as

follows: “element of” and ‘“‘l-set”; “bead” and “wire”; “man” and~ /
“committee’’; and so forth. In effect, this sets up a relationship between .. .

the two undefined terms that could be introduced into the system as the
following aziom: every line is a set of points. We are not going to adopt
this procedure at the present time, but should point out that the statement
is indeed an axiom and not merely a definition, as one might be tempted
to think. To see that it is not a definition, one needs merely to observe
that in most systems where this axiom could be used there will be other
sets of points which are not lines, such as circles, triangles, and so on.
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22  Finiie Geomelries

To summarize: in order to force one to refrain from using any familiar
qualities of points and lines—qualities that may be actually false in a

* particular system or, at best, qualities which, while true, have not been
i formally introduced into the system—many modern systems use nonsense

terms in place of “point”” and “line”. We shall not do so. For if one guards
against using anything not explicitly given, it is easier for the beginner to
form proofs if he has some interpretation of the undefined terms in mind
He may even use diagrams, but only if he guards against bringing in any
hidden assumplions.

It may surprise some readers to learn that nowhere, in the two
axiom sets presented, is there an explicit guarantee that points exist.
Statements such as that given above, that “every line is a set of points,”
and statements such as axioms 1, 2, and 5 in either set, seem to guarantee
that points exist, but do not. This is because of the way in which such
statements are translated into “if . . . then . . . ."” form in modern
logic. Let us look into this.

It is customary to equate several types of universal statements. Thus
each of the following are interpreted as saying the same thing:

1. All lines have at least three points on them.
2. Any line has at least three points on it.

3. Rach line has at least three points on it.

4. Every line has at least three points on it.

The last three are more precise, the first suggesting as it does that all
lines (collectively) have at least three points on them. But generally they
are accepted as saying the same thing, and mathematicians tend to equate
them with still another form.

5. If 1 is any line, then it has at least three points on it.

~....In this form it is more apparent that the statement says nothing about

the existence of I and hence nothing about the existence of three points.

. If, in addition to the above, it is known that there exists a line [, it could

then be conecluded:
Some line has three points on it.

or

There exists a line [ with three points on it.

To sum up: universal statements (of the types 1-5, above) are not
existential. "

Now let us restate the two axiom sets and renumber them for future use.

Axiom Set 1

la. If P and Q are any two points, then there exists at least one line
containing both P and .
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1b. If P and @ are any two points, then there exists at most one line
containing both P and @.
2. If 1 is a line, then there exist at least three points on it.
3. If  is a line, then there exists a point P not on it.
4. There exists at least one line. -
_5a. If I is a line and P a point not on it, then there exists at least one
line m through P with no point in common with Z.
{|.5b. If I is a line and P a point not on it, then there exists at most one
line m through P with no point in common with /.

;4xiom Set 2

| la. If P and @ are any two points, then there exists at least one line

containing both P and Q.
1b. If P and Q are any two points, then there exists at most one line
containing both P and Q.
If 1 is a line, then there exist at least three points on it.
If [ is a line, then there exists a point P not on it.
There exists at least one line.
If I and m are any two lines, then there exists at least one point P
belonging to both I and m.

Gues

As is more apparent in this reworded version, only Axiom 4 is an exist-
ence statement. The others merely say “if . . . then . . . ,” without
guaranteeing the existence of the “if’”” part of the statement. Without
Axiom 4, both systems would be empty of both “points” and “lines,”
because nothing can be assumed about these concepts, let alone something
as essential as their existence.

It will pay the reader to study the restatements of these axioms. We
shall, from time to time throughout the book, make a statement first in its
“natural”’ form. Then, for the sake of clarity, and perhaps for ease of
reference, we shall restate it. The restatement of Axiom 1 and Axiom 5
into two parts is an example of a device often used to prove theorems
in mathematics. It depends on equating the phrase “there exists exactly
one’”’ with the conjunction of two statements: ‘““there exists at least one”
and “there exists at most one.”

2.2 An Axiomatic System, 3

Now let us consider the set of all axioms that Axiom Set 1 and Axiom
Set 2 have in common. We might have chosen any subset of each or any
common subset, but there is a reason for our present choice. For future
reference let us list them and call them Axiom Set 3..
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Axiom Set 3

la. If P and @ are any two points, then there exists at least one line
containing both P and @.
1b. If P and @ are any two points, then there exists at most one line
containing both P and @.
2. If I is a line, then there exist at least three points on it.
3.\Lf [ is a line, then there exists a point P not on it.
4. There exists at least one line.

El‘efore theorems can be proved from these axioms—in fact, before the
axioms can be understood—the following rules of language are needed:

Language Rule: If o point P ts an element of the line I, then we say
variously: [ PAssES THROUGH P! [ conrtains P: P 1s oN [; P vis on [

Language Rule: If a point P is an element of more than one line, then
we may say: | MEETS m in P; I INTERSECTS m. (¢ nol allowed).

In a less simple system than the one being examined, many definitions
and rules would be introduced. Such definitions might be avoided, but
only at the expense of a great amount of wordiness and stilted phrasing.

We are now ready for some theorems. Proving theorems is difficult
enough, the reader might be thinking; how does one go about discovering
what theorems one is going to prove? In examining a system of axioms we
must ask, first, why one chooses the axioms one does and, second, what
theorems it is possible to prove from them. These questions are often
ignored, not because they lack interest or importance, but because it is
difficult, if not impossible, to present a workable answer. Choosing a useful
set of axioms and discovering the theorems they imply is a creative act. It
is as creative as anything in literature or painting, or any of the other
recognized creative arts.

Our present undertaking, however, is more modest. We have observed
that the existence of points in our system is not erplicitly given; their
existence is assured, however, by the following theorem:

e

! Theorem I. There exist at least three distinct points.

Proof: Follows immediately from Axiom 4 and Axiom 2. ®

This theorem suggests the following analogous theorem:

Theorem 2. There exist at least three distinct lines.

Proof: By Axiom 4 there exists a line [ and by Axiom 2 it has at least

“ three points, say P, @, and E. By Axiom 3 there exists a point, say S, not
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on [, and by Axiom la and Axiom 1b there is exactly one line through each
of the pairs: PS, @S, BS. Moreover, these lines are distinet. For suppose

/ any two of them were equal, say SE = S@; then there would be two lines
| containing @F, namely PQR and SQR, contradicting Axiom 1b. This

would be true, similarly, if SE = SP or S = SP. Hence, there exist at
least three distinct lines. ®

An examination of the above proof not only shows that we have proved
more than we set out to prove (that there exist four distinet lines), but
shows that, in the process, we did not use Theorem 1. It therefore would
have been possible to prove the second one first; the numbers of the the-
orems are not important. But should not Theorem 2 depend upon
Theorem 1, and 3 upon 2 and 1, and so on? Not necessarily. In a very
simple system, everything can be proved directly from the axioms. In
fact, in any system one can in theory prove any theorem directly from the
axioms (and definitions); however, the theorems are usually a convenient
shorteut to proofs. And once one begins to cite theorems as reasons for
steps, care must be taken about the ordering lest, in a proof, a theorem
is used that in turn is proved by using the theorem that is in the process
of being proved. This is circular reasoning; it is worse than circular
definitions.

In the search for more theorems, the following questions are likely to
oceur after proving the first two theorems: How many points (lines) are
there on a line (point)? Is there a finite number and, if so, can it be
determined? How many points (lines) are there in the system? After

exploring these questions, one discovers one can prove a related theorem: ——

Proof By Axiom 4 there exists at least one hne, whwh by Axiom 2 has

b least three points on it. Let us designate points by 4, B, C, D,

d lines by AB . . . (for this proof). Then, by Axiom la. and Ax1om 1b :

there is a unique hne containing the three points, say ABC; it is, for
example, the only line containing both A and C.

Sinece by Axiom 3 not all points are on the same line, there exists a
point D which is not on ABC. And now by Axiom 1a, D must lie on a
line with 4, a line which by Axiom 2 must have at least three points on it,
and which by Axiom 1b cannot contain either B or C. Hence, there exists
a line A DE and, furthermore, 4, B, C, D, and E are distinct. By similar
arguing there exists a line BDF and A, B, C,.D, E, and F are distinct.

So far we have three lines, ABC, ADE, and BDF and six points. By
Axiom 1la every pair of points must have a line containing them. Point
A now lies on a line with B, ¢, D, and E and hence must lie on a line
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26 Finite Geometries

with F'; but this line must have at least one more point, and by Axiom 1b
it cannot be B, ¢, D, or E, so there must exist another point G such
that AFG.

Thus, there exist at least seven points.

Continuing in this manner, we have ABC, ADE, BDF, and AFG and
at least seven points. By Axiom la the following possible lines must be
considered: BE ..., BG ..., EG..., CD..., CG...,
DG...,CE..., CF..., EF . ... Consider line BE . . ..
By Axiom 1b it can contain only G from the given choice of points, and by
Axiom 2 it must; hence we have a new line, BEG. (Axiom 1b now rules
out BG . . . and EG . . .).

Now consider CD . . . . By Axiom 1b and Axiom 2 it must contain
G; so we have a new line CDG. (And Axiom 1b rules out CG' . . . and
DG . . .). By Axiom 1b and Axiom 2, CE . . . must contain ¥, giving
us CEF. (And Axiom 1b rules out CF . . ., and EF . . .). Hence we
have generated distinet lines: ABC, ADE, BDF, AFG, BEG, CDG, and
CEF.

Thus, there exist at least seven lines. @ (Can we prove this theorem
for n > 77 See Exercises 2.2)

Continuing in this manner, and keeping in mind that we are dealing
with undefined terms, we might ask other questions that we ordinarily
might not think of. We might, for example, ask the number of points
which two lines may have in common; must they have any? If so, how
many?

If we set out to answer the question, “must two lines have any points
in common?”’, we will arrive at an interesting answer. We need merely
observe that the fifth axioms of Axiom Sets 1 and 2 answer this question
both negatively and affirmatively. It would seem likely, therefore, that
this question cannot be answered at all from Axiom Set 3, unless there is
reason to believe that one of the axioms numbered “5”’ can be proved as a
theorem and is therefore not an axiom. If one can show that none of the
axioms in either Set 1 or Set 2 can be proved as a theorem; specifically, if
it can be shown that Axioms 5a and 5b of Set I are not implied by Axiom
Set 3; and if it can further be shown that Axiom 5 of Set 2 cannot be
derived from Axiom Set 3, then one is left with an inescapable conclusion:
a question has been found phraseable in the terms of our system that is
unanswerable in our system. It cannot be proved that any two lines have
a point in common; eontrary to this, it cannot be proved that there exist
parallel lines. We shall return to this interesting problem in the next
chapter.

If we now turn to the question, “what is the most number of points
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two lines may have in common?”’, the answer is not so difficult. It will
be given after the next section.

EXERCISES 2.2
Using Axiom Set 3, try to prove the following:

1. There exist at least 8 points.
2. There exist at least 4 points on a line.
3. There exists at least one pair of nonintersecting lines.

2.3 Direct and Indirect Proofs

‘We have just seen some examples of proofs. To better understand them,
let us take a look at their skeletal forms. First, we shall look at direct
proofs, which for our present purposes can be regarded as falling simply
into two patterns:

If P then @ If P then @
(a) (b)
P not-@Q
Q not-P

These are called valid-argument patterns. They say that if the two
statements above the line are granted, the statement below the line is an
inescapable conclusion or, alternatively, that it follows from the first two.
Stated in such terms, there are overtones of mental processes at work.
So instead, we shall say, “If P then ¢, and P implies “@,” and “If P
then @ and not-Q” implies “not-P.” Keeping in mind that “implies”
is to be regarded as an undefined relation, it is useful to point out that
these two patterns illustrate one of the properties the relation is to have:
that true statements cannot imply false statements.

A fallacy occurs when the valid patterns (a) and (b) are confused with
the following invalid ones:

If P then @ If P then Q
(e) (d)
Q not-P
P not-Q
The easiest way to commit this error is to confuse a conditional state-

ment with its converse.
The patterns (a) and (b) are by no means the only valid direct argument
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patterns but they are the only ones we shall introduce for now. It is
surprising how far we can go with just these and equivalent variations of
them when we introduce a property of implication that permits us to
build long chains of such patterns. This property of implication is called
transitivity: if A implies B, and B implies €, then 4 implies C.

Directing our attention now to indirect proofs, we shall see that this
type of proof is based on a property of implication just mentioned: it is
impossible for a true statement to imply a false statement. Let us see how
this works.

Suppose one wishes to prove the statement:

(a) If P then Q.
One starts by assuming its contradictory; specifically, assume:
(b) P and not-@Q.

If statement (b) implies a statement known to be false, then statement,
(b) must be a false statement—rfor it is impossible for a true statement to
imply a false statement. But, if the statement (b) is false, then statement
(a), its contradictory, must be true; hence, in this manner, “If P then Q"
has been shown to be true.

The phrase “if statement (b) implies a statement known to be false”
used in the preceding explanation requires some comment. First, rarely
in mathematics does a single statement imply another. Usually, when it is
sald that a statement implies another, this means that a statement,
together with others (assumed or previously proved), imply the second
statement. Secondly, a contradiction may be reached in several ways. As
goon as the truth of “P and not-Q"’ is assumed, it follows from the defini-
tion of conjunction that both “P”’ and “not-@Q" hold; therefore, a con-
tradiction is obtained in any one of the following ways: (1) “P and not-Q”’
implies “not-P"; (2) “P and not-Q" implies “Q"; or, (3) “P and not-Q”’
implies ¥R and not-K.” In any one of these cases the assumption “P and
not-Q’’ must be false.

The most common error one makes in using an ndirect proof (which we
are using synonymously with proof by contradiction) is to use any denial of
the universal statement rather than its contradictory. Suppose, for
example, we are trying to prove that two line segments AB and (D are
equal, and suppose we assume that AB is greater than D, giving us a
contradiction; this does not then entitle us to claim that the two segments
are equal, for it is still possible that A B might be less than D. Whenever
the contradiction of a statement is not used in a proof, one must be careful
to take into account all the possible cases.

Universal statements in various forms have already been discussed.
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Tor illustrative purposes, consider “Every line has at least three points
on it.”” The contradiction of this is not “No line has three points on it"”"—
nor can it be stated as “There exists a line with only one point on it.”
Both of these are contraries rather than contradictories. The contradictory
would be “There exists a line which does not have at least three points on
it” or “There exists a line with at most two points on it.”

One final remark is in order. Qur comments so far have been concerned
with attempts to prove a universal statement true. In order to prove one
false, one need only find a single counferexample, a single instance of its
falsity. '

Before going on to prove more theorems, let us return to Theorem 2 for
a brief analysis. A brief look at the proof seems to show us that it is both
direct and indirect. The first half is direct and the second half appears to
be indirect. But this is only apparently so. We shall consider this a direct
proof. The only proof which we will call indirect is one which begins
immediately by contradicting (or denying and considering all cases) the
statement we are attempting to prove. Let us analyze the proof step by
step.

Step 1: Axiom 2 together with Axiom 4 is an instance of argument
form (a).

Step 2: Axiom 3 together with Axiom 4 is another instance of pattern
(a).

Step 3: Axioms la and 1b together with the results of Steps 1 and 2 are
another instance of pattern (a).

It now remains to prove that the three lines are distinet. Instead of
incorporating this into the proof, suppose we take it aside and prove a
helping theorem, called a lemma.

Lemma 1: Suppose there exist three points P, @, R on a line, a point S
not on the line, and three lines PS, QS, and RS joining these points; then
these lines are distinct.

Proof: Same as given.

We can now give the direct proof of Theorem 2: Steps 1, 2, 3 and

Lemma 1. :

2.4 Further Proofs in Axiomatic System 3
We cannot easily continue our heuristic approach to geometry without

creating a mass of confusion. This type of unordered thinking—asking
about possible theorems, hunting and finding them by trial and error, and
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trying to discover proofs for them—goes into creating a system, but once
the discoveries have been made we must present the theoremsin an orderly
manner. Let us attempt to do that now.

Theorem 4. Two lines have at most one point in common.

Restatement: [f [ and m are any lwo lines, then there exisls al most
one point P in their iniersection.
Proof: Suppose the statement is false. Then there exist two lines [ and m
which have at least two points, say P and Q, in common. But this imme-
diately contradicts Axiom 1b, for { contains P and @, and m contains P
and @, and Axiom 1b says that at most one line contains two given points.
The assumption that our statement is false leads to a contradiction, so we
conclude: two lines have at most one point in common. @

(Nore: We have been using an unstated convention. Whenever we
speak of points P, @, or lines m, n, it is possible they may be the same; but
whenever we speak of the two points P, @, or two lines m, n, we mean them
to be distinet.)

To further illustrate the differences in techniques of direct and indirect
proofs, we shall prove the next theorem both directly and indirectly.

Theorem 5. Not all lines pass through the same point.

Restatement: If P is a point, then there exists atl least one line not
containing P.
Direct Proof: Let P be a point. This may be said because by Theorem 1
points are known to exist. By the same theorem there exists a second
point . Now by Axiom la there exists a line  containing P and . By
Axiom 3 there exists a point £ not on { and by Axiom 1a there exists a line
m containing ¢ and R. Because R is not on /, [ and m are distinet. Now if
P belongs to m, then there exist distinet lines with two points in common,
contradicting Theorem 4. Hence, m is a line not containing P. @

As stated previously, we call this a direct proof despite the contradiction
used to prove that P does not belong to m. We are calling any proof direct
if it does not rest on assuming that the statement being proved is false.

Indirect Proof: Suppose that every line passes through the same point P.
By Theorem 2 there exist at least two lines. If they are to pass through P
and be distinet, they must contain points not in common, so let us say
that [ contains P and @ and m contains P and B. By Axiom la there exists
a line, say k, containing @ and R; by assumption, it must contain P. But
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this contradicts Theorem 4. Hence, our assumption that every line
passes through P must be false. Hence, there exists at least one line not
through P. ®

Theorem 6. There exist at least three lines through any point.

Restatement: If P is any point, there exist al least three lines through P.
Proof: Suppose that there exists a point P with at most two lines through
it, call them ! (containing P and @) and m (containing P and R). By
Theorem 5 there exists a line not through P. If this line does not contain @
and R, then it contains three other points by Axiom 2, and by Axiom 1a
there exist at least three more lines containing these points and P. If, on
the other hand, the line not containing P does contain @ or R, then by
Axiom 2 it contains at least one other point S and, once again by Axiom
la, there exists another line containing P and S. In either case our
assumption is contradicted. Hence there exist at least three lines through
any point. @

Note that while our proof classifies as indirect in this case, we are
actually obtaining our eontradiction by showing the existence of a third
line. This suggests that a direct proof is certainly possible and may even be

~ simpler, but this is left to be solved as an exercise. Instead, we will show

how a slight change in the proof of Theorem 6 gives us another indirect
proof.

Theorem 6 (Alternative)

Proof: Suppose that there exists a point P with at most two lines through
it, call them [ (containing P and @) and m (containing P and R). By
Theorem 5 there exists a line not through P. Whether this line contains
@ and R or not, there exists a new point on it, call it S. But by our assump-
tion there cannot be another line containing P, and this now contradicts
Axiom la. Hence our assumption is false and there exist at least three
lines through any point. @

EXERCISES 2.4

1. Can you prove from Axiom Set 3 that there exist at most seven
points? . '

2. Can you prove from Axiom Set 3 that there exist at most three
points on a line?

3. Can you prove from Axiom Set 3 that any two lines must intersect?

4. Give a direct proof of Theorem 6.
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5. Analyze each of the indirect proofs given in this section. Which of
the three types listed in Section 2.3 is each?

6. What is wrong with the following direct “proof’” of Theorem 67

Proof: By Axiom 4 there exists a line; by Axiom 2 it has three points

on it, call them P, @, B; by Axiom 3 there exists a point. S not on the line

and by Axiom la there exist three lines .S, @S, and RS through S.

7. Can the “proof” in exercise 6 be revised to correct it?

2.5 Axiomatic System 1

In the exercises in the preceding sections it was suggested that one try
to prove that there exists at least one pair of nonintersecting lines and that
there exist at least eight points. We trust that attempts to prove these
statements were not successful.

Let us now convert Axiom Set 3 back into Axiom Set 1 by adding
Axioms 5a and 5b in order to see what new theorems we can prove. Using
Axiom Set 1 we may derive the following:

Theorem 7. There exist at least nine points and at least twelve lines.

Proof: Left as an exercise.

Definition, Two lines [ and m are called parallel if [ and m have no
point in commaon.

Theorem 8. There exist at least two lines parallel to a given line.

Proof: By Axiom 4 there exists at least one line [; by Axiom 3 there exists
a point P not on [; by Axiom 5a there exists at least one line m parallel to {
through P. By Axiom 2 there exists at least one point @ on [ and by Axiom
1a there exists a line PQ, which by Axiom 2 has a third point § on it. By
Axiom 5a there exists a line & through S, parallel to {. These lines must be
distinet. (Why?) @

. Theorem.9. If a line, distinet from two parallel lines, intersects one of
two parallels, it must intersect the other,

Restatement: If k and [ are two parallels, and m wntersects k at a
potnt P, then m intersects | at some poind.
Proof: Suppose not. Then through P there would be two lines m and %
not intersecting /. But this contradicts Axiom 5b. Hence the assumption
must be false and thus, if a line intersects one of two parallels, it intersects
the other. ®
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Theorem I10. Two lines parallel to the same line are parallel to each
other.

Restatement: If k and | are parallel and I and m are parallel, then
& and m are parallel.
Proof: Suppose not. If k& is not parallel to m, then it intersects m and by
Theorem 9 must then also intersect [, contradicting our assumption that
it is parallel to . Hence our assumption must be false. So two lines
parallel to the same line must be parallel to each other. @

Before attempting a proof of the next theorem, let us take time to
look back at some of the preceding proofs. It is likely that those who
attempted to follow proofs of Theorems 7 and 8 very closely had to resort
to some kind of visual aid. We have purposely omitted diagrams up to
now in order to force the reader to fend for himself. In a proof as difficult
as the next one, however, it is alimost necessary to use a diagram to con-
struet the proof and to follow it. We say “almost” because it is never
necessary; a diagram is merely an aid to one’s intuition and not a part of
a proof. As an aid, it is perfectly all right to use a diagram at any time, but
observe the warning mentioned earlier and do not, in using a diagram,
bring in any hidden assumptions. In a proof such as the following it is
easy to transgress on this rule without even being aware of it.

Because the proof is a long one, we shall break it up into two lemmas.
We have already indicated that a lemma is a theorem proved primarily to
help prove some other theorem. Generally, it is called a lemma when its
use Is more or less restricted to the theorem in question; if it had other
uses, one would usually call it a theorem and give it an appropriate
number. (We assume knowledge of the properties of the natural numbers.)
The reader may refer to Figure 2.1,

m

ENCRERWN

FIGURE 2.1
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Lemma 1: If one line | contains exactly n points, then any line parallel
to 1l contains exactly n points.
Proof: Suppose [ is a line containing exactly n points Py, Py, - - -, P,.
Sinee by Theorem 8 there exist other lines parallel to I, we may let m
be any line parallel to L. Once again by Theorem 8§ there exists still another
line, parallel to both m and I, and by Axiom 2 it has a point Q on it,
which by the definition of parallel cannot be on either m or I. Now by
Axiom la there exist lines QP1, @Ps, + + -, @P,, which by Axiom 1b are
distinet. By Theorem 9 these lines intersect m and by Theorem 4 it must
be in 7 distinct points. Hence there exist at least n distinct points on m.

Suppose there exists another point on m, say P.;1. Then there must be
a line connecting ¢} with /.1, and by Theorem 9 and Theorem 4 it must
intersect [ in some point other than Py, Py, - - - | P,, contradicting the
assumption that ! has exactly n points. Hence there exist at most »
distinct points on m.

The lemma now follows. @

The reader should fill in the steps, mostly justifications, that have been
left out of the above proof, and should convinee himself that the locations
of @, m, and ! in the diagram are immaterial. We could choose § as shown
n Figure 2.2, or any other of the possible arrangements of @, m and L. Tt

\ | / .

AT N

FIGURE 2.2

is the power of Theorem 9 that assures us that we shall obtain our n
points on m regardless of where @ is located. To follow the next proof
refer to Figure 2.3.

Lemma 2: If any line | contains exactly n points, then there exist exactly
n — 1 lines parallel to l.
Proof: Let I be a line with exactly n points Py, Ps, - -+ + , P, on it and
let © be a point not on {. Then there exists a line QP; and another line
QP: (where Pi is any of the n points other than P,). By Axioms 5a and 5b
there exist exactly » — 1 lines through Ps, - - - | P, that are parallel to
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FIGURE 2.3

@QP: (one of which will pass through P,). By Theorem 9 and Theorem 4,
@QP;, which intersects QP; and the line parallel to it through P; must
intersect each of the other lines in gxactly one point. Hence, there exist
exactly n points on line QP..

By Axioms 5a and 5b and Theorem 4 there exist exactly n — 1 parallels
tol (Why?). e

Theorem 11. If one line contains exactly n points, then every line
contains exactly n points.

Proaof: Given a line [ with exactly n points on it, any line either intersects
[ or does not. If it does not, then by Lemma 1 it has exactly n points on
it. If it does intersect I, then by Theorem 9 it intersects the n — 1 lines
parallel to [, lines that exist by Lemma 2; by Theorem 4 it intersects in
exactly n points. Hence, if one line contains exactly » points, every line
does. ®

EXERCISES 2.5

1. Prove Theorem 7.

2. Can you prove that there exist af most nine points?

3. Complete the proofs of the two lemmas.

4. Prove: If there exists one line with exactly n points, then every
point has exactly n + 1 lines through it.

Using Axiom Set 2, prove the following:

5. If there exists one line with exactly n points on it, then every line
contains exactly n points.

6. If there exists one line with exactly » points on it, then every point
has exaectly n lines through it.
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2.6 The Systems of Young and Fano

If to Axiom Set 1 we add the following axiom we get the original system
credited to Young.

Axiom 6. If [ is a line, there exist at most three points on it.

We shall refer to this system as the System of Young. The addition of
this last axiom has a profound effect on the system; it malkes it a finite
geometry, as is illustrated by the next three theorems.

Theorem 12Y., There exist exactly nine points in the system,

Proof: Left as an exercise.

Theorem 13Y. There exist exactly twelve lines in the system.

Proof: Left as an exercise.

Theorem 14Y. There exist exactly four lines through any point.
Proof: Left as an exercise.

If now the same Axiom 6 is added to Axiom Set 2, the system originally
credited to Fano is obtained. We shall refer to this system as the System
of Fano. It, too, is a finite system but, as one might expect, of a different
nature than the System of Young.

Using now the System of FFano, we can prove:

Theorem 12F. There exist exactly seven points.

Proof: Left as an exercise.

Theorem 13F. There exist exactly seven lines.

Proof: Left as an exercise.

Theorem 14F. There exist exactly three lines through any point.

Proof: Left as an exercise.

EXERCISES 2.6

1-6. Prove Theorems 12Y, 13Y, 14Y, 12F, 13F, and 14F.
7. Suppose one adds Axiom 6 to Axiom Set 3; at most, how many
points and lines do you suppose one can prove to exist?

vl



