CHAPTER

A

THE THEORY OF CONGRUENCES

Gauss once said “Mathematics is the queen of the sciences and number-theory
the queen of mathematics.” If this be true we may add that the Disquisitiones
is the Magna Charta of number-theory.

M. CANTOR

4.1 CARL FRIEDRICH GAUSS

Another approach to divisibility questions is through the arithmetic of remainders,
or the theory of congruences as it is now commonly known. The concept, and
the notation that makes it such a powerful tool, was first introduced by the German
mathematician Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae;
this monumental work, which appeared in 1801 when Gauss was 24 years old, laid
the foundations of modern number theory. Legend has it that a large part of the
Disquisitiones Arithmeticae had been submitted as a memoir to the French Academy
the previous year and had been rejected in a manner that, even if the work had been
as worthless as the referees believed, would have been inexcusable. (In an attempt
to lay this defamatory tale to rest, the officers of the academy made an exhaustive
search of their permanent records in 1935 and concluded that the Disquisitiones was
never submitted, much less rejected.) “It is really astonishing,” said Kronecker, “to
think that a single man of such young years was able to bring to light such a wealth
of results, and above all to present such a profound and well-organized treatment of
an entirely new discipline.”
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Carl Friedrich Gauss
(1777-1855)

(Dover Publications, Inc.)

Gauss was one of those remarkable infant prodigies whose natural aptitude for
mathematics soon became apparent. As a child of age three, according to a well-
authenticated story, he corrected an error in his father’s payroll calculations. His
arithmetical powers so overwhelmed his schoolmasters that, by the time Gauss was
7 years old, they admitted that there was nothing more they could teach the boy. It is
said that in his first arithmetic class Gauss astonished his teacher by instantly solving
what was intended to be a “busy work” problem: Find the sum of all the numbers
from 1 to 100. The young Gauss later confessed to having recognized the pattern

14+100=101,2499=101,3+98 =101, ...,50+ 51 =101

Because there are 50 pairs of numbers, each of which adds up to 101, the sum of
all the numbers must be 50 - 101 = 5050. This technique provides another way of
deriving the formula

1
1+2+3+~-+n22@;_2

for the sum of the first n positive integers. One need only display the consecutive
integers 1 through 7 in two rows as follows:

1 2 3 . n—1 n
n n—1 n-2 ... 2 1

Addition of the vertical columns produces n terms, each of which is equal ton + 1;
when these terms are added, we get the value n(n + 1). Because the same sum is
obtained on adding the two rows horizontally, what occurs is the formulan(n + 1) =
204+24+3+---+n).

Gauss went on to a succession of triumphs, each new discovery following on
the heels of a previous one. The problem of constructing regular polygons with only
“Euclidean tools,” that is to say, with ruler and compass alone, had long been laid
aside in the belief that the ancients had exhausted all the possible constructions. In
1796, Gauss showed that the 17-sided regular polygon is so constructible, the first
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advance in this area since Euclid’s time. Gauss’s doctoral thesis of 1799 provided
a rigorous proof of the Fundamental Theorem of Algebra, which had been stated
first by Girard in 1629 and then proved imperfectly by d’ Alembert (1746), and later
by Euler (1749). The theorem (it asserts that a polynomial equation of degree n has
exactly n complex roots) was always a favorite of Gauss’s, and he gave, in all, four
distinct demonstrations of it. The publication of Disquisitiones Arithmeticae in 1801
at once placed Gauss in the front rank of mathematicians.

The most extraordinary achievement of Gauss was more in the realm of theo-
retical astronomy than of mathematics. On the opening night of the 19th century,
January 1, 1801, the Italian astronomer Piazzi discovered the first of the so-called
minor planets (planetoids or asteroids), later called Ceres. But after the course of
this newly found body—visible only by telescope—passed the sun, neither Piazzi
nor any other astronomer could locate it again. Piazzi’s observations extended over
a period of 41 days, during which the orbit swept out an angle of only nine degrees.
From the scanty data available, Gauss was able to calculate the orbit of Ceres with
amazing accuracy, and the elusive planet was rediscovered at the end of the year in
almost exactly the position he had forecasted. This success brought Gauss worldwide
fame, and led to his appointment as director of Gottingen Observatory.

By the middle of the 19th century, mathematics had grown into an enormous
and unwieldy structure, divided into a large number of fields in which only the
specialist knew his way. Gauss was the last complete mathematician, and it is no
exaggeration to say that he was in some degree connected with nearly every aspect of
the subject. His contemporaries regarded him as Princeps Mathematicorum (Prince
of Mathematicians), on a par with Archimedes and Isaac Newton. This is revealed in
a small incident: On being asked who was the greatest mathematician in Germany,
Laplace answered, “Why, Pfaff.” When the questioner indicated that he would have
thought Gauss was, Laplace replied, “Pfaff is by far the greatest in Germany, but
Gauss is the greatest in all Europe.”

Although Gauss adorned every branch of mathematics, he always held number
theory in high esteem and affection. He insisted that, “Mathematics is the Queen of
the Sciences, and the theory of numbers is the Queen of Mathematics.”

4.2 BASIC PROPERTIES OF CONGRUENCE

In the first chapter of Disquisitiones Arithmeticae, Gauss introduces the concept of
congruence and the notation that makes it such a powerful technique (he explains that
he was induced to adopt the symbol = because of the close analogy with algebraic
equality). According to Gauss, “If a number n measures the difference between two
numbers a and b, then a and b are said to be congruent with respect to n; if not,
incongruent.” Putting this into the form of a definition, we have Definition 4.1.

Definition 4.1. Let n be a fixed positive integer. Two integers a and b are said to be
congruent modulo n, symbolized by

a = b (mod n)

if n divides the difference a — b; that is, provided that a — b = kn for some integer k.
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To fix the idea, consider n = 7. It is routine to check that
3 =24 (mod 7) — 31 =11 (mod 7) — 15 = —64 (mod 7)

because 3 — 24 = (-3)7, —31 — 11 =(-6)7, and —15 — (—64) = 7-7. When
n [ (a — b), we say that a is incongruent to b modulo n, and in this case we write
a # b (mod n). For a simple example: 25 # 12 (mod 7), because 7 fails to divide
25 -12 =13.

It is to be noted that any two integers are congruent modulo 1, whereas two
integers are congruent modulo 2 when they are both even or both odd. Inasmuch as
congruence modulo 1 is not particularly interesting, the usual practice is to assume
thatn > 1.

Given an integer a, let g and r be its quotient and remainder upon division by
n, so that

a=qn-+r O0<r<n

Then, by definition of congruence, a = r (mod n). Because there are n choices for
r, we see that every integer is congruent modulo n to exactly one of the values
0,1,2,...,n —1; in particular, a = 0 (mod n) if and only if n |a. The set of n
integers 0, 1, 2, ..., n — 1 is called the set of least nonnegative residues modulo n.
In general, a collection of n integers ai, ay, . . ., a, is said to form a complete set
of residues (or a complete system of residues) modulo n if every integer is congruent
modulo # to one and only one of the a;. To put it another way, a;, as, ..., a, are
congruent modulon to 0, 1, 2, ..., n — 1, taken in some order. For instance,

—-12,-4,11, 13, 22, 82,91
constitute a complete set of residues modulo 7; here, we have
—12=2 —-4=3 11=4 13=6 22=1 82=5 91=0

all modulo 7. An observation of some importance is that any » integers form a
complete set of residues modulo # if and only if no two of the integers are congruent
modulo n. We shall need this fact later.

Our first theorem provides a useful characterization of congruence modulo 7 in
terms of remainders upon division by #.

Theorem 4.1. For arbitrary integers a and b, a = b (mod n) if and only if a and b
leave the same nonnegative remainder when divided by n.

Proof. Firsttake a = b (mod n), so thata = b 4+ kn for some integer k. Upon division
by n, b leaves a certain remainder r; that is, b = gn + r, where 0 < r < n. Therefore,
a=b+kn=@n+r)+kn=(@+kn+r

which indicates that a has the same remainder as b.
On the other hand, suppose we can write a = g;n + r and b = g>n + r, with the
same remainder r (0 < r < n). Then

a—b=(qn+r)—(gn+r)=_(q1 —q)n

whence n | a — b. In the language of congruences, we have a = b (mod n).
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Example 4.1. Because the integers —56 and —11 can be expressed in the form
—56 = (=79 +7 —11=(-2)9+7

with the same remainder 7, Theorem 4.1 tells us that —56 = —11 (mod 9). Going in
the other direction, the congruence —31 = 11 (mod 7) implies that —31 and 11 have
the same remainder when divided by 7; this is clear from the relations

-31=(-5)7+4 11=1-74+4

Congruence may be viewed as a generalized form of equality, in the sense that
its behavior with respect to addition and multiplication is reminiscent of ordinary
equality. Some of the elementary properties of equality that carry over to congruences
appear in the next theorem.

Theorem 4.2. Letn > 1befixedanda, b, c,d be arbitrary integers. Then the following
properties hold:

(a) a = a (mod n).

(b) If a = b (mod n), then b = a (mod n).

(¢) If a = b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).

(d) If a =b (mod n) and ¢ = d (mod n), thena + ¢ = b + d (mod »n) and
ac = bd (mod n).

(e) Ifa = b (mod n), thena + ¢ = b + ¢ (mod »n) and ac = bc (mod n).

() If a = b (mod n), then a* = b* (mod n) for any positive integer k.

Proof. For any integer a, we have a —a = 0 - n, so that a = a (mod n). Now if
a = b (mod n), then a — b = kn for some integer k. Hence, b — a = —(kn) = (—k)n
and because —k is an integer, this yields property (b).

Property (c) is slightly less obvious: Suppose that a = b (mod n) and also b =
¢ (mod n). Then there exist integers k& and k satisfyinga — b = hnand b — c = kn. It
follows that

a—c=@—-b)+(b—c)=hn+kn=(h+kn

which is a = ¢ (mod »n) in congruence notation.

In the same vein, if a = b (mod n) and ¢ = d (mod n), then we are assured that
a —b = kin and ¢ — d = kyn for some choice of k; and k. Adding these equations,
we obtain

(a+c)—(b+d)=(@—-b)+(c—4d)
=kin+ kon = (k1 + ko)n

or, as a congruence statement, a + ¢ = b + d (mod n). As regards the second assertion
of property (d), note that

ac = (b + kin)(d + kan) = bd + (bka + dki + kikan)n

Because bk, + dk + k1kpn is an integer, this says that ac — bd is divisible by =,
whence ac = bd (mod n).

The proof of property (e) is covered by (d) and the fact that c = ¢ (mod »). Finally,
we obtain property (f) by making an induction argument. The statement certainly
holds for k = 1, and we will assume it is true for some fixed k. From (d), we know
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that a = b (mod n) and a* = b* (mod n) together imply that aa* = bb* (mod n), or
equivalently a**! = b**! (mod n). This is the form the statement should take fork + 1,
and so the induction step is complete.

Before going further, we should illustrate that congruences can be a great help
in carrying out certain types of computations.

Example 4.2. Let us endeavor to show that 41 divides 22° — 1. We begin by noting
that 2° = —9 (mod 41), whence (2°)* = (—9)* (mod 41) by Theorem 4.2(f); in other
words, 220 = 81 - 81 (mod 41). But 81 = —1 (mod 41), and so 81 - 81 = 1 (mod 41).
Using parts (b) and (e) of Theorem 4.2, we finally arrive at

220 _1=81-81—1=1-—1=0 (mod41)
Thus, 41 |22 — 1, as desired.

Example 4.3. For another example in the same spirit, suppose that we are asked to
find the remainder obtained upon dividing the sum

10+ 2! 4 3! + 4! 4 - + 99! + 100!

by 12. Without the aid of congruences this would be an awesome calculation. The
observation that starts us off is that 4! = 24 = 0 (mod 12); thus, fork > 4,

k'=4!5-6---k=0-5-6---k=0(mod 12)
In this way, we find that
I'+2! 4314414 ... 4 100!
=114+2!14+314+04---4+0=9 (mod 12)

Accordingly, the sum in question leaves a remainder of 9 when divided by 12.

In Theorem 4.1 we saw that if a = b (mod n), then ca = cb (mod n) for any
integer c. The converse, however, fails to hold. As an example, perhaps as simple
as any, note that 2 - 4 = 2 - 1 (mod 6), whereas 4 # 1 (mod 6). In brief: One cannot
unrestrictedly cancel a common factor in the arithmetic of congruences.

With suitable precautions, cancellation can be allowed; one step in this direction,
and an important one, is provided by the following theorem.

Theorem 4.3. If ca = c¢b (mod n), then a = b (mod n/d), where d = gcd(c, n).

Proof. By hypothesis, we can write
cla—b)=ca—cb=kn

for some integer k. Knowing that gcd(c, n) = d, there exist relatively prime integers
r and s satisfying ¢ = dr, n = ds. When these values are substituted in the displayed
equation and the common factor d canceled, the net result is

r(a—b)=ks

Hence, s | r(a — b) and gcd(r, s) = 1. Euclid’s lemma yields s | a — b, which may be
recast as a = b (mod s); in other words, a = b (mod n/d).
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Theorem 4.3 gets its maximum force when the requirement that gcd(c, n) = 11is
added, for then the cancellation may be accomplished without a change in modulus.

Corollary 1. If ca = cb (mod n) and gcd(c, n) = 1, then a = b (mod n).

We take a moment to record a special case of Corollary 1 that we shall have
frequent occasion to use, namely, Corollary 2.

Corollary 2. If ca = cb (mod p) and p ) c, where p is a prime number, then
a = b (mod p).

Proof. The conditions p [ c and p a prime imply that gcd(c, p) = 1.

Example 4.4. Consider the congruence 33 =15 (mod9) or, if one prefers,
3.11 =3.5(mod9). Because gcd(3, 9) = 3, Theorem 4.3 leads to the conclusion that
11 = 5 (mod 3). A further illustration is given by the congruence —35 = 45 (mod 8),
which is the same as 5 - (—7) = 5 - 9 (mod 8). The integers 5 and 8 being relatively
prime, we may cancel the factor 5 to obtain a correct congruence —7 = 9 (mod 8).

Let us call attention to the fact that, in Theorem 4.3, it is unnecessary to stipulate
that ¢ # 0 (mod n). Indeed, if c = 0 (mod n), then gcd(c, n) = n and the conclusion
of the theorem would state that a = b (mod 1); but, as we remarked earlier, this
holds trivially for all integers a and b.

There is another curious situation that can arise with congruences: The product
of two integers, neither of which is congruent to zero, may turn out to be congruent to
zero. For instance, 4 - 3 = 0 (mod 12),but4 £ 0 (mod 12)and 3 # 0 (mod 12).Itisa
simple matter to show thatif ab = 0 (mod n) and gcd(a, n) = 1,thenb = 0 (mod n):
Corollary 1 permits us legitimately to cancel the factor a from both sides of the
congruence ab = a - 0 (mod n). A variation on this is that when ab = 0 (mod p),
with p a prime, then either a = 0 (mod p) or b = 0 (mod p).

PROBLEMS 4.2

1. Prove each of the following assertions:
(@) If a = b (mod n) and m | n, then a = b (mod m).
(b) If a = b (mod r) and ¢ > 0, then ca = cb (mod cn).
(c) If a = b (mod n) and the integers a, b, n are all divisible by d > 0, then
a/d = b/d (mod n/d).
2. Give an example to show that a
(mod n).
If a = b (mod n), prove that gcd(a, n) = gecd(b, n).
4. (a) Find the remainders when 2°° and 415 are divided by 7.
(b) What is the remainder when the following sum is divided by 4?

P+254+3 +---499° +100°

5. Prove that the integer 531%3 4 1033 is divisible by 39, and that 111333 4 333111 j5 divis-
ible by 7.

2=b? (modn) need not imply that a =b

2
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. For n > 1, use congruence theory to establish each of the following divisibility
statements:
(a) 7|5% +3-22,
(b) 13 | 3n+2 + 42n+1.
(C) 27 | 25n+1 + 5n+2.
(d) 43 | 6" +2 + 72n+1.
. Forn > 1, show that

(—13)"*! = (=13)" + (=13)""! (mod 181)

[Hint: Notice that (—13)?> = —13 + 1 (mod 181); use induction on 7.]
. Prove the assertions below:

(a) If a is an odd integer, then a® = 1 (mod 8).

(b) For any integer a, a®> = 0, 1, or 6 (mod 7).

(c) For any integer a, a* = 0 or 1 (mod 5).

(d) If the integer a is not divisible by 2 or 3, then a? = 1 (mod 24).
. If p is a prime satisfying n < p < 2n, show that

2n
< ) = (0 (mod p)
n

If a1, ay, ..., a, is a complete set of residues modulo »n and ged(a, n) = 1, prove that
aay,aay, ..., aa, is also a complete set of residues modulo 7.

[Hint: It suffices to show that the numbers in question are incongruent modulo #.]
Verify that 0, 1,2, 22,23, ...,2° form a complete set of residues modulo 11, but that
0,12, 22,32, ..., 10? do not.

Prove the following statements:

(a) If gcd(a, n) = 1, then the integers

c,c+a,c+2a,c+3a,....,.c+m—1a

form a complete set of residues modulo n for any c.
(b) Any n consecutive integers form a complete set of residues modulo 7.

[Hint: Use part (a).]
(c) The product of any set of n consecutive integers is divisible by n.
Verify thatifa = b (mod n;) and a = b (mod n,), thena = b (mod n), where the integer
n = lcm(ny, ny). Hence, whenever n; and n, are relatively prime, a = b (mod nn,).
Give an example to show that a* = b* (mod n) and k = j (mod ) need not imply that
a’ = b’ (mod n).
Establish that if a is an odd integer, then for any n > 1

a? =1 (mod 2"?)

[Hint: Proceed by induction on #.]
Use the theory of congruences to verify that

8912* -1 and 97|2¥ -1

Prove that whenever ab = c¢d (mod n) and b = d (mod n), with gcd(b, n) = 1, then
a = ¢ (mod n).

If a=b (modn;) and a = ¢ (mod ny), prove that b = ¢ (mod n), where the integer
n = gcd(ny, ny).
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4.3 BINARY AND DECIMAL REPRESENTATIONS OF INTEGERS

One of the more interesting applications of congruence theory involves finding
special criteria under which a given integer is divisible by another integer. At their
heart, these divisibility tests depend on the notational system used to assign “names”
to integers and, more particularly, to the fact that 10 is taken as the base for our number
system. Let us, therefore, start by showing that, given an integer b > 1, any positive
integer N can be written uniquely in terms of powers of b as

N =anb™ +an_1b" '+ +ab®*+ab+ ag

where the coefficients a; can take on the b different values 0,1,2,...,b — 1. For
the Division Algorithm yields integers q; and ay satisfying

N =q1b + ag 0<ay<b
If g, > b, we can divide once more, obtaining
q1 = @b + a; 0<air<b
Now substitute for g; in the earlier equation to get
N = (q2b + a1)b + ap = @2b* + a1b + ay

As long as g, > b, we can continue in the same fashion. Going one more step:
g> = q3b + ap, where 0 < a, < b; hence

N = q3b3 + a2b2 4+ a1b + ag

Because N > q; > g, > --- > 0 is a strictly decreasing sequence of integers, this
process must eventually terminate, say, at the (m — 1)th stage, where

dm—-1 = me + am—1 0 <am-1 < b
and 0 < g,, < b. Setting a,, = g, we reach the representation
N = aub™ + am_ 1" 1+ -+ a1b + ag

which was our aim.
To show uniqueness, let us suppose that N has two distinct representations, say,

N=anb" +---+atb+ay=cub” +---+c1b+co

with 0 < a; < b for each i and 0 < ¢; < b for each j (we can use the same m by
simply adding terms with coefficients a; = 0 or ¢; = 0, if necessary). Subtracting
the second representation from the first gives the equation

0=dnb" +---+dib+d

where d; = a; —c; fori =0, 1, ..., m. Because the two representations for N are
assumed to be different, we must have d; # 0 for some value of i. Take k to be the
smallest subscript for which d; # 0. Then

0=dub™ + -+ dpy | + dib*
and so, after dividing by b*,
dy = —b(dub™ 1+ dip)
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This tells us that b | d;. Now the inequalities 0 < a; < b and 0 < ¢; < b lead us to
—b < ay —cx < b, or |dy | < b. The only way of reconciling the conditions b | di
and | dy | < b is to have d; = 0, which is impossible. From this contradiction, we
conclude that the representation of N is unique.

The essential feature in all of this is that the integer N is completely determined
by the ordered array an,, a1, - - - , a1, ag of coefficients, with the plus signs and the
powers of b being superfluous. Thus, the number

N = a,b" + a,_ V" '+ + ab* + a1b + ag
may be replaced by the simpler symbol
N = (@mam-1 - - - aza1a0)p

(the right-hand side is not to be interpreted as a product, but only as an abbreviation
for N). We call this the base b place-value notation for N.

Small values of b give rise to lengthy representation of numbers, but have the
advantage of requiring fewer choices for coefficients. The simplest case occurs when
the base b = 2, and the resulting system of enumeration is called the binary number
system (from the Latin binarius, two). The fact that when a number is written in the
binary system only the integers 0 and 1 can appear as coefficients means that every
positive integer is expressible in exactly one way as a sum of distinct powers of 2.
For example, the integer 105 can be written as

105=1-2°41-2240-24+1-2240-2240-2+1
=2042542341

or, in abbreviated form,
105 = (1101001),
In the other direction, (1001111), translates into
1:2°40-224+0-2+1-2°+1.2241.2+1=179

The binary system is most convenient for use in modern electronic computing ma-
chines, because binary numbers are represented by strings of zeros and ones; 0 and
1 can be expressed in the machine by a switch (or a similar electronic device) being
either on or off.

We shall frequently wish to calculate the value of a* (mod n) when  is large.
Is there a more efficient way of obtaining the least positive residue than multiplying
a by itself k times before reducing modulo n? One such procedure, called the binary
exponential algorithm, relies on successive squarings, with a reduction modulo n
after each squaring. More specifically, the exponent k is written in binary form, as
k = (@nam_1 . ..ara1a0)2, and the values a® (mod n) are calculated for the powers
of 2, which correspond to the 1’s in the binary representation. These partial results
are then multiplied together to give the final answer.

An illustration should make this process clear.
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Example 4.5. To calculate 5'1° (mod 131), first note that the exponent 110 can be
expressed in binary form as

110=64+32+8+4+2=(1101110),

Thus, we obtain the powers 5% (mod 131) for 0 < Jj < 6 by repeatedly squaring while
at each stage reducing each result modulo 131:

52= 25 (mod131)  5'¢
54=101 (mod131) 532
58 =114 (mod131) 564

27 (mod131)
74 (mod131)
105 (mod131)

When the appropriate partial results—those corresponding to the 1’s in the binary
expansion of 110—are multiplied, we see that
5110 _ 564+32+8+4+2
:564_532_58_54.52
=105-74-114-101-25=60 (mod131)

As aminor variation of the procedure, one might calculate, modulo 131, the powers
5,5%,5% 55,512,524, 5% 5% to arrive at

5110 — 5% .512.52 =41.117-25=60 (mod131)

which would require two fewer multiplications.

We ordinarily record numbers in the decimal system of notation, where b = 10,
omitting the 10-subscript that specifies the base. For instance, the symbol 1492
stands for the more awkward expression

1-10°+4-10°+9-10+2

The integers 1, 4, 9, and 2 are called the digits of the given number, 1 being the
thousands digit, 4 the hundreds digit, 9 the tens digit, and 2 the units digit. In
technical language we refer to the representation of the positive integers as sums of
powers of 10, with coefficients at most 9, as their decimal representation (from the
Latin decem, ten).

We are about ready to derive criteria for determining whether an integer is
divisible by 9 or 11, without performing the actual division. For this, we need a result
having to do with congruences involving polynomials with integral coefficients.

Theorem 4.4. Let P(x) = Y}, cxx* be a polynomial function of x with integral
coefficients c;. If a = b (mod n), then P(a) = P(b) (mod n).

Proof. Because a = b (mod n), part (f) of Theorem 4.2 can be applied to give
af = b* (mod n) fork =0, 1, ..., m. Therefore,
ckak = ckbk (mod rn)

for all such k. Adding these m + 1 congruences, we conclude that

m

i crat = Z cib” (mod rn)
k=0

k=0
or, in different notation, P(a) = P(b) (mod n).
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If P(x) is a polynomial with integral coefficients, we say that a is a solution of
the congruence P(x) = 0 (mod n) if P(a) = 0 (mod n).

Corollary. If a is a solution of P(x) = 0 (mod n) and @ = b (mod r), then b also is a
solution.

Proof. From the last theorem, it is known that P(a) = P(b) (mod n). Hence, if a is a
solution of P(x) = 0 (mod n), then P(b) = P(a) = 0 (mod n), making b a solution.

One divisibility test that we have in mind is this. A positive integer is divisible
by 9 if and only if the sum of the digits in its decimal representation is divisible by 9.

Theorem 4.5. Let N = a,, 10" + a,,_110™ ! + ... 4+ 4,10 + gy be the decimal ex-
pansion of the positive integer N, 0 < a; < 10, andlet S = ap + a1 + - - - + a,. Then
9|N if and only if 9| S.

Proof. Consider P(x) =Y ;_, a;x*, a polynomial with integral coefficients. The key
observation is that 10 = 1 (mod 9), whence by Theorem 4.4, P(10) = P(1) (mod 9).
But P(10) = N and P(1) =ap+a; +---+a, = S, so that N = § (mod 9). It fol-
lows that N = 0 (mod 9) if and only if § = 0 (mod 9), which is what we wanted to
prove.

Theorem 4.4 also serves as the basis for a well-known test for divisibility by 11:
an integer is divisible by 11 if and only if the alternating sum of its digits is divisible
by 11. We state this more precisely by Theorem 4.6.

Theorem 4.6. Let N =a, 10" +a,,_ 110" '+ ...+ 4,10+ ay be the decimal
expansion of the positive integer N,0 <a; <10, and let T =agp—a; +a, —---
+ (—D™a,. Then 11 | N ifand only if 11 | T'.

Proof. As in the proof of Theorem 4.5, put P(x) = ) ., a;x*. Because 10 = —1
(mod 11), we get P(10) = P(—1) (mod 11). But P(10) = N, whereas P(—1) =
ay—ay+a —---+(1"a, =T,sothat N = T (mod 11). The implication is that
either both N and T are divisible by 11 or neither is divisible by 11.

Example 4.6. To see an illustration of the last two results, consider the integer
N = 1,571,724. Because the sum

1+5+7+1+7+2+4=27

is divisible by 9, Theorem 4.5 guarantees that 9 divides N. It also can be divided by
11; for, the alternating sum

4-24+7-1+7-5+1=11
is divisible by 11.

Congruence theory is frequently used to append an extra check digit to iden-
tification numbers, in order to recognize transmission errors or forgeries. Personal
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identification numbers of some kind appear on passports, credit cards, bank accounts,
and a variety of other settings.

Some banks use an eight-digit identification number aja; . . . ag together with
a final check digit ag. The check digit is usually obtained by multiplying the digits
a;(1 <i < 8)by certain “weights” and calculating the sum of the weighted products
modulo 10. For instance, the check digit might be chosen to satisfy

a9 = Ta1 + 3ay + 9a3 + Tayg + 3as + 9ag + Ta; + 3ag  (mod 10)
The identification number 81504216 would then have check digit
ag=7-84+3-1+49-5+47-043-44+9-2+7-143-6=9 (mod10)

so that 815042169 would be printed on the check.

This weighting scheme for assigning check digits detects any single-digit error
in the identification number. For suppose that the digit a; is replaced by a different
a;. By the manner in which the check digit is calculated, the difference between the
correct ag and the new aj is

ag — ag = k(a; — a;) (mod 10)

where kis 7, 3, or 9 depending on the position of a;. Because k(a; — a;) # 0 (mod 10),
it follows that ag # ag and the error is apparent. Thus, if the valid number 81504216
were incorrectly entered as 81504316 into a computer programmed to calculate
check digits, an 8 would come up rather than the expected 9.

The modulo 10 approach is not entirely effective, for it does not always detect
the common error of transposing distinct adjacent entries a and b within the string
of digits. To illustrate: the identification numbers 81504216 and 81504261 have
the same check digit 9 when our example weights are used. (The problem occurs
when |a — b| = 5.) More sophisticated methods are available, with larger moduli
and different weights, that would prevent this possible error.

PROBLEMS 4.3

1. Use the binary exponentiation algorithm to compute both 19°3 (mod 503) and 141%
(mod 1537).

2. Prove the following statements:
(a) For any integer a, the units digit of a%is0,1,4,5,6,or9.
(b) Any one of the integers 0, 1, 2, 3,4, 5, 6, 7, 8, 9 can occur as the units digit of a’.
(c) For any integer a, the units digit of a*is0,1, 5, or 6.
(d) The units digit of a triangular numberis 0, 1, 3, 5, 6, or 8.

3. Find the last two digits of the number 9%,
[Hint: 9° = 9 (mod 10); hence, 9°° = 99+1%; notice that 9° = 89 (mod100).]

4. Without performing the divisions, determine whether the integers 176521221 and
149235678 are divisible by 9 or 11.

5. (a) Obtain the following generalization of Theorem 4.6: If the integer N is represented

in the base b by

N=auh"+ ---+ap*+ab+ay 0<a<b-—1
thenb — 1| N ifandonlyif b — 1| (a,, + --- + az + a1 + ap).
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(b) Give criteria for the divisibility of N by 3 and 8 that depend on the digits of N when
written in the base 9.

(c) Is the integer (447836)9 divisible by 3 and 8?

Working modulo 9 or 11, find the missing digits in the calculations below:

(a) 51840 - 273581 = 1418243x040.

(b) 2x99561 = [3(523 + x)]°.

(c) 2784x = x - 5569.

(d) 512 - 1x53125 = 1000000000.

Establish the following divisibility criteria:

(a) An integer is divisible by 2 if and only if its units digit is 0, 2, 4, 6, or 8.

(b) An integer is divisible by 3 if and only if the sum of its digits is divisible by 3.

(c) An integer is divisible by 4 if and only if the number formed by its tens and units
digits is divisible by 4.
[Hint: 10 = 0 (mod 4) for k > 2.]

(d) An integer is divisible by 5 if and only if its units digit is O or 5.

. For any integer a, show that a®> — a + 7 ends in one of the digits 3, 7, or 9.

Find the remainder when 4444%44 is divided by 9.

[Hint: Observe that 23 = —1 (mod 9).]

Prove that no integer whose digits add up to 15 can be a square or a cube.

[Hint: For any a, a® = 0, 1, or 8 (mod 9).]

Assuming that 495 divides 273x49y5, obtain the digits x and y.

Determine the last three digits of the number 7°%.

[Hint: 7 = (1 + 400)* = 1 + 400n (mod 1000).]

If ¢, denotes the nth triangular number, show that #,,, 5, = ¢, (mod k); hence, ¢, and ¢, 2
must have the same last digit.

For any n > 1, prove that there exists a prime with at least n of its digits equal to 0.
[Hint: Consider the arithmetic progression 10"tk + 1 fork =1,2,....]

Find the values of n > 1 for which 1! + 2! 4 3! + ... 4 n! is a perfect square.

[Hint: Problem 2(a).]

Show that 2" divides an integer N if and only if 2" divides the number made up of the
last n digits of N.

[Hint: 10F = 2¥5F = 0 (mod 2") for k > n.]

Let N = a,10™ + - -+ + a10% 4+ a;10 + ag, where 0 < a; < 9, be the decimal expan-
sion of a positive integer N.

(a) Prove that 7, 11, and 13 all divide N if and only if 7, 11, and 13 divide the integer

M = (100a; + 10a; + ag) — (100as + 10a4 + a3)
+ (100ag + 10a7 + ag) — - - -

[Hint: If n is even, then 10** = 1, 10**+! = 10, 10***2 = 100 (mod 1001); if n is
odd, then 10*>" = —1, 10%*+! = —10, 10>**2 = —100 (mod 1001).]
(b) Prove that 6 divides N if and only if 6 divides the integer

M = ag + 4a; + 4ax + - - - + 4ay,

Without performing the divisions, determine whether the integer 1010908899 1s divisible

by 7, 11, and 13.

(a) Given an integer N, let M be the integer formed by reversing the order of the digits
of N (for example, if N = 6923, then M = 3296). Verify that N — M is divisible
by 9.
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(b) A palindrome is a number that reads the same backward as forward (for instance,
373 and 521125 are palindromes). Prove that any palindrome with an even number
of digits is divisible by 11.

Given a repunit R,, show that

(a) 9| R, if and only if 9 | n.

(b) 11| R, if and only if n is even.

Factor the repunit R¢ = 111111 into a product of primes.

[Hint: Problem 17(a).]

Explain why the following curious calculations hold:

1.94 2=11
12-9+ 3 =111
123-9+ 4=1111
12349+ 5=11111
12345-9+ 6 = 111111
123456 -9 + 7 = 1111111
1234567 -9+ 8 = 11111111
12345678 -9+ 9 = 111111111
123456789 -9 + 10 = 1111111111
[Hint: Show that
1071 42.10"243.10" 3 4+ ... + )10 —=1)

10n+1 -1
+(n+1)= T]

An old and somewhat illegible invoice shows that 72 canned hams were purchased for
$x 67.9y. Find the missing digits.

If 792 divides the integer 13xy 45z, find the digits x, y, and z.

[Hint: By Problem 17, 8 |45z.]

For any prime p > 3, prove that 13 divides 10?7 — 107 + 1.

Consider the eight-digit bank identification number aja; . . . ag, which is followed by a
ninth check digit ag chosen to satisfy the congruence

a9 = Ta; + 3a; + 9a3 + 7a4 + 3as + 9ae + 7a7 + 3ag (mod 10)

(a) Obtain the check digits that should be appended to the two numbers 55382006 and
813724309.

(b) The bank identification number 237a418538 has an illegible fourth digit. Determine
the value of the obscured digit.

The International Standard Book Number (ISBN) used in many libraries consists of nine

digits ajay . . . ag followed by a tenth check digit a;g, which satisfies

9
ao = Y kai (mod11)
k=1

Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
When printing the ISBN a;a; . . . ag, two unequal digits were transposed. Show that the
check digits detected this error.
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4.4 LINEAR CONGRUENCES AND THE CHINESE
REMAINDER THEOREM

This is a convenient place in our development of number theory at which to inves-
tigate the theory of linear congruences: an equation of the form ax = b (mod n)
is called a linear congruence, and by a solution of such an equation we mean an
integer xo for which axyg = b (mod n). By definition, axy = b (mod n) if and only
if n | axy — b or, what amounts to the same thing, if and only if axg — b = ny, for
some integer yo. Thus, the problem of finding all integers that will satisfy the lin-
ear congruence ax = b (mod n) is identical with that of obtaining all solutions of
the linear Diophantine equation ax — ny = b. This allows us to bring the results of
Chapter 2 into play.

It is convenient to treat two solutions of ax = b (mod n) that are congruent
modulo n as being “equal” even though they are not equal in the usual sense. For
instance, x = 3 and x = —9 both satisfy the congruence 3x = 9 (mod 12); because

= —9 (mod 12), they are not counted as different solutions. In short: When we refer
to the number of solutions of ax = b (mod n), we mean the number of incongruent
integers satisfying this congruence.

With these remarks in mind, the principal result is easy to state.

Theorem 4.7. The linear congruence ax = b (mod n) has a solution if and only ifd | b,
where d = gcd(a, n). If d | b, then it has d mutually incongruent solutions modulo 7.

Proof. We already have observed that the given congruence is equivalent to the linear
Diophantine equation ax — ny = b. From Theorem 2.9, it is known that the latter
equation can be solved if and only if d | b; moreover, if it is solvable and xg, yg is one
specific solution, then any other solution has the form

= + =t = + =t
2 = 57 =
0 / y Yo /

for some choice of ¢.
Among the various integers satisfying the first of these formulas, consider those
that occur when ¢ takes on the successive valuest =0,1,2,...,d — 1:

+n +2n +(d—1)n
X0, X0+ =, x0+ —, ..., X0+ ————
0, %0 + s X0 + 0 p

We claim that these integers are incongruent modulo 7, and all other such integers x
are congruent to some one of them. If it happened that

X0 + %tl =x0+ gtz (mod n)

where 0 < f; < 1, <d — 1, then we would have
gtl = %tz (mod n)

Now gcd(n/d, n) = n/d, and therefore by Theorem 4.3 the factor n/d could be can-
celed to arrive at the congruence

1 =t (mod d)
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which is to say that d |, — ¢;. But this is impossible in view of the inequality
O<th—1 <d.

It remains to argue that any other solution xo + (n/d)t 1s congruent modulo 7 to
one of the d integers listed above. The Division Algorithm permits us to write ¢ as
t =qd +r,where 0 <r <d — 1. Hence
n

xO+d

n
I=JC0+E(qd+r)
+ +n
=X n —r
0 q d

=xp + %r (mod n)

with xo 4+ (n/d)r being one of our d selected solutions. This ends the proof.

The argument that we gave in Theorem 4.7 brings out a point worth stating ex-
plicitly: If x¢ is any solution of ax = b (mod n), thenthe d = gcd(a, n) incongruent
solutions are given by

n

xo,xo+g,xo+2(d),...,xo+(d—1)(3)

For the reader’s convenience, let us also record the form Theorem 4.7 takes in
the special case in which a and n are assumed to be relatively prime.

Corollary. If gcd(a, n) = 1, then the linear congruence ax = b (mod n) has a unique
solution modulo .

Given relatively prime integers a and n, the congruence ax = 1 (mod n) has a
unique solution. This solution is sometimes called the (multiplicative) inverse of a
modulo 7.

We now pause to look at two concrete examples.

Example 4.7. First consider the linear congruence 18x = 30 (mod 42). Because
gcd(18, 42) = 6 and 6 surely divides 30, Theorem 4.7 guarantees the existence of
exactly six solutions, which are incongruent modulo 42. By inspection, one solution
is found to be x = 4. Our analysis tells us that the six solutions are as follows:

x =44 (42/6)t = 4 + Tt (mod 42) t=0,1,...,5
or, plainly enumerated,

x =4,11, 18, 25, 32, 39 (mod 42)

Example 4.8. Let us solve the linear congruence 9x = 21 (mod 30). At the out-
set, because gcd(9, 30) = 3 and 3 | 21, we know that there must be three incongruent
solutions.

One way to find these solutions is to divide the given congruence through by
3, thereby replacing it by the equivalent congruence 3x = 7 (mod 10). The relative
primeness of 3 and 10 implies that the latter congruence admits a unique solution
modulo 10. Although it is not the most efficient method, we could test the integers
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0,1,2,...,91n turn until the solution is obtained. A better way is this: Multiply both
sides of the congruence 3x = 7 (mod 10) by 7 to get

21x = 49 (mod 10)

which reduces to x = 9 (mod 10). (This simplification is no accident, for the multiples
0-3,1-3,2-3,...,9-3 form a complete set of residues modulo 10; hence, one
of them is necessarily congruent to 1 modulo 10.) But the original congruence was
given modulo 30, so that its incongruent solutions are sought among the integers 0, 1,
2,...,29. Taking t = 0, 1, 2, in the formula

x =94+ 10¢
we obtain 9, 19, 29, whence
x = 9 (mod 30) x = 19 (mod 30) x = 29 (mod 30)

are the required three solutions of 9x = 21 (mod 30).

A different approach to the problem is to use the method that is suggested in the
proof of Theorem 4.7. Because the congruence 9x = 21(mod 30) is equivalent to the
linear Diophantine equation

9x — 30y =21

we begin by expressing 3 = gcd(9, 30) as a linear combination of 9 and 30. It is found,
either by inspection or by using the Euclidean Algorithm, that 3 = 9(—3)+ 30- 1, so
that

21 =7-3=9(-21) - 30(=7)

Thus, x = —21, y = —7 satisfy the Diophantine equation and, in consequence, all
solutions of the congruence in question are to be found from the formula

x = —21 +(30/3)t = —21 + 10¢

The integers x = —21 + 10¢, where ¢t = 0, 1, 2, are incongruent modulo 30 (but all are
congruent modulo 10); thus, we end up with the incongruent solutions

= —21 (mod 30) x = —11 (mod 30) = —1 (mod 30)

or, if one prefers positive numbers, x = 9, 19, 29 (mod 30).

Having considered a single linear congruence, it is natural to turn to the problem

of solving a system of simultaneous linear congruences:

a1x = by (mod my), axx = by (mod my), ..., a,x = b, (mod m,)

We shall assume that the moduli m; are relatively prime in pairs. Evidently, the
system will admit no solution unless each individual congruence is solvable; that
is, unless d | b; for each k, where d;, = gcd(ax, mi). When these conditions are
satisfied, the factor d; can be canceled in the kth congruence to produce a new
system having the same set of solutions as the original one:

ajx = b} (mod ny), ayx = b, (mod ny), ..., a.x =b. (mod n,)
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where n; = my/dy and ged(n;, n;) = 1 fori # j;in addition, gcd(a;, n;) = 1. The
solutions of the individual congruences assume the form

x =c; (mod ny), x = ¢y (mod ny), ..., x = ¢, (mod n,)

Thus, the problem is reduced to one of finding a simultaneous solution of a system
of congruences of this simpler type.

The kind of problem that can be solved by simultaneous congruences has a
long history, appearing in the Chinese literature as early as the 1st century A.D.
Sun-Tsu asked: Find a number that leaves the remainders 2, 3, 2 when divided by
3,5, 7, respectively. (Such mathematical puzzles are by no means confined to a single
cultural sphere; indeed, the same problem occurs in the Introductio Arithmeticae
of the Greek mathematician Nicomachus, circa 100 A.D.) In honor of their early
contributions, the rule for obtaining a solution usually goes by the name of the
Chinese Remainder Theorem.

Theorem4.8 Chinese Remainder Theorem. Letn, ny, ..., n, be positive integers
such that gcd(n;, n;) = 1 fori # j. Then the system of linear congruences
x =ay (modn;)

x = ap (mod n5)

x = a, (mod n,)

has a simultaneous solution, which is unique modulo the integer nn; - - - n,.

Proof. We start by forming the productn = nyn; ---n,. Foreachk = 1,2,...,r, let
n
Ny = —=mny - ng_10gy1- - Ry
ng

In words, Ny is the product of all the integers n; with the factor n; omitted. By hy-
pothesis, the n; are relatively prime in pairs, so that gcd(Ng, nx) = 1. According to the
theory of a single linear congruence, it is therefore possible to solve the congruence
Nix = 1 (mod ny); call the unique solution x;. Our aim is to prove that the integer

X =a1Nix1 +axNyxo + -+ -+ a, Ny x,

is a simultaneous solution of the given system.
First, observe that N; = 0 (mod ny;) for i # k, because n; | N; in this case. The
result is

X =aNix1+ -+ a,N,x, = apNix; (mod ny)

But the integer x; was chosen to satisfy the congruence Niyx = 1 (mod n;), which
forces

X=a;-1=a (modny)

This shows that a solution to the given system of congruences exists.
As for the uniqueness assertion, suppose that x’ is any other integer that satisfies
these congruences. Then

X = a; = x’ (mod ny) k=1,2,...,r
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and so ng|xX —x’ for each value of k. Because gcd(n;, n;) =1, Corollary 2 to
Theorem 2.4 supplies us with the crucial point that nin,---n, | x — x’; hence
X = x’ (mod n). With this, the Chinese Remainder Theorem is proven.

Example 4.9. The problem posed by Sun-Tsu corresponds to the system of three
congruences

x = 2 (mod 3)
x = 3 (mod 5)
x =2 (mod 7)
In the notation of Theorem 4.8, we haven =3 -5 .7 = 105 and
n n n
Ni=—=—=35 Ny=—-—=21 Ny=—-=15
173 275 377

Now the linear congruences
35x = 1 (mod 3) 21x = 1 (mod 5) 15x = 1 (mod 7)

are satisfied by x; = 2, x, = 1, x3 = 1, respectively. Thus, a solution of the system is
given by

x=2-35-24+3-21-142-15-1=233
Modulo 105, we get the unique solution x = 233 = 23 (mod 105).

Example 4.10. For a second illustration, let us solve the linear congruence
17x = 9 (mod 276)

Because 276 = 3 - 4 - 23, this is equivalent to finding a solution for the system of
congruences

17x = 9 (mod 3) or x = 0 (mod 3)
17x = 9 (mod 4) x =1 (mod 4)
17x = 9 (mod 23) 17x = 9 (mod 23)

Note thatif x = 0 (mod 3), then x = 3k for any integer k. We substitute into the second
congruence of the system and obtain

3k = 1 (mod 4)
Multiplication of both sides of this congruence by 3 gives us
k =9k = 3 (mod 4)
so that k = 3 + 4, where j is an integer. Then
x=33+4j)=9+12j
For x to satisfy the last congruence, we must have
17(9 4+ 12j) = 9 (mod 23)

or 204j = —144 (mod 23), which reduces to 3j = 6 (mod 23); in consequence, j = 2
(mod 23). This yields j = 2 + 23¢, with ¢ an integer, whence

x =9+ 122 + 23t) = 33 + 276¢
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Allin all, x = 33 (mod 276) provides a solution to the system of congruences and, in
turn, a solution to 17x = 9 (mod 276).

We should say a few words about linear congruences in two variables; that is,
congruences of the form
ax + by = ¢ (mod n)
In analogy with Theorem 4.7, such a congruence has a solution if and only if
gcd(a, b, n) divides c. The condition for solvability holds if either gcd(a,n) =1
or gcd(b, n) = 1. Say gcd(a, n) = 1. When the congruence is expressed as
ax = c — by (mod n)

the corollary to Theorem 4.7 guarantees a unique solution x for each of the
n incongruent values of y. Take as a simple illustration 7x 4+ 4y = 5 (mod 12),
that would be treated as 7x = 5 — 4y (mod 12). Substitution of y =5 (mod 12)
gives 7x = —15 (mod 12); but this is equivalent to —5x = —15 (mod 12) so that
x = 3 (mod 12). It follows that x = 3 (mod 12), y = 5 (mod 12) is one of the 12
incongruent solutions of 7x + 4y = 5 (mod 12). Another solution having the same
value of x is x = 3 (mod 12),y = 8 (mod 12).

The focus of our concern here is how to solve a system of two linear congruences
in two variables with the same modulus. The proof of the coming theorem adopts
the familiar procedure of eliminating one of the unknowns.

Theorem 4.9. The system of linear congruences
ax + by = r (mod n)
cx +dy = s (mod n)

has a unique solution modulo » whenever gcd(ad — bc, n) = 1.

Proof. Let us multiply the first congruence of the system by d, the second congruence
by b, and subtract the lower result from the upper. These calculations yield

(ad — bc)x = dr — bs (mod n) (D
The assumption gcd(ad — bc, n) = 1 ensures that the congruence
(ad — bc)z =1 (mod n)

posseses a unique solution; denote the solution by . When congruence (1) is multiplied
by ¢, we obtain

x = t(dr — bs) (mod n)

A value for y is found by a similar elimination process. That is, multiply the first
congruence of the system by c, the second one by a, and subtract to end up with

(ad — bc)y = as — cr (mod n) 2)
Multiplication of this congruence by ¢ leads to
y = t(as — cr) (mod n)

A solution of the system is now established.

We close this section with an example illustrating Theorem 4.9.
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Example 4.11. Consider the system

7x + 3y = 10 (mod 16)
2x + 5y =9 (mod 16)

Because ged(7-5 —2-3,16) = gcd(29, 16) = 1, a solution exists. It is obtained by
the method developed in the proof of Theorem 4.9. Multiplying the first congruence
by 5, the second one by 3, and subtracting, we arrive at

29x =5-10—-3-9 =23 (mod 16)

or, what is the same thing, 13x = 7 (mod 16). Multiplication of this congruence by 5
(noting that 5 - 13 = 1 (mod 16)) produces x = 35 = 3 (mod 16). When the variable
x is eliminated from the system of congruences in a like manner, it is found that

29y =7-9—-2-10 =43 (mod 16)

But then 13y = 11 (mod 16), which upon multiplication by 5, results in y = 55 =
7 (mod 16). The unique solution of our system turns out to be

x = 3 (mod 16) y =7 (mod 16)

PROBLEMS 4.4

1. Solve the following linear congruences:
(a) 25x = 15 (mod 29).
(b) 5x = 2 (mod 26).
(c) 6x = 15 (mod 21).
(d) 36x = 8 (mod 102).
(e) 34x = 60 (mod 98).
(f) 140x = 133 (mod 301).
[Hint: gcd(140, 301) = 7.]
2. Using congruences, solve the Diophantine equations below:
(a) 4x + 51y =0.
[Hint: 4x =9 (mod 51) gives x = 15 + 51¢, whereas 51y =9 (mod 4) gives
y = 3 + 4s. Find the relation between s and ¢.]
(b) 12x + 25y = 331.
(c) 5x — 53y =17.
. Find all solutions of the linear congruence 3x — 7y = 11 (mod 13).
4. Solve each of the following sets of simultaneous congruences:
(@) x =1 (mod 3),x =2 (mod 5), x =3 (mod 7).
(b) x =5 (mod 11), x = 14 (mod 29), x = 15 (mod 31).
(¢c) x=5@mod 6), x =4 (mod 11), x = 3 (mod 17).
(d) 2x =1 (mod 5), 3x =9 (mod 6),4x = 1 (mod 7), 5x =9 (mod 11).
5. Solve the linear congruence 17x = 3 (mod 2 - 3 - 5 - 7) by solving the system

w

17x = 3 (mod 2) 17x = 3 (mod 3)
17x = 3 (mod 5) 17x = 3 (mod 7)

6. Find the smallest integer a > 2 such that

2|la,3la+1,4|la+2,5|a+3,6la+4
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(a) Obtain three consecutive integers, each having a square factor.
[Hint: Find an integer a such that 22 |a, 3% |a + 1,5% |a + 2.]

(b) Obtain three consecutive integers, the first of which is divisible by a square, the
second by a cube, and the third by a fourth power.

. (Brahmagupta, 7th century A.D.) When eggs in a basket are removed 2, 3,4, 5, 6 at a

time there remain, respectively, 1, 2, 3, 4, 5 eggs. When they are taken out 7 at a time,
none are left over. Find the smallest number of eggs that could have been contained in
the basket.

. The basket-of-eggs problem is often phrased in the following form: One egg remains

when the eggs are removed from the basket 2, 3, 4, 5, or 6 at a time; but, no eggs remain
if they are removed 7 at a time. Find the smallest number of eggs that could have been
in the basket.

(Ancient Chinese Problem.) A band of 17 pirates stole a sack of gold coins. When they
tried to divide the fortune into equal portions, 3 coins remained. In the ensuing brawl over
who should get the extra coins, one pirate was killed. The wealth was redistributed, but
this time an equal division left 10 coins. Again an argument developed in which another
pirate was killed. But now the total fortune was evenly distributed among the survivors.
What was the least number of coins that could have been stolen?

Prove that the congruences

x = a (mod n) and x = b (mod m)

admit a simultaneous solution if and only if gcd(n, m) | a — b; if a solution exists, confirm
that it is unique modulo lcm(n, m).
Use Problem 11 to show that the following system does not possess a solution:

x =5 (mod 6) and x =7 (mod 15)

If x = a (mod n), prove that either x = a (mod 2n) or x = a + n (mod 2n).

A certain integer between 1 and 1200 leaves the remainders 1, 2, 6 when divided by 9,

11, 13, respectively. What is the integer?

(a) Find an integer having the remainders 1, 2, 5, 5 when divided by 2, 3, 6, 12, respec-
tively. (Yih-hing, died 717).

(b) Find aninteger having the remainders 2, 3,4, 5 when divided by 3,4, 5, 6, respectively.
(Bhaskara, born 1114).

(c) Find an integer having the remainders 3, 11, 15 when divided by 10, 13, 17, respec-
tively. (Regiomontanus, 1436-1476).

Let ¢, denote the nth triangular number. For which values of n does ¢, divide

R

[Hint: Because 17 + 3 + - - - + 12 = 1,(3n> 4+ 12n* + 13n + 2)/30, it suffices to deter-
mine those n satisfying 33+ 12n% +13n+2=0(mod 2-3-5).]
Find the solutions of the system of congruences:

3x +4y =5 (mod 13)

2x + 5y = 7 (mod 13)

Obtain the two incongruent solutions modulo 210 of the system
2x = 3 (mod 5)
4x = 2 (mod 6)

3x = 2 (mod 7)
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19. Obtain the eight incongruent solutions of the linear congruence 3x + 4y = 5 (mod 8).
20. Find the solutions of each of the following systems of congruences:
@ S5x+3y=1(mod7)
3x + 2y =4 (mod 7).
(b) 7x 4+ 3y =6 (mod 11)
4x + 2y =9 (mod 11).
(c) 11x + Sy = 7 (mod 20)
6x + 3y = 8 (mod 20).





