4 4 Critigue of Ewuclid

It may seem anachronistic to return to a discussion of Euclid at this
point. It is an old saw in the rules of teaching that one should never
teach mistakes, should not use errors or false statements as illustrations.
But, while it is certainly not wise to reinforce errors by repeating them,
let us counter one old saying with another: it is always possible to learn
from past mistakes.

We are not returning to Euclid for the sole purpose of pointing out his
mistakes. Rather, we hope to prepare the reader for what is to come in
the following chapters.

The emphasis today on abstraction in mathematics sometimes causes
mathematicians to overlook that simple understanding called intuition.
When this happens, a brief look at the source of an idea may be helpful.
We hope that such a study of the first book of the Elements will prepare
the reader for the more abstract and abstruse approaches that begin in
Chapter 5.

4.1 Tacit, or Unstated, Assumptions

In Chapter 1 we saw five statements that Euclid chose as axioms. In
addition to these, he assumed some statements that he regarded as
common notions, statements such as: things equal to the same thing are
equal; equals subtracted from equals are equal; and so on. These state-
ments, the axioms and the common notions, along with quite a few
definitions, are listed at the beginning of the Elements.! From all of these

1 See Appendix, pp. 217ff.
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listed assumptions Euclid proceeded to prove over four hundred theorems
of which only the first twenty-eight shall be of direct concern to us.!

In studying the first twenty-eight theorems of the Elemenis, one finds
that they more or less fall into two categories. There are those that may be
regarded as theorems proper even in a system based on Hilbert’s axioms.
On the other hand, there are those that are merely proofs of the possi-
bilities of certain constructions and proofs of existence via constructions.
This second category, for the most part, will be of little use in the Hilbert
system and we shall have no need to prove them as theorems.

The first three theorems of Book I are of this latter type. Euclid justifies
the construetion of an equilateral triangle; he proves that one may mark
off with a straightedge and collapsible compass a segment equal in length
to a given segment; and, from a given point, draw a segment equal in
length to a given segment. It is worthwhile to study these first three
theorems. Not only do they have a certain literary charm, but they
develop so nicely one after the other that they serve well as an introdue-
tion to the flavor of the work.

Present in the proofs of these three theorems are two unstated assump-
tions. This flaw of the Elements pervades the work. At times these
assumptions are so subtly woven into the framework of the proofs that
they pass unnoticed unless one knows exactly where to look; at other
times they seem to have been introduced brazenly. In this instance they
are of the first kind, and it is difficult indeed to discover on first reading
what these unstated, or tacit, assumptions are. Consider Euelid’s second
theorem: (see Figure 4.1).

Theorem 2. To place at a given point (as an extremity) a straight line equal
to a given straight line.

Proof: Let A be the given point, and BC the given straight line. Thus it is
required to place at the given point 4 (as an extremity) a straight line equal to
the given straight line BC.

From the point A to the point B let the straight line AB be joined (Post. 1);
and on it let the equilateral triangle DAB be constructed. (Theorem 1).

Let the straight lines AE, BF be produced in a straight line DA, DB; (Post. 2);
with center B and distance BC let the circle CGH be described; and again, with
center 1) and distance DG let the circle KL be described (Post. 3).

Then, since the point B is the center of the cirele CGH, BC is equal to BG.
Again, since D is the center of the circle GKL, DL is equal to DG. And in these DA
is equal to DB; therefore, the remainder AL is equal to the remainder BG (C. N. 3).

But BC was also proved equal to BG; therefore, each of the straight lines AL,
BC is equal to BG. And things which are equal to the same thing are also equal to
one another; therefore, AL is also equal to BC (C. N. 1).

1 See Appendix, p. 219.
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FIGURE 4.1

Therefore at the given point A the straight line AL is placed equal to the given
straight line BC.
(Being) what it was required to do. @

Can you find the flaw? Even a careful check of the proof of this theorem
will show that all of the statements made in the proof actually follow from
Fuclid’s axioms, common notions, definitions, or first theorem. The
problem lies not in the statements made but in those that are assumed but
unstated. '

There are two such assumptions: that (under certain conditions) two
circles intersect in two points and that, if a line passes through a point
interior to a cirele, it must intersect the circle (in two points).

In the circumstances given in the first three theorems there is not much
doubt that these conditions hold true. But that is not the point. The
eriticism here is not that the assumptions are false; it is that the assump-
tions are not stated. If they are axioms, they should be stated as such; if
they are theorems, they should be proven as such. But Euclid brings them
in as hidden assumptions made credible by the diagrams. Nowhere does
he make either an explicit assumption equivalent to these assumptions or
one from which the truth of these statements would follow.

The rules must be such that this is not allowed in an axiomatic system.
If a statement is not an axiom, definition, or theorem, it does not belong
in a system. Here the solution is not difficult. One can introduce the
statements themselves as axioms if one wishes or, better yet, can introduce
a continuity axiom from which these statements would follow.

Hilbert chooses to introduce the Archimedean axiom to assure con-
tinuity of the lines and circles in his system. Stated rather intuitively,
this axiom is:
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Given two line segments, there em'sts‘an inlegral mulliple of one which
18 greater than the other.

Another approach is to introduce the axiom of J. W. R. Dedekind
(1831-1899), which states, more or less in Dedekind’s own words:

If all poinis of a straight line fall into two classes, such that every point
of the first class lies lo the lefl of every point of the second class, then there
extists one and only one point which produces this division of all points tnto
two classes, this severing of the straight line into lwo portions.

We are going to refrain from introducing either of these axioms into our
system hecause we feel that it is more important for the reader to see how
many familiar theorems of ordinary plane geometry follow without an
assumption of continuity. The main point is that if one wants continuity
one must bring it in explicitly in some manner, not by unstated assump-
tions about diagrams. So agreed, let us turn to another problem.

In the proof of his famous fourth theorem, the SAS theorem, Euclid
introduces for the first time the controversial method of superposition. It
has been used and misused ever since and with much greater frequency
than Euclid would have favored. Euclid himself does not use this tech-
nique very often but, evidently, saw no way to prove the fourth theorem
without it.

There are various troubles involved in its use, all of which more or less
boil down to the fact that in order to justify the use of superposition one
must introduce such a statement as figures remain unchanged when moved
from one place to another.

In fact, in the proof of the SAS theorem, Kueclid brings in still another
assumption; namely, that things which are equal may be made to coincide.

After years of controversy it was decided that it is impossible to use
superposition without bringing in some axiom justifying superposition.
Therefore, inasmuch as the use of superposition can be restricted to the
proof of the SAS theorem, why not merely make that theorem an axiom?
Such a course has been, and still is, often adopted.

To avoid this problem we shall, following Hilbert, introduce as an axiom
a statement from which the SAS theorem readily follows without any
such method as superposition. This involves introducing an undefined
relation called congruence. This not only by-passes the need for super-
position, it helps rid geometry of that much overused word “equals.”
Specifically, while Fuelid will say that two triangles are equal if they
coincide, he will also say that two triangles are equal if they have the same
area (but perhaps cannot be made to coineide). There will be no discussion
of area in this book; but, following Hilbert, we shall introduce the word
“congruent’’ to replace the word “equal’” as used in the first sense.
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4.2 More Unstated Assumptions, Flaws, and Omissions

To show how many unstated assumptions Euclid introduces, and to
illustrate other difficulties that arise in his system, let us examine and
analyze the following elementary theorems from the Elements:

Theorem 5. In isosceles triangles the angles at the base are equal to one

another; and, if the equal straight lines be produced further, the angles under
the base will be equal to one ancther.
Proof: Let ABC be an isosceles triangle having the side 4B equal to the side AC;
and let the straight lines BD, CE be produced further in a straight line with 4B,
AC (Post. 2). I say that the angle ABC is equal to the angle ACB, and the angle
CBD to the angle BCE.

D E

FIGURE 4.2

Let a point F' be taken at random on BD; from AFE the greater let AG be cut
off equal to AF the less; and let the straight lines FC, GB be joined (Post. 1).
Then, since AF is equal to AG and AB to AC, the two sides F A4, AC are equal to
the two sides GA, AB respectively; and they contain the common angle, the
angle FAG. Therefore, the base FC is equal to the base GB, the triangle AFC is
equal to the triangle AGB, and the remaining angles will be equal to the remain-
ing angles respectively, namely, those which the equal sides subtend, that is, the
angle ACF is equal to the angle AB@, and the angle AFC, to AGB (1.4).

And, since the whole AF is equal to the whole AG@, and in these 4B is equal to
AC, the remainder BF is equal to the remainder CG.

But FC was also proved equal to GB; therefore, the two sides BF, FC are equal
to the two sides CG, GB respectively; and the angle BFC is equal to the angle CGB,
while the base BC is common to them; therefore, the triangle BFC is also equal
to the triangle CGB, and the remaining angles will be equal to the remaining
angles respectively; namely, those which the equal sides subtend. Therefore,
the angle FBC is equal to the angle GCB and the angle BCF, to the angle CBG.
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Acecordingly, since the whole angle ABG was proved equal to the angle ACF,
and in these the angle CBG is equal to the angle BCF, the remaining angle 4B(C
is equal to the remaining angle ACE; and they are at the base of the triangle ABC.

But the angle FBC was also proved equal to the angle GCB, and they are under
the base. Therefore, et cetera . . . Q.ED. @

There are three preliminary questions one might ask about this proof:

1. Isit true that angle BAC = angle FAC = angleGAB = angle FAG?

2. Must angle ABG be larger than and wholly contain angle CBG?
Must angle ACF be larger than and wholly contain angle BCF?

3. If Question 2 *s satisfied, is it satisfled in such a manner that it follows
that the “remaining angle A BC is equal to the remaining angle ACB"’?

One should certainly want the answers to the above questions to be yes;
indeed, there is something wrong if the answer is anything but yes. But
this is irrelevant in an axiom system. The question once again is not
whether these statements are true but, rather, whether the statements follow
from other statements explicitly assumed or prosed. Unfortunately, the
answer is no. The statements are “taken’ as true. From the diagrams it is
apparent that they are true, but this does not constitute a proof. If not
axioms, and if not proved, statements should not be part of the proof,
diagram or not.

Another proof of this theorem is more likely to appear in high school
texts. Given the triangle A BC with equal sides A B and 4 C, bisect angle A.

B C

FIGURE 4.3

It follows easily from Theorem 4 that the two triangles are equal and
hence that angles B and C are equal. As far as the Elements, and most high
school texts, are concerned, this proof makes two unwarranted assump-
tions. It assumes that the bisector of an angle is unique and, furthermore,
assumes that the bisector of an angle of a triangle intersects the opposite
side. Euelid does not prove the former and ignores the latter, which he
could not prove from his set of axioms even if he did consider it. Once
again we emphasize that while these may be very obvious truths of
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geometry, the relevant question is whether or not they can be proved
within the given system.

As another illustration of Euelid’s rather easygoing introduction of
unstated assumptions, consider the following theorem: (See Figure 4.4).

Theorem 6. If in a triangle two angles be equal to one another, the sides which
subtend the equal angles will also be equal to one another.
Proof: Let ABC be a triangle having the angle ABC equal to the angle ACB;
I say that the side AB is also equal to the side AC.

For, if AB is unequal to AC, one of them is greater.

Let AB be greater; and from AB the greater let DB be cut off equal to AC the
less; let DC be joined.

FIGURE 4.4

Then, since DB is equal to AC, and BC is common, the two sides DB, BC are
equal to the two sides AC, CB respectively; and the angle DBC is equal to the
angle ACB; therefore, the base DC is equal to the base 4B, and the triangle DBC
will be equal to the triangle ACB, the less to the greater; which is absurd.

Therefore, AB is not unequal to AC; it is therefore equal to if.

Therefore, et cetera . . . QE.D. @

Asin proofs throughout his work, Eueclid is here assuming a trichotomy
prineiple for segment lengths (later he will do the same for angle measure).
In the third line of the proof he is assuming that given two segments 4B
and AC, either AB = AC; AB is less than AC; or AB is greater than AC,
and exactly one of these conditions can hold.

In regard to the proof itself, it is apparently a proof by contradiction,
but where exactly is the contradiction? He concludes that the ‘“triangle
DBC will be equal to the triangle ACB, the less to the greater, which is
absurd.” If he is not referring to area—and it is evident he is not—what
can he mean when he says that ‘“‘one triangle is less than another”? If
there is a contradiction here (about triangles) it comes from the diagram,
not from anything previously mentioned or proved in the system.

As a final illustration consider the following very important theorem
(see Figure 4.5):

Theorem 16. In any triangle, if one of the sides be produced, the exterior
angle is greater than either of the interior and opposite angles.
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Proof: Let ABC be a triangle, and let one side of it BC be produced to D;
I say that the exterior angle ACD is greater than either of the interior and
opposite angles CBA, BAC.
Let AC be bisected at E (I1.10) and let BE be joined and produced in a straight
line to F; let BF be made equal to BE (1.3), let FC be joined (Post. 1), and let AC
be drawn through to G(Post. 2).

A i

FIGURE 4.5

Then, since AE is equal to EC, and BE to EF, the two sides AE, EB are equal
to the two sides CE, EF respectively; and the angle AEB is equal to the angle
FEC, for they are vertical angles.

Therefore the base AB is equal to the base FC, and the triangle ABE is equal
to the triangle CFE, and the remaining angles are equal to the remaining angles
respectively, namely those which the equal sides subtend; (1.4).

Therefore the angle BAE is equal to the angle ECF. But the angle ECD is
greater than the angle ECF; therefore the angle ACD is grea.ter than the angle
BAE.

Similarly also, if BC be bisected, the angle BCG, that is, the a.ngle ACD (1.15),
can be proved greater than the angle ABC as well.

Therefore, et cetera . .. QED. @

A short digression is in order here. When Eueclid asserts in his Axiom 2
that a straight line can be produced indefinitely, this does not in itself
imply that straight lines are of infinite length. This point was ignored
until 1854 when B. Riemann proposed that a distinction be made between
a line being unbounded and a line being infinite in length.

As Euclid uses these terms, unboundedness is an exfent concept; this
means, as in the second axiom, that a line may be extended indefinitely in
either direction. But unboundedness is compatible with the hypothesis
that a line is infinite in length as well as with the hypothesis that a line is
of finite length.

After this distinction was made there followed several new geometries
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in which straight lines are unbounded but not of infinite length; one such
interpretation considers straight lines to be the great circles on the
surface of a sphere. When “straight line” is so interpreted one gets
geometries in whieh, while two points may determine a line, it may be that
there are also an infinite number of lines through two points. Any two
lines may enclose a space. This geometry is specifically ‘‘non-Euclidean”
in the sense that there are no parallel lines whatsoever. Any of these
considerations make for a “non-Euclidean” geometry.

Therefore, when Euclid tacitly assumes, in the proof of Theorem 16,
that lines are of infinite length, the assumption is an important one to his
geometry. Given the same proof for a triangle on a sphere it becomes
invalid if BF is a semicircle, for then F falls on BD and angle ACD is equal
to angle ECF and thus equal to angle BAC. And if BF is greater than a
semicircle, angle ACD will be less than angle BAC. Thus, for a triangle on_
a sphere, not only does the proof fail but the “theorem” is a false state-
ment; the theorems following from this one are false and there exists
quite a different geometry. The geometry that does follow from the new
agsumptions is too complicated, unfortunately, to present here.

More relevant to this discussion is how Euelid knows, other than from
looking at the diagram, that point F will fall in the interior of angle ACD.
If a line is like a circle, it would be possible for F to fall between B and E.
And even given that lines are of infinite length, how does one prove that F
is in the interior of the angle so that it follows that angle ACF is less than
angle ACD?

Euclid never defines or explicitly discusses such concepts as interior or
exterior. He speaks again and again about one side or the other of a line
but never defines what he means by a side of a line. And he ignores the
concept of betweenness, so that whenever it is important to know that a
point is between two others, or a ray is between two others (as when one
wishes to say that one angle is less than another), he lets the diagram carry
the weight of the argument.

In all these cases where Euclid tacitly introduces concepts by diagrams
and uses diagrams to substantiate steps in a proof, he risks the chance of
introducing not only false statements but self-contradictions. We shall
try to show this now.

4.3 The Danger in Diagrams
Take a square each of whose sides is thirteen units and divide it into

two rectangles of dimensions 8 by 13 and 5 by 13; then subdivide these
into two congruent rectangular trapezoids whose parallel sides are 8 and 5
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units long and into two congruent right triangles whose legs are 5 and 13
units long. Now rearrange these parts to form a rectangle. Finally, study
Figure 4.6.
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FIGURE 4.6

It can be seen more readily in the diagrams what is to be done than from
the rather complicated set of directions preceding them. And this seems
very simple until the following observation is made:

The area of the square is 132 = 169 square units.

The area of the rectangle is 8 X 21 = 168 square units.

Obviously, something is wrong. It might help solve the dilemma to try
this with different dimensions or with scissors and paper.

A more instructive illustration is the following well-known “paradox.”
We assume here that the reader has knowledge of the common elementary
theorems of high school geometry.

All Triangles Are Isosceles
Given: Any triangle ABC

Construction: Construct the bisector of angle A and the perpendicular
bisector of BC, the side opposile angle A.

Proof: Consider the following cases.

Case 1. The bisector of angle A and the perpendicular bisector of
segment B( are either parallel or identical. In either case, the bisector of
angle A is perpendicular to BC and hence, by definition, is an altitude.
Therefore, the triangle is isosceles. (The conclusion follows from the
Fuclidean theorem: If an angle bizector and altitude from the same vertex
of a triangle coincide, the triangle is isosceles.)

Suppose now that the bisector of an angle 4 and the perpendicular
bisector of the side opposite are not parallel and do not coincide. Then
they intersect in exactly one point, D. And there are three cases to
consider:

e
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Case 2. The point D is inside the triangle.

Case 3. The point D is on the triangle.

Case 4. The point D is outside the triangle.

Tor each case construct DE perpendicular to AB and DF perpendicular
to AC, and in Cases 2 and 4 join D to B and D to C. In each case, the
following proof now holds (see Figure 4.7):

DE = DF because all points on an angle bisector are equidistant from
the sides of the angle; DA =2 DA, and angle DEA and angle DFA are

" Case 2 B /

Case 4 D

A F c A c F

FIGURE 4.7

right angles; hence triangle ADE is congruent to triangle ADF by
hypotenuse-leg theorem of Euclidean geometry. (We could also have used
SAA theorem with DA =2 DA, and the bisected angle and right angles.)
Therefore, we have AF =~ AE.

Now, DB = DC( because all points on the perpendicular bisector of a
segment are equidistant from the ends of the segment. Also, DE =~ DF,
and angles DEB and DFC are right angles. Hence triangle DEB is con-
gruent to triangle DFC by hypotenuse-leg theorem. And hence FC = BI.

Therefore it follows that AB = AC—in Cases 2 and 3 by addition, in
Case 4 by subtraction. Hence the triangle is isosceles.

To summarize the proof: It has been shown that if an angle bisector and
the perpendicular bisector of the opposite side coincide or are parallel, the
triangle is isosceles. It is known that if they neither coincide nor are
parallel they must intersect in exactly one point which is either inside, on,
or outside the triangle. But it has been shown that in every such case the
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triangle is isosceles. Therefore, every possible case has been considered
and the theorem is proved. ‘

Again, something is wrong. After a careful scrutiny, it will be obvious
that not all cases have been considered. For while it is true that all
locations of the intersection of the angle bisector and the perpendicular
bisector of the opposite side have been considered, this has not been done
for all locations of the points £ and F. For example, in Cases 2 and 3, E
and F might fall on the extension of AB and AC respectively, whereas in
Case 4 I and F might fall on AB and AC respectively. It is left as an
exercise to show that in these cases the proof still holds. Another possi-
bility can easily be ruled out; namely, that £ or F fall on a vertex of the
triangle. But there are still other cases: the possibility that one of the
points E or F might fall within a segment, while the other lies on an

D
E
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G
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A F c
FIGURE 4.8

extension of its segment, has never been considered. Suppose this is done
now: (See Iigure 4.8).

Case 5. The same steps followed in Cases 1, 2, 3, and 4 may be repeated,
but the results are not the same. For now it follows that AB = AE — BE
and AC = AF + FC = AE + BE and since AE — BE # AN + BE,
it follows that AB # AC. ®

It seems then that we have found the flaw in the reasoning: not every
case had been considered. But, although this is true, has the flaw really
been pointed out?

Most discussions of this paradox end at this stage. It has been shown
that there are dangers in building an argument upon such weak founda-
tions as diagrams; if that is all we were interested in showing, indeed we
would be through with the problem. But there are broader aspects to the
argument.
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To appreciate fully the difficulties hidden here, let us approach the prob-
lem from a more logical perspective. In the proof of Case 1 a Euclidean
theorem was cited. Its converse also holds; namely,

If a triangle is isosceles, then the angle bisector and the altitude from the
same vertex coincide.

Thus the contrapositive must also hold; namely,

If the angle bisector and the altitude from the same vertex of @ triangle
do not coincide, the lriangle is not sosceles.

The reader should not find it too difficult to prove that an angle
bisector and altitude do not coincide if and only if the angle bisector and
perpendicular bisector of the opposite side intersect in exactly one point.
From this, it follows that if the angle bisector and perpendicular bisector of
the opposite side intersect in exactly one point, the triangle is not isosceles.

But, it has just been proven by Cases 2, 3, and 4 that under the same
hypotheses the triangle is isosceles.

This is a much more serious problem, one that is not answered by the
mere existence of Case 5. In other words, it no longer suffices to show
merely that Case 5 is a possible one; it must be shown, if no contradiction
is to exist, that Cases 2, 3, and 4 are impossible.

This can be done as follows. It is a fact that the point D will always lie
outside the triangle A BC and, of the two points F and E, one will always
lie inside, the other outside the corresponding sides AC and AB of the
triangle. For it ean be proved that no line intersects all three sides of a
triangle (unless one is extended) and it can be shown that the three points
@ (see Case 5), E, and F are collinear, so that one of the points F or F
must lie on a side produced. If this were done, it would complete the
argument and solve the “paradox.”

What we wish to emphasize now is that any attempt to complete the
above argument by the axioms and tools of Euclid's Elements will be
hopeless. Not only does Euclid fail to present us with the tools, he does
not even discuss such concepts as “between,” ““inside,” or “outside.”
Within his system it is impossible to prove that a straight line cannot cut
all three segments of a triangle. He must resort to argument from dia-
grams—and this, we should be more and more convinced, is a hazardous
undertaking.

We can summarize some of the defects of the Elements, in particular
those tacit or unstated assumptions which Kuclid introduces into his work
by means of diagrams or otherwise, as follows:

1. continuity of his figures
2. the existence of points and lines
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3. wuniqueness of certain points and lines

4. that a straight line which contains a vertex B and an interior point
of a triangle ABC must also contain a point of the line segment AC

5. the existence of order relations on a line

6. the concepts of inside and outside

4.4 New Systems

To correct the defects listed in preceding sections, many axiom systems
have been suggested and developed. Among these systems are those of
Pasch: 1882, Peano——1889, Hilbert 1899, Veblen 1904, and
Birkhoff and Beatley 1940. Each is different; some have certain
advantages over the others. Hilbert’s system, perhaps because he is
known as one of the outstanding mathematicians of the twentieth century,
has had the most profound effect. Perhaps, too, this is because his system,
as compared to the others, is most similar to Euclid’s. Whatever the
reasons, Hilbert’s system has been so used, revised, and refined over the
years that many variations of his system—changes in statements and
phraseology—are now in existence. We shall use one such form as a basis,
but shall incorporate many changes of our own.

Hopefully, the reader is prepared for this new approach to geometry.
When we pause to prove something as obvious as the fact that a line
has two “sides’” or that a line “entering’ a triangle must come “out,’” he
will now be aware that it is not because we question the truth of these
statements but that we wish to ascertain that they do indeed follow from
the stated axioms.

Before we start, it should be made clear that we have specific objectives
which require adopting the following restrictive procedures:

1. We shall introduce sufficient material to derive theorems related
only to the first twenty-eight theorems of the Klements.

2. We shall refrain from introducing continuity considerations.

3. We shall not discuss any axioms needed for development of
three dimensions, but shall, in effect, pretend that there are only two
dimensions.
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