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1.1 Definitions and Undefinitions

Richness in literary expression depends in part upon the variety of
meanings that words have, upon the vagueness and ambiguities of the
ideas expressed. This cannot be allowed in mathematics, where clarity and
precision of expression rather than richness is needed. In mathematics,
words must be carefully defined in such a way that the definitions satisfy
certain prescribed criteria: simplicity; noncircularity; unique character-
ization. This is not always achieved, but it should at least be an ideal at
which to aim. Consider the following illustration.

Let us define a ‘““pencil”’ as “a sharp tool used for writing.” This satisfies
the eriterion of simplicity, which means that any definition should use
ideas and words that are as simple or simpler than the idea or words being
defined. To anyone who does not know what a pencil is, the following
definition would be incomprehensible: “a c¢ylindrical instrument tapering
to a conical point—as employed by an amanuensis.”” A definition using
words more complicated than the one being defined is not of much use.

But even in a definition using simple words there is an inherent problem
closely connected with the criterion of noncircularity. It is simply not
possible to define every word without getting trapped either in an infinite
process of defining or in circularity. Dictionary definitions are basically
circular. In the suggested definition of “pencil,” if one does not know the
meaning of “tool” one might look it up to find it is an “instrument” or
““utensil.” And since it is not likely that anyone looking up the word “tool”
would know the meaning of “instrument’’ or “utensil”’ either, these words
would have to be looked up also. Sooner or later, a word in this chain
would be defined as a “tool.” :

To see how serious this problem might be, consider what would happen
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8 Ingredients and Tools

if you wanted to use a dictionary in a foreign language, knew nothing of
the foreign language, and had available only a dictionary written totally
in that language. An immigrant to our shores, for example, would find any
standard English language dictionary useless to him if he knew absolutely
no English.

To avoid this problem it is necessary to choose some words as primitive,
or undefined words, words in terms of which all the other words of the
system may be defined.

So, the definition of “pencil” as a “sharp tool used for writing’’ satisfies
the criterion of simplicity but fails to comply with noncircularity. It also
fails to satisfy the third eriterion, and this proves most often troublesome
in mathematics.

When it is sald that a suggested definition does not uniquely char-
acterize that which is being defined——in this case a pencil—this means
that it is equally applicable to other things—in this case to pens, or for . &
that matter to quills.

To sum up, any good definition must be expressed simply, must be
noneircular and must uniquely characterize that which is being defined.

With this in mind let us look at the first three definitions in Euclid’s
Elements:

1. A point is that which has no part. — BrnAg 2 Cigw i

2. A line is length without breadth. = TR
3. A straight line is that which lies evenly with the points on itself.

These are not good definitions. The first two do not characterize that
which is being defined. The first definition might as well say that courage
is that which has no part; it might say that a ghost is that which has no
part (or, for that matter, is length without breadth). For centuries com-
mentators, both critics and defenders of Euclid, have discussed and
argued about his definitions. Proelus (fifth century a.n.), perhaps his
best commentator and defender, says, “like the now in time and the undt
- in number, a point is that which has no part, but in the subject matter of
geometry, a point is the only thing which has no part.”” He thus argues
that within the context this definition uniquely characterizes what is
being defined. It might be argued without end whether or not these two
are good definitions, but in the case of the third definition the problem is
rather cut-and-dried. It is circular and should be avoided. It is impossible
to define “lies evenly”’ without using the concept of “‘straight’’ or some-
thing synonymous with it.

In addition to the foregoing, the first two definitions have been criti-
cized for surreptitiously introducing philosophical and physical problems
that do not belong to geometry as an abstract formulation. This criticism
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is consistent with the spirit of Euclid, who would frown upon his work as a
“practical’’ science. In fact, some over-enthusiastic defenders of Eueclid
claim that Euclid did not mean statements (1) and (2) to be definitions
but was merely pointing out the abstract, nonspatial characteristics of
his work. If so, if he does not mean to define point and line, he is in this
respect a modern.

In modern systems the problem of circularity, as well as the problem
just mentioned, is avoided by taking many words as undefined. Among
these, two types are distinguished,

The technical terms. These vary from subject matter to subject matter.
In geometry, such words as “point,” “line,” “congruent,” “between,”
might be considered as the primitive or undefined terms of the system
being considered. It is possible that some other system of geometry might
choose other undefined terms, but those that are more or less specific to
geometry are the technieal terms

“every,”’ ny ” ”there ex1sts, a,t least one,” “at most one only
“the,” “although » and so on. The list goes on 1ndeﬁn1tely, but those
mentioned are the words that occur most frequently in mathematics.
When a system is devised for geometry, such words as “one’” and “two”’
are usually taken as part of the universal language.

The technical and universal terms listed in the preceding paragraphs are
those which remain wundefined. There are also technical and universal
terms which are defined; in mathematics, definitions are usually limited to
technical terms. It may surprise many readers to hear that definitions are
not really necessary. This is indeed so, but we would be very verbose and
would be more likely to be inaccurate and even contradictory without
them. If the very same words are going to be used to describe a concept
every time it is expressed, it may as well be abbreviated; that is all a
definition is. If, on the other hand, the same words are not going to be
used to express a concept each time it occurs, the chance for introducing
contradictions increases.

The reason that mathematics leans so heavily on symbolism as a
means of expressing a concept is not merely that it is a convenient
shorthand, but also because it allows the mathematician to avoid ex-
pressing the same concept in words. Ordinary language words are used
very sloppily, and this is true even when a mathematician uses them.
As an example, consider the word “circumference” used in reference
to a circle; the commonly accepted definition today is that it is the
distance around the circle, yet one often reads and hears the word used
as if it meant the circle itself, as when we speak of “‘a line cutting the
circumference.” Another phrase which frequently occurs is ‘‘the area

” ‘f JJ K( 1 il ”' “



10 Ingredients and Tools

of a circle.” Yet the commonly accepted definition of a circle is: the
set (or locus) of points in a plane equidistant from a fixed point called
the center. Obviously, a locus of points has no area. And if by a “circle”
one were to mean that portion of the plane enclosed by the locus of points,
it would then be false to say that a line may cross a circle in at most two
points, or that two circles can cross in at most two points, for they might
have an infinite number of points in common.

Our use of symbolism will be limited. We will introduce it when con-
venient and avoid it when we think it best. Instead, we shall introduce
many, many definitions, attempting always to satisty the three stated
criteria and to use the words precisely as they are defined. In the case of
undefined technical words, the axioms of the system will restrict how they
will be used.

EXERCISES 1.1

1. Compare the use of ““="" in the following four cases and explain any
differences.

(a) cos® z + sin’z = 1
(b) 22 = 24

(¢)2z+ 5 =11

(d) angle A = angle B

2. In a beginning calculus class, the instructor has covered the black-
board with a ‘“‘delta-epsilon” proof for the uniqueness of limits. When
he finishes, a student asks him “If the lim f(z), ., = A and the
Iim f(z),_., = B, and if things equal to the same thing are equal to
each other, is it not possible to say simply that A = B? Why cover the
board with all that stuff?”

Does the student have a point? Explain.

3. An example of a good definition is: A square is a four-sided figure
bounded by straight lines; its opposite sides are parallel; and all four of its
sides are equal. Answer true or false and explain your answer.

1.2 Axioms

‘What precisely is an axiom? One might think that this is a good place to
start with a “‘simple, noneircular and uniquely characterizing” definition.
If one is going to speak about axioms, why not immediately define what
the word means? Unfortunately, it is not that easy.
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Suppose we use the dictionary definition: an aziom is a self-evident or
universally recognized truth, accepted without proof. The trouble with
this is that modern mathematics would not accept this as a definition.
The last part “a,ccepted without proof” is all right, but the rest is not. To
appreciate what has brought about this situation, let us look at the state-
ments that Euclid chose as axioms.!

“1. That a straight line may be drawn from any one pomt to any other
point. O Twuv u,;v\fr At Cem vt The tomlget b .

2. That any ﬁmte straight line may be produced to any length in a
straight line. @ Gy Coser o AT S

3. That a circle may be constructed with any center, at any distance
from that center. @ adrTF tvng pefhe P ot oS o concles

|
LJ({H 1 /4, That all right angles are equal to one another. ,( T amale. o
A

{,-/"'

T

q

f: on which are the angles less than two right angles.

u’l
v

¢ 15. That, if a straight line falling on two straight lines makes the two

afnt.enor angles on the same side of it taken together less than two right

~tangles, the two straight lines, if produced indefinitely, meet on that side
B /{.

While Euclid may have regarded points and lines as mere abstractions,
as ideals of reality that can only be approximated in our spatial world, it
is unlikely that he regarded his “points’” and “lines’ as mere variables or
undefined terms. His “points’ and “lines” were in some way related to
what is drawn on paper and the blackboard. His axioms were regarded as
truths of the world we live in, not “mere’” assumptions of someone’s faney.

As late as the eighteenth century, the great German philosopher,
Immanuel Kant, built a tremendous philosophical structure around
statements he called ‘“‘apriori synthetic,” statements, he said, such as
those in geometry, which, while rooted in experience, are yet truths of an
unquestionable nature.

The axioms of geometry were for two thousand years regarded as
“self-evident universal truths.” Is it any surprise, then, that it was not
until the nineteenth century that even the possibility of a non-Euelidean
geometry was put forth? Is it any surprise that IKarl Friedrich Gauss
(1777-1855), after developing and proving many of the theorems of a
“new” geometry, kept his discoveries secret for over thirty years in fear
that their revelation might harm his reputation as a mathematician? For

T All quotations from Euclid come from The Thirteen Books of Euclid’'s Elements
translated with introduetion and commentary by Sir Thomas L. Heath, 2d ed.
(New York: Cambridge University Press, 1926. Reprinted by Dover Publications,
Ine., 1956.)
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if Euclid’s geometry was the true geometry, any other would be either
nonsensical or false.

Today, with the discovery and acceptance of various consistent non-
Euclidean geometries, the status of axioms has undergone a radical
change. To see just how drastic the change has been, contrast the views of
Kant with those of Bertrand Russell (1872 ). “Mathematics,”
Russell has said, “is that subject in which we do not know what we are
talking about, or whether what we are saying is true.” Even those who do
not agree with such a view will recognize that it serves to emphasize an
important aspect of the structure of mathematics; namely, that mathe-
matics, instead of being the absolute science, is really the science of
“if . . . then . . .”. But that a statement such as Russell’s can be made
seriously needs explanation.

Although the way in which mathematicians regard statements has
evolved over a number of years and has been influenced by many minds,
Hilbert, because of the great respect he commands, has profoundly
affected the course of mathematics in the twentieth century. Two of the
concepts he incorporated into his axiom system for Euclidean geometry
must be noted: some terms must be talken as undefined; axioms are mere
assumptions about these terms.

From this beginning it is not a big step to believing that, at least where
mathematics itself is concerned, the truth or falsity of the axioms is not a
crucial question. For mathematics the crucial problem becomes one of
“if . . . then . . .”; that is, ¢f we assume such and such axioms, then,
what follows from them. Furthermore, strictly speaking, if we regard the
technical terms as undefined terms, as mere variables, then the axioms are
themselves in a sense variable, or “open,” sentences. As such, they cannot
be said to be either true or false.

If one says, “He was the greatest mathematician who ever lived,” one is
not really making a statement—that is, to such a collection of words the
labels “true” and “false” do not apply. If the sentence is changed to
“Beethoven was the greatest mathematician who ever lived” or “Gauss
was the greatest mathematician who ever lived,” then the sentence
becomes a statement, a collection of words to which the labels “true’ or
“false” may be applied. A similar comment can be made for such sen-
tences as, “x is a whole number,” “every dabba is a set of abbas.” It is
because of this quality of the “open’ sentence that a statement such as
Russell’s can seriously be made.

When one begins to view axioms in this way, a question naturally
arises. Of the infinite variety of such statements, how does one determine
which should be used for axioms? There is no technique, no mechanical
process, to help us. Assuming that one is not going to put together a
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meaningless, or random, collection of statements, assuming that there is
some underlying unifying concept and some set of statements that one
wishes to prove, the determination of the precise set to be chosen as axioms
is a creative act. Yet this is only the beginning. One must then determine
whether or not these axioms satisfy certain properties among themselves,
and what the relationship between them and other statements, called
“theorems,” is. We will consider these and other questions in the next
two chapters.

EXERCISES 1.2
State whether the following are true or false. Justify your answer.

1. In an axiomatic system, every word must be carefully defined.

2. In an axiomatic system, some fechnical words must be defined.

3. In an axiomatic system, if some words are defined, some must remain
undefined. '

4. In modern mathematics the trend is to regard axioms as self-evident
truths,

5. If we regard an axiom as an open sentence, it is neither true nor false.

1.3 Logic

From a few definitions, and a few axioms, Euclid derived many ‘‘theo-
rems’’—statements which are said to “follow”” from the others. Although

Fuelid’s axioms and theorems may not be of the “if . « fhen. . . .M
form, most of them can be put into that form. Furﬁhermore, even if some
of the statements cannot be so rephrased, the overall “if . . . then . . .”

quality of the system remains. For he is saying that ¢f such and such
statements are granted then such and such statements follow This

relationship that holds between the statements taken as axioms and those
which are deduced from them is called vm hcatwn We say that the axioms
imply the theorems. N

When we consider statements of the form “if . . . then . . .”, usually
called condltlona,l tements, we ‘shall, coﬁﬁary to common procedure,
refrain from using niphes "In this context, its use tends to be confusing,
because a conditional statement is just that, a statement. Given a state-
ment P, and another statement ¢, then we can define a new statement as
follows:
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Plol|lrP—>0 plollPeo

TI|T T TI|T T

T | F T F F

FIT ? F T T

F | F ? F F T
(a) (b)

Tt is customary to take Table (b) as the definition of “—”, which can be
read “arrow.” Thus we might read “P — Q" as ‘P arrow Q. ' More often,
however, it is read as “If P then @,” which helps explain why Table (b) is
chosen as its definition. Consider the following typical conditional state-
ment: If L is a line, then there exists a point not on L. This statement says
something about the existence of points under the hypothesis that L is a
line; it says nothing about the existence (or nonexistence) of points if L is

. not a line. Looked at another way, we could say that such a statement is

false under exactly one set of circumstances: L is a line, and there exists
no point not on L. Ordinarily then, if L were not a line, we would say that
the rest of the statement simply would not arise; that is, there is no
restraint upon @ when P is false.

This is compatible with Table (a). The reason for choosing Table (b) is
that logic depends on two classical laws: The Law of Contradiction—no
statement can be both true and false and The Law of . Ea:cluded Middle—
any statement must be either true or false.

As can be seen in Table (b), there are four possible truth combinations
of P and Q. If “P — Q" is to depend upon the truth of the component
statements, it must have a value of either true or false in the last two
lines, and because we are attempting to define a conditional statement
which can be false only in the case of line two, we give the last two lines
values of “T".

If we now read “P — Q" as “P implies ", which is often done in
mathematics, and still interpret P implies @ to mean “@ follows from P2

" we can get all kinds of strange statements such as “‘5 + 5 = 117 implies,

‘The moon is made of spaghetti sauce.”” And who, other than a “brain-
washed” student, would admit that “the moon is made of spaghetti
sauce” follows from “5 + 5 = 11”7

Another reason for restricting our use of “implies” is that the relation-
ship between axioms and theorems is just that, a relation, whereas ey
is not a relation but a type of operation. Thus, “—"’ forms a new statement,
whereas “implies” does not; it “talks about” statements. Analogous to
this is the difference between the “addition” operation and the “less than”

S—



1.3 Logic 15

relation. When two numbers are added, a new number is obtained, but
when we say ‘2 is less than 3" we do not obtain a new number; we are
expressing a relation, we are “talking about’’ numbers.

There are good reasons why these two concepts have tended to fuse.
One is that both “—’”’ and “implies” are read in English as “if . . .
then . . .”. Closely connected with this is the fact that both have similar
relations with the truth values of the statements involved. Just as “—"" is
false when P is true and @ is false, so, if P implies ¢, then one combination
of truth values is ruled out; it is impossible for a true statement to imply
a false statement. We wish to avoid saying, however, that any false
statement implies any statement.

To sum up: we shall consider conditional statements as defined by Table
(b). We shall consider the relation tmplies to be an undefined relation of
our universal language, and shall resort to citing many, many illustrations
to indicate what we mean when we say that one statement “follows’’ from
another. e

Two other operations must be introduced in this section: “not? and
fand.”
~If “P” is a statement, “not-P” is its denial as defined by Table (c).

If “P” and “Q" are statements, then “P and Q" is the simple conjunc-
tion as defined by Table (d).

Pl Q P and Q

P not-P
TI|T T

F T |F F

F T
F T F
F | F F

(c) (d)

P Q | not-Q P and not-Q
rLw F F
T |F T T
FIT F F
F|F T F

(e)
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The definitions of “—”’, “not’” and “and” can now be used to construct
new statements and their denials. For example, “P and not-@” is the
denial of “P — @Q”, as shown in Table (e).

Tt can be seen that Table (e) has F and T' exactly interchanged with
Table (b), and hence is its denial as defined by Table {c).

This use of “denial”’—that given two statements, if one is true the
other is false and if one is false the other is true, is called contradiction. The
two statements are said to be contradictory. A statement such as “P and
not-P” is said to be a self-contradiction. Whenever we want the contradic-
tion of a statement we shall ask for the denial.

There is another combination that is a denial but not the contradiction.
To illustrate, consider the statement “Today is Tuesday.” A denial of
this might be “Today is Wednesday.” These statements deny each other
but do not contradict each other, for they may both be false. Such denials
are called confraries; they are statements that cannot both be true but that
may both be false.

Associated with the conditional statement are two others worthy of
specific mention: Given “If P then @”

1. “If Q then P” is called the converse.
2. “If not-Q then not-P is called the contrapositive.

We shall also make statements of the form “P if and only if @,”
abbreviated “P iff Q,”” which is to be the same as the conjunction of a
conditional statement and its converse. All definitions, whether explicitly
given as such or not, may be regarded as “iff’ statements.

Rather than attempt to condense a short course in logic into a brief
section, we have discussed only those topics that will be required later
and whose discussion within the text would have been too much of a
digression. A few others will be discussed as they arise: partial converses;
universal statements and their denials; and proofs, indirect and direet.

EXERCISES 1.3

1. Show that @ — P has the same truth table as not-P — not-Q.

2. Construct truth tables for: (a) P — @ (b) P — not-Q (¢) P and @
(d) P and not-Q and compare.

Are P —» Q and P — not-Q contradictory? Are any of the statements

above contradictory to each other?

3. Write the converse of not-@ — not-P.

4. Write the contrapositive of not-P — @Q.

5. Write the converse and contrapositive of each of the following.
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(a) If two lines are parallel, they have no point in common.
(b) If two angles are congruent, they are right angles.
(¢) If a triangle has three equal angles, it is equiangular.

f:ﬁ 6. Is the converse of every definition, expressed in “if . . . then
\1J. .” form, true? Explain. _
¥ 7. Is the converse of every true conditional statement a true state-
ment? Explain.
. 8. Is the converse of every false conditional statement a false con-
ditional statement? Explain.

< 9. (a) Does “P only if " mean “P — Q" or “Q — P”?
(b) Does “P if Q" mean “P — Q" or “Q — P"?

10. Write in “if . . . then . . .” form:

(a) Two lines are parallel only if they have no point in common.
(b) Two lines are parallel if they have no point in common.

11. Separate into two statements of the “if . . . then . . .” form:

(a) Two sides of a triangle are congruent iff the angles opposite them
are congruent,.

(b) Two lines are perpendicular to a third line iff they are parallel.

(¢) Two lines, intersected by a third, are parallel iff the alternate
interior angles are congruent.

1.4 Sets

The concept of a set shall also remain undefined. When we say that a set
is any collection of objects we are not defining it. We could just as easily
use the words collection, class, or group. But the word set is customary in
mathematics, while the word class is used in philosophy, and no mathe-
matician would use the word group, which has another special meaning,.
The modern mathematical theory of sets is usually eredited to the German
mathematician, Georg Cantor, who, in attempting to define the word
“set,” became involved with an intricate problem. It is because of this
that mathematicians no longer attempt to define the word.

There is a standard notational shorthand that goes with the theory of
sets. We shall for the most part avoid its use in this book but, because it is
a common and convenient timesaving device in classroom lectures, we
shall introduce the basic concepts and symbols of set theory.

If a set, denoted by 8, is a collection of things, say a, b, and ¢, it is
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written: ‘
S = {a': b; G]

Two sets are said to be equal iff they have the same elements. Thus, the
set A = {a} and the set B = {q, @, a, a} are to be regarded as the same
set. Two sets which are not equal are said to be distinct.

To say that a belongs fo S, or is an element of S, one writes:

aeS
To deny this, one writes:
aeS

If A is any set such that all of its elements are also elements of S, then
one says that A is a subset of S. From the example S given before, if
A = {a, b} then A is a subset of §, which is written:

ACS

By definition, it follows that A € A, and S C 8, or, any set has itself
as a subset. If one wishes to write that A is a subset of S but not equal to
8§, this can be written:

ACS

and read “4 is a proper subset of S8.”” Many authors use this symbol for
subset and have no symbol for proper subset.

If one wishes to talk about all the elements of a set, one might merely
list them. But suppose that this cannot be done. Then the following
notation is useful:

S = {z|z is a point}

which is read ‘““the set of all 2 such that z is a point” or more naturally
“the set of all points.”

If A and B are sets, then the elements common to both sets, that is, the
set of elements which belong to both A and B, is called the infersection.
To denote this, we use the notation:

ANB

It may happen that two sets have no elements in common; in such a
case the sets are called disjoint, symbolized by:

ANB=9¢

where ¢ is called the null, or empty set, the set that has no elements. From
the definition of subset, it follows that the null set is a subset of any set.

Because in this book we are going to be considering lines as sets of
points, we shall adopt the following convention. Whenever we use the
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verb “intersects” we shall mean a nonempty intersection. So we shall
never say that two sets intersect when in fact they are disjoint.

If A and B are sets, then the set of all elements that belong either to 4,
or to B, or to both, is called the union. This is denoted by:

A\UB

For example, if 4 = {a, b, ¢} and B = {a, b, d} then A\J B = {q, b,
¢, d}. Observe that there is no need to write A \JU B = {a, a, b, b, ¢, d}.
Further comments on this topic will be incorporated into the text.

EXERCISES 1.4
LIS =1{1,23456}L=1{1,35 M=I(246 N= (46
P = {6}, find:
(a) LU M
(b) LN M
(¢) NN
d M\UM
(e) LNP
(f) List all the subsets of N; of M.
2. Using L, M, N of exercise 1, which of the following hold?
(a) LV (MNN)=@LVM)NL\UJN)
B LNAMUN)=ELNM)\JLNN)
() LV MNN)=(LUMYNN
(dLNANMUIN)=(LNM)UIN
3. If XUY =X and XNY =X, then X = ¥. True or false.
Explain.
4. For every set 4, A\U¢p =AU A =4MNA. True or false.
Explain.

5. Foreveryset 4, B, (A M B) C Aand (A M B) C B. True or false.
Explain.



