CHAPTER

3

PRIMES AND THEIR DISTRIBUTION

Mighty are numbers, joined with art resistless.
EURIPIDES

3.1 THE FUNDAMENTAL THEOREM OF ARITHMETIC

Essential to everything discussed herein—in fact, essential to every aspect of number
theory—is the notion of a prime number. We have previously observed that any
integer a > 1 is divisible by £1 and + a; if these exhaust the divisors of a, then it
is said to be a prime number. In Definition 3.1 we state this somewhat differently.

Definition 3.1. An integer p > 1 is called a prime number, or simply a prime, if its
only positive divisors are 1 and p. An integer greater than 1 that is not a prime is termed
composite.

Among the first 10 positive integers, 2, 3, 5, 7 are primes and 4, 6, 8, 9, 10 are
composite numbers. Note that the integer 2 is the only even prime, and according to
our definition the integer 1 plays a special role, being neither prime nor composite.

In the rest of this book, the letters p and g will be reserved, so far as is possible,
for primes.

Proposition 14 of Book IX of Euclid’s Elements embodies the result that later
became known as the Fundamental Theorem of Arithmetic, namely, that every inte-
ger greater than 1 can, except for the order of the factors, be represented as a product
of primes in one and only one way. To quote the proposition itself: “If a number be
the least that is measured by prime numbers, it will not be measured by any other

39



40 ELEMENTARY NUMBER THEORY

prime except those originally measuring it.” Because every number a > 1 is either
a prime or, by the Fundamental Theorem, can be broken down into unique prime
factors and no further, the primes serve as the building blocks from which all other
integers can be made. Accordingly, the prime numbers have intrigued mathemati-
cians through the ages, and although a number of remarkable theorems relating to
their distribution in the sequence of positive integers have been proved, even more
remarkable is what remains unproved. The open questions can be counted among
the outstanding unsolved problems in all of mathematics.

To begin on a simpler note, we observe that the prime 3 divides the integer 36,
where 36 may be written as any one of the products

6.-6=9-4=12-3=18-2

In each instance, 3 divides at least one of the factors involved in the product. This is
typical of the general situation, the precise result being Theorem 3.1.

Theorem 3.1. If p is a prime and p | ab, then p |a or p | b.

Proof. If p|a, then we need go no further, so let us assume that p [ a. Because
the only positive divisors of p are 1 and p itself, this implies that gcd(p,a) = 1. (In
general, gcd(p, a) = p or gcd(p, a) = 1 according as p|a or p f a.) Hence, citing
Euclid’s lemma, we get p | b.

This theorem easily extends to products of more than two terms.

Corollary 1. If pisaprimeand p | aja; - - - a,, then p | a; forsome k, where 1 < k < n.

Proof. We proceed by induction on #, the number of factors. When n = 1, the stated
conclusion obviously holds; whereas when n = 2, the result is the content of Theorem
3.1. Suppose, as the induction hypothesis, that n > 2 and that whenever p divides a
product of less than n factors, it divides at least one of the factors. Now p | aja; - - - a,.
From Theorem 3.1, either p |a, or p|a1az - - -a,—1. If p|a,, then we are through. As
regards the case where p |aja; - - - a,—1, the induction hypothesis ensures that p | ax
for some choice of k, with 1 < k < n — 1. In any event, p divides one of the integers
a,az, ..., ay.

Corollary 2. If p, q1, q2, ..., g, are all primes and p |q192 - - - g», then p = g; for
some k, where 1 < k < n.

Proof. By virtue of Corollary 1, we know that p | g for some k, with 1 < k < n.Being
a prime, g is not divisible by any positive integer other than 1 or g; itself. Because
p > 1, we are forced to conclude that p = g;.

With this preparation out of the way, we arrive at one of the cornerstones of
our development, the Fundamental Theorem of Arithmetic. As indicated earlier,
this theorem asserts that every integer greater than 1 can be factored into primes
in essentially one way; the linguistic ambiguity essentially means that 2 -3 -2 is
not considered as being a different factorization of 12 from 2 - 2 - 3. We state this
precisely in Theorem 3.2.
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Theorem 3.2 Fundamental Theorem of Arithmetic. Every positive integern > 1
is either a prime or a product of primes; this representation is unique, apart from the
order in which the factors occur.

Proof. Either n is a prime or it is composite; in the former case, there is nothing
more to prove. If n is composite, then there exists an integer d satisfying d |n and
1 < d < n. Among all such integers d, choose p; to be the smallest (this is possible
by the Well-Ordering Principle). Then p; must be a prime number. Otherwise it too
would have a divisor ¢ with 1 < g < p;; but then g | p; and p; |n imply that g | n,
which contradicts the choice of p; as the smallest positive divisor, not equal to 1, of .

We therefore may writen = pin;, where p;isprimeand 1 < n; < n.Ifn; happens
to be a prime, then we have our representation. In the contrary case, the argument is
repeated to produce a second prime number p; such that n; = pn,; that is,

n = pipana 1 <ny < ny

If n, is a prime, then it is not necessary to go further. Otherwise, write n, = p3ns, with
p3 a prime:

n = p1p2p3n3 1l <n3 <ny
The decreasing sequence
n>ng>ny>--->1

cannot continue indefinitely, so that after a finite number of steps n_ is a prime, call
it, px. This leads to the prime factorization

nh=pip2 - Pk

To establish the second part of the proof—the uniqueness of the prime
factorization—Ilet us suppose that the integer n can be represented as a product of
primes in two ways; say,

=R P = 41924 r=s
where the p; and g; are all primes, written in increasing magnitude so that

P1=<p2=<---= Dy g1 =q2=<--+-=<(¢s

Because p; 9192 - - - g5, Corollary 2 of Theorem 3.1 tells us that p; = g; for some k;
but then p; > q;. Similar reasoning gives q; > p;, whence p; = q;. We may cancel
this common factor and obtain

D2p3 - Pr = 4293 qs

Now repeat the process to get p, = ¢, and, in turn,

D3P4a- - Dr = 4344 ---(qs

Continue in this fashion. If the inequality r < s were to hold, we would eventually
arrive at

1= qr+19r+2 -+ qgs

which is absurd, because each g; > 1. Hence, r = s and

P1 =41 P2=4q92,..., Pr =4qr

making the two factorizations of n identical. The proof is now complete.



42 ELEMENTARY NUMBER THEORY

Of course, several of the primes that appear in the factorization of a given positive
integer may be repeated, as is the case with 360 =2-2-2-3-3-5. By collecting
like primes and replacing them by a single factor, we can rephrase Theorem 3.2 as
a corollary.

Corollary. Any positive integer n > 1 can be written uniquely in a canonical form

_ ki ke k,
n —_— pl p2 PRI pr
where, fori = 1,2, ..., r, each k; is a positive integer and each p; is a prime, with

P1<p2<--<Ppr

To illustrate, the canonical form of the integer 360 is 360 = 23.32.5, Asfurther
examples we cite

4725 = 33.5%.7 and 17460 = 23.32.5.72

Prime factorizations provide another means of calculating greatest common
divisors. For suppose that p1, p», ..., p, are the distinct primes that divide either of
a or b. Allowing zero exponents, we can write

ky ko i1 __J j
a:pllpz'...pi”’ b:p‘lhpéz...pi”

Then

ged(a, b) = pi'py -+ pi

where r; = min(k;, j;), the smaller of the two exponents associated with p; in the
two representations. In the case a = 4725 and b = 17460, we would have

4725 =2°.3%.52.7, 7460 =2%.3%.5.7?
and so
gcd(4725, 17460) = 2° .32 .5.7. = 315

This is an opportune moment to insert a famous result of Pythagoras.
Mathematics as a science began with Pythagoras (569-500 B.C.), and much of the
content of Euclid’s Elements is due to Pythagoras and his school. The Pythagoreans
deserve the credit for being the first to classify numbers into odd and even, prime
and composite.

Theorem 3.3 Pythagoras. The number ~/2 is irrational.

Proof. Suppose, to the contrary, that 4/2 is a rational number, say, ~/2 = a/b, where
a and b are both integers with gcd(a, b) = 1. Squaring, we get a®> = 2b?, so that b | a?.
If b > 1, then the Fundamental Theorem of Arithmetic guarantees the existence of a
prime p such that p | b. It follows that p |a2 and, by Theorem 3.1, that p | a; hence,
gcd(a, b) > p. We therefore arrive at a contradiction, unless b = 1. But if this happens,
then a? = 2, which is impossible (we assume that the reader is willing to grant that
no integer can be multiplied by itself to give 2). Our supposition that 4/2 is a rational
number is untenable, and so /2 must be irrational.
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There is an interesting variation on the proof of Theorem 3.3. If /2 = a/b with

gcd(a, b) = 1, there must exist integers r and s satisfying ar + bs = 1. As a result,

V2 = x/i(ar + bs) = (x/ia)r — (x/ib)s = 2br + as

This representation of +/2 leads us to conclude that +/2 is an integer, an obvious
impossibility.

PROBLEMS 3.1

1.

2.

o o0 3

10.
11.

12.
13.

It has been conjectured that there are infinitely many primes of the form n? — 2. Exhibit
five such primes.

Give an example to show that the following conjecture is not true: Every positive integer
can be written in the form p + a?, where p is either a prime or 1, and a > 0.

. Prove each of the assertions below:

(a) Any prime of the form 3n + 1 is also of the form 6m + 1.
(b) Each integer of the form 3n + 2 has a prime factor of this form.
(c) The only prime of the form 1 — 1is 7.

[Hint: Writen® — las(n — Dm? +n + 1).]
(d) The only prime p for which 3p + 1 is a perfect square is p = 5.
(e) The only prime of the form n? — 4 is 5.

. If p > 5 is a prime number, show that p? + 2 is composite.

[Hint: p takes one of the forms 6k + 1 or 6k + 5.]

(a) Giventhat p is a prime and p | a", prove that p" | a”".

(b) If gcd(a, b) = p, a prime, what are the possible values of gcd(a?, b?), gcd(a?, b) and
ged(a?, b?)?

. Establish each of the following statements:

(a) Every integer of the form n* + 4, with n > 1, is composite.
[Hint: Write n* + 4 as a product of two quadratic factors.]
(b) If n > 4 is composite, then n divides (n — 1)!.
(c) Any integer of the form 8" + 1, where n > 1, is composite.
[Hint: 2" + 1|23 +1.]
(d) Eachinteger n > 11 can be written as the sum of two composite numbers.
[Hint: If nis even, say n = 2k, thenn — 6 = 2(k — 3); for n odd, consider the integer
n—9.]

. Find all prime numbers that divide 50!.
. If p > g > 5 and p and g are both primes, prove that 24 | p> — ¢°.

(a) Anunanswered question is whether there are infinitely many primes that are 1 more
than a power of 2, such as 5 = 22 + 1. Find two more of these primes.

(b) A more general conjecture is that there exist infinitely many primes of the form
n? + 1; for example, 257 = 162 + 1. Exhibit five more primes of this type.

If p # 5 is an odd prime, prove that either p> — 1 or p? + 1 is divisible by 10.

Another unproven conjecture is that there are an infinitude of primes that are 1 less than

a power of 2, such as 3 = 2% — 1.

(a) Find four more of these primes.

(b) If p = 2F — 1 is prime, show that k is an odd integer, except when k = 2.
[Hint: 314" — 1foralln > 1.]

Find the prime factorization of the integers 1234, 10140, and 36000.

If n > 1 is an integer not of the form 6k + 3, prove that n? + 2" is composite.

[Hint: Show that either 2 or 3 divides n? + 2".]
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14. It has been conjectured that every even integer can be written as the difference of two
consecutive primes in infinitely many ways. For example,

6=29-23=137-131=599-593 =1019 - 1013 = ---

Express the integer 10 as the difference of two consecutive primes in 15 ways.

15. Prove that a positive integer a > 1 is a square if and only if in the canonical form of a
all the exponents of the primes are even integers.

16. Aninteger is said to be square-free if it is not divisible by the square of any integer greater
than 1. Prove the following:

(a) An integer n > 1 is square-free if and only if n can be factored into a product of
distinct primes.

(b) Every integer n > 1 is the product of a square-free integer and a perfect square.
[Hint: If n = plf‘ p’zc"’ -+ p%& is the canonical factorization of n, then write k; =
2g; + r; where r; = 0 or 1 according as k; is even or odd.]

17. Verify that any integer n can be expressed as n = 2m, where k > 0 and m is an odd
integer.
18. Numerical evidence makes it plausible that there are infinitely many primes p such that

p + 50 is also prime. List 15 of these primes.

19. A positive integer # is called square-full, or powerful, if p? | n for every prime factor p
of n (there are 992 square-full numbers less than 250,000). If n is square-full, show that
it can be written in the form n = a%b?, with a and b positive integers.

3.2 THE SIEVE OF ERATOSTHENES

Given a particular integer, how can we determine whether it is prime or composite
and, in the latter case, how can we actually find a nontrivial divisor? The most
obvious approach consists of successively dividing the integer in question by each
of the numbers preceding it; if none of them (except 1) serves as a divisor, then the
integer must be prime. Although this method is very simple to describe, it cannot
be regarded as useful in practice. For even if one is undaunted by large calculations,
the amount of time and work involved may be prohibitive.

There is a property of composite numbers that allows us to reduce materially
the necessary computations—but still the process remains cumbersome. If an in-
teger a > 1 is composite, then it may be written as a = bc, where 1 < b < a and
1 < ¢ < a. Assuming that b < ¢, we get b> < bc = a, and so b < ,/a. Because
b > 1, Theorem 3.2 ensures that b has at least one prime factor p. Then p < b < \/a;
furthermore, because p | b and b | a, it follows that p | a. The point is simply this: a
composite number a will always possess a prime divisor p satisfying p < \/a.

In testing the primality of a specific integer a > 1, it therefore suffices to divide
a by those primes not exceeding +/a (presuming, of course, the availability of a
list of primes up to 4/a). This may be clarified by considering the integer a = 509.
Inasmuch as 22 < 4/509 < 23, we need only try out the primes that are not larger
than 22 as possible divisors, namely, the primes 2, 3, 5, 7, 11, 13, 17, 19. Dividing
509 by each of these, in turn, we find that none serves as a divisor of 509. The
conclusion is that 509 must be a prime number.
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Example 3.1. The foregoing technique provides a practical means for determining the
canonical form of an integer, say a = 2093. Because 45 < /2093 < 46, it is enough
to examine the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43. By trial, the
first of these to divide 2093 is 7, and 2093 = 7 - 299. As regards the integer 299, the
seven primes that are less than 18 (note that 17 < +/299 < 18)are 2,3,5,7,11,13,17.
The first prime divisor of 299 is 13 and, carrying out the required division, we obtain
299 = 13 - 23. But 23 is itself a prime, whence 2093 has exactly three prime factors,
7,13, and 23:

2093 =7-13-23

Another Greek mathematician whose work in number theory remains significant
is Eratosthenes of Cyrene (276—194 B.C.). Although posterity remembers him mainly
as the director of the world-famous library at Alexandria, Eratosthenes was gifted in
all branches of learning, if not of first rank in any; in his own day, he was nicknamed
“Beta” because, it was said, he stood at least second in every field. Perhaps the
most impressive feat of Eratosthenes was the accurate measurement of the earth’s
circumference by a simple application of Euclidean geometry.

We have seen that if an integer a > 1 is not divisible by any prime p < ./a,
then a is of necessity a prime. Eratosthenes used this fact as the basis of a clever
technique, called the Sieve of Eratosthenes, for finding all primes below a given
integer n. The scheme calls for writing down the integers from 2 to n in their
natural order and then systematically eliminating all the composite numbers by
striking out all multiples 2p, 3p, 4p, 5p, ... of the primes p < ./n. The in-
tegers that are left on the list—those that do not fall through the “sieve”—are
primes.

To see an example of how this works, suppose that we wish to find all primes
not exceeding 100. Consider the sequence of consecutive integers 2, 3, 4, . ..,100.
Recognizing that 2 is a prime, we begin by crossing out all even integers from our
listing, except 2 itself. The first of the remaining integers is 3, which must be a
prime. We keep 3, but strike out all higher multiples of 3, so that 9, 15, 21, ... are
now removed (the even multiples of 3 having been removed in the previous step).
The smallest integer after 3 that has not yet been deleted is 5. It is not divisible by
either 2 or 3—otherwise it would have been crossed out—hence, it is also a prime.
All proper multiples of 5 being composite numbers, we next remove 10, 15, 20, . ..
(some of these are, of course, already missing), while retaining 5 itself. The first
surviving integer 7 is a prime, for it is not divisible by 2, 3, or 5, the only primes
that precede it. After eliminating the proper multiples of 7, the largest prime less
than 4/ 100 = 10, all composite integers in the sequence 2, 3, 4, . ..,100 have fallen
through the sieve. The positive integers that remain, to wit, 2, 3,5, 7, 11, 13, 17, 19,
23,29, 31,37,41,43,47,53,59, 61, 67,71,73,79, 83, 89, 97, are all of the primes
less than 100.

The following table represents the result of the completed sieve. The multiples
of 2 are crossed out by \; the multiples of 3 are crossed out by /; the multiples of 5
are crossed out by —; the multiples of 7 are crossed out by ~.
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2 3 % 5 X 7 R 9 313
11 » 13 A 5 N3 17 2 19 2
2¢ 2% 23 X 25 2% 2 A28 29 3¢
31 xR B M 38y ¥ 37 38 39 26
41 2% 43 M 45 26 471 ¥K 49 30
51 % 53 M 55 A& 57 8 59 o6
61 R B & 65 66 67 68 69 2y
71 %73 ™ Fs e A K 79 36
1 R 8 B 8 8 8 8 89 94
21 R 93 5 95 9% 97 A% 99 80

By this point, an obvious question must have occurred to the reader. Is there a
largest prime number, or do the primes go on forever? The answer is to be found
in a remarkably simple proof given by Euclid in Book IX of his Elements. Euclid’s
argument is universally regarded as a model of mathematical elegance. Loosely
speaking, it goes like this: Given any finite list of prime numbers, one can always
find a prime not on the list; hence, the number of primes is infinite. The actual details
appear below.

Theorem 3.4 Euclid. There is an infinite number of primes.

Proof. Euclid’s proof is by contradiction. Let p; =2, p, =3, p3 =5,p4=7,...be
the primes in ascending order, and suppose that there is a last prime, called p,. Now
consider the positive integer

P=pips---pp+1

Because P > 1, we may put Theorem 3.2 to work once again and conclude that P
is divisible by some prime p. But pq, ps, ..., p, are the only prime numbers, so
that p must be equal to one of py, ps, ..., p,. Combining the divisibility relation
plpip2--- p, with p| P,wearrive at p | P — p1ps - - - p, or, equivalently, p | 1. The
only positive divisor of the integer 1 is 1 itself and, because p > 1, a contradiction
arises. Thus, no finite list of primes is complete, whence the number of primes is
infinite.

For a prime p, define p* to be the product of all primes that are less than or equal
to p. Numbers of the form p* + 1 might be termed Euclidean numbers, because they
appear in Euclid’s scheme for proving the infinitude of primes. It is interesting to
note that in forming these integers, the first five, namely,

2% 4+1=24+1=3

¥ 4+1=2-34+1=7
54+1=2-3-54+1=31
T*#F+1=2-3.5-7+1=211
11¥4+1=2-3.5-7-11+1=2311
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are all prime numbers. However,

13* +1 =59 -.509
17%+1=19.97.277
19* + 1 = 347 - 27953

are not prime. A question whose answer is not known is whether there are infinitely
many primes p for which p* + 1 is also prime. For that matter, are there infinitely
many composite p¥ + 1?

At present, 22 primes of the form p* 4 1 have been identified. The first few
correspond to the values p = 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229. The
twenty-second occurs when p = 392113 and consists of 169966 digits. It was found
in 2001.

Euclid’s theorem is too important for us to be content with a single proof. Here
is a variation in the reasoning: Form the infinite sequence of positive integers

n1:2
np=mn;+1

ny =niny + 1
ng = ninyns + 1

Ny =Ny ---Ng_1 + 1

Because each n; > 1, each of these integers is divisible by a prime. But no two
n; can have the same prime divisor. To see this, let d = gcd(n;, n;) and suppose
that i < k. Then d divides n; and, hence, must divide nin, - - - n;_1. Because d | ng,
Theorem 2.2 (g) tells us that d | ny — niny ---nix_; or d | 1. The implication is that
d = 1, and so the integers n;(k = 1, 2, .. .) are pairwise relatively prime. The point
we wish to make is that there are as many distinct primes as there are integers ny,
namely, infinitely many of them.

Let p, denote the nth of the prime numbers in their natural order. Euclid’s proof
shows that the expression p;p; - - - p, + 1 is divisible by at least one prime. If there
are several such prime divisors, then p,,; cannot exceed the smallest of these so
that p, 11 < p1p2--- pn + 1 forn > 1. Another way of saying the same thing is that

Pn§P1P2"'pn—1+1 nZ2

With a slight modification of Euclid’s reasoning, this inequality can be improved to
give

Pn < pP1p2- - Pn1—1 n=>3
For instance, when n = 5, this tells us that

11=ps<2-3.-5-7—1=209
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We can see that the estimate is rather extravagant. A sharper limitation on the size
of p, is given by Bonse’s inequality, which states that

P,21<P1P2"'pn—1 n>35

This inequality yields pg < 210, or ps < 14. A somewhat better size-estimate for
ps comes from the inequality

Pm=<pap3s---Pn—2 n=3
Here, we obtain

P5s<Pe<pp3—2=3-5—-2=13

To approximate the size of p, from these formulas, it is necessary to know the
values of py, pa, ..., psn—1. For a bound in which the preceding primes do not enter
the picture, we have the following theorem.

Theorem 3.5. If p, is the nth prime number, then p, < 2% .

Proof. Let us proceed by induction on n, the asserted inequality being clearly true
when n = 1. As the hypothesis of the induction, we assume that n > 1 and that the
result holds for all integers up to n. Then
Pny1 = p1p2---Pp+ 1

<2.22...027" 41 = 242244277 1

Recalling the identity 1 + 2 4+ 2% 4 ... 4 2""1 = 2" — 1, we obtain
Prt1 <2771 41
However, 1 < 22"~ for all n; whence
D1 < 221 4221
— G 22"—1 — 22”

completing the induction step, and the argument.

There is a corollary to Theorem 3.5 that is of interest.

Corollary. For n > 1, there are at least n + 1 primes less than 22",

Proof. From the theorem, we know that py, p,, ..., p.41 are all less than 22",

We can do considerably better than is indicated by Theorem 3.5. In 1845, Joseph
Bertrand conjectured that the prime numbers are well distributed in the sense that
between n > 2 and 2n there is at least one prime. He was unable to establish his con-
jecture, but verified it for all n < 3,000,000. (One way of achieving this is to consider
a sequence of primes 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, 9973,
19937, 39869, 79699, 159389, ... each of which is less than twice the preceding.)
Because it takes some real effort to substantiate this famous conjecture, let us content
ourselves with saying that the first proof was carried out by the Russian mathemati-
cian P. L. Tchebycheff in 1852. Granting the result, it is not difficult to show that

o 27 n>?2
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and as a direct consequence, p, 1 < 2p, for n > 2. In particular,
11=ps<2-ps=14

To see that p, < 2", we argue by induction on n. Clearly, p, = 3 < 22 so that
the inequality is true here. Now assume that the inequality holds for an integer n,
whence p, < 2". Invoking Bertrand’s conjecture, there exists a prime number p
satisfying 2" < p < 2"*!;thatis, p, < p. This immediately leads to the conclusion
that p,,1 < p < 2"*!, which completes the induction and the proof.

Primes of special form have been of perennial interest. Among these, the repunit
primes are outstanding in their simplicity. A repunit is an integer written (in decimal
notation) as a string of 1’s, such as 11, 111, or 1111. Each such integer must have
the form (10" — 1)/9. We use the symbol R, to denote the repunit consisting of
n consecutive 1’s. A peculiar feature of these numbers is the apparent scarcity of
primes among them. So far, Ol‘lly R2, R19, R23, R317, R1031, R49081, R86453’ R109297,
and R»70343 have been identified as primes (the last one in 2007). It is known that the
only possible repunit primes R, foralln < 49000 are the nine numbers justindicated.
No conjecture has been made as to the existence of any others. For a repunit R, to
be prime, the subscript n» must be a prime; that this is not a sufficient condition is
shown by

Rs =11111 =41 -271 R7 = 1111111 = 239 - 4649

PROBLEMS 3.2

1. Determine whether the integer 701 is prime by testing all primes p < +/701 as possible
divisors. Do the same for the integer 1009.

2. Employing the Sieve of Eratosthenes, obtain all the primes between 100 and 200.

3. Giventhat p [ nforall primes p < 3/n, show thatn > 1 is either a prime or the product
of two primes.
[Hint: Assume to the contrary that n contains at least three prime factors.]

4. Establish the following facts:
(a) 4/p is irrational for any prime p.
(b) If a is a positive integer and /a is rational, then ¥/a must be an integer.
(c) Forn > 2, ¥/n is irrational.

[Hint: Use the fact that 2" > n.]

5. Show that any composite three-digit number must have a prime factor less than or equal
to 31.

6. Fill in any missing details in this sketch of a proof of the infinitude of primes: Assume
that there are only finitely many primes, say pi, p2, ..., P». Let A be the product of any
r of these primes and put B = p;p,--- p,/A. Then each p; divides either A or B, but
not both. Because A + B > 1, A + B has a prime divisor different from any of the p,
which is a contradiction.

7. Modify Euclid’s proof that there are infinitely many primes by assuming the existence
of a largest prime p and using the integer N = p! 4 1 to arrive at a contradiction.

8. Give another proof of the infinitude of primes by assuming that there are only finitely many
primes, say pi, p2, ..., Pn, and using the following integer to arrive at a contradiction:

N=pp3-- po+p1p3--pn+---+pip2:- pn-i1
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9. (a) Prove thatif n > 2, then there exists a prime p satisfyingn < p < n!.
[Hint: If n! — 1 is not prime, then it has a prime divisor p; and p < n implies p | n!,
leading to a contradiction.]
(b) For n > 1, show that every prime divisor of n! + 1 is an odd integer that is greater
than n.

10. Let g, be the smallest prime that is strictly greater than P, = p1p> - - - p, + 1. Ithas been
conjectured that the difference g, — (p1p2 - - - pn) is always a prime. Confirm this for the
first five values of n.

11. If p, denotes the nth prime number, put d, = p,+1 — p,. An open question is whether
the equation d,, = d, 4 has infinitely many solutions. Give five solutions.

12. Assuming that p, is the nth prime number, establish each of the following statements:
(@) pp >2n—1forn > 5.

(b) None of the integers P, = p1p2--- p» + 1 is a perfect square.
[Hint: Each P, is of the form 4k + 3 forn > 1.]
(c) The sum

is never an integer.
13. For the repunits R,, verify the assertions below:
(@) If n | m, then R, | R,,,.
[Hint: If m = kn, consider the identity

xm 1= (xn _ 1)(x(k—1)n + x(k—2)n 44 x" + 1)]

(b) Ifd | R, and d | Ry, thend | Ry -
[Hint: Show that R, = R,10™ + R,,.]
(c) If gcd(n, m) = 1, then gcd(R,, R,,) = 1.
14. Use the previous problem to obtain the prime factors of the repunit Ry.

3.3 THE GOLDBACH CONJECTURE

Although there is an infinitude of primes, their distribution within the positive inte-
gers 1s most mystifying. Repeatedly in their distribution we find hints or, as it were,
shadows of a pattern; yet an actual pattern amenable to precise description remains
elusive. The difference between consecutive primes can be small, as with the pairs
11 and 13, 17 and 19, or for that matter 1000000000061 and 1000000000063. At
the same time there exist arbitrarily long intervals in the sequence of integers that
are totally devoid of any primes.

It is an unanswered question whether there are infinitely many pairs of twin
primes; that is, pairs of successive odd integers p and p + 2 that are both primes.
Numerical evidence leads us to suspect an affirmative conclusion. Electronic com-
puters have discovered 152891 pairs of twin primes less than 30000000 and 20 pairs
between 10!2 and 1024 10000, which hints at their growing scarcity as the positive
integers increase in magnitude. Many examples of immense twins are known. The
largest twins to date, each 100355 digits long,

65516468355 - 2333333 1 1

were discovered in 2009.
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Consecutive primes not only can be close together, but also can be far apart; that
is, arbitrarily large gaps can occur between consecutive primes. Stated precisely:
Given any positive integer n, there exist n consecutive integers, all of which are
composite. To prove this, we simply need to consider the integers

m+D!'4+2,@n+D!'+3,...,0+ D!+ (n+1)

where (m+ 1)!=m+1)-n---3-2-1. Clearly there are n integers listed, and
they are consecutive. What is important is that each integer is composite. Indeed,
(n + 1)! 4 2 is divisible by 2, (n 4+ 1)! + 3 is divisible by 3, and so on.

For instance, if a sequence of four consecutive composite integers is desired,
then the previous argument produces 122, 123, 124, and 125:

5142=122=2-61
5143 =123=3-41
5144=124=4.31
5145=125=5-25

Of course, we can find other sets of four consecutive composites, such as 24, 25, 26,
27 or 32, 33, 34, 35.

As this example suggests, our procedure for constructing gaps between two con-
secutive primes gives a gross overestimate of where they occur among the integers.
The first occurrences of prime gaps of specific lengths, where all the intervening inte-
gers are composite, have been the subject of computer searches. For instance, there is
a gap of length 778 (thatis, p,,1 — p, = 778) following the prime 42842283925351.
No gap of this size exists between two smaller primes. The largest effectively cal-
culated gap between consecutive prime numbers has length 1442, with a string of
1441 composites immediately after the prime

804212830686677669

Interestingly, computer researchers have not identified gaps of every possible width
up to 1442. The smallest missing gap size is 796. The conjecture is that there is a
prime gap (a string of 2k — 1 consecutive composites between two primes) for every
even integer 2k.

This brings us to another unsolved problem concerning the primes, the Gold-
bach conjecture. In a letter to Leonhard Euler in the year 1742, Christian Goldbach
hazarded the guess that every even integer is the sum of two numbers that are either
primes or 1. A somewhat more general formulation is that every even integer greater
than 4 can be written as a sum of two odd prime numbers. This is easy to confirm
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for the first few even integers:

2=1+1

4=242=1+43

6=3+3=1+45

8=34+5=1+7
10=34+7=5+5
12=54+7=1+11
14=3+11=7+7=1+13
16=3+13=5+11
18=54+13=74+11=1+17
20=3+17=74+13=1+19
22=34+19=5+17=11+11
24=54+19=74+17=114+13=1+23
26=34+23=7+19=134+13
28=5+23=11+17
30=74+23=114+19=13+17=14+29

Although it seems that Euler never tried to prove the result, upon writing to Goldbach
at a later date, Euler countered with a conjecture of his own: Any even integer (> 6)
of the form 4n + 2 is a sum of two numbers each being either a prime of the form
4n 4+ 1or 1.

The numerical data suggesting the truth of Goldbach’s conjecture are over-
whelming. It has been verified by computers for all even integers less than 4 - 1014,
As the integers become larger, the number of different ways in which 2n can be
expressed as the sum of two primes increases. For example, there are 291400 such
representations for the even integer 100000000. Although this supports the feeling
that Goldbach was correct in his conjecture, it is far from a mathematical proof,
and all attempts to obtain a proof have been completely unsuccessful. One of the
most famous number theorists of the last century, G. H. Hardy, in his address to the
Mathematical Society of Copenhagen in 1921, stated that the Goldbach conjecture
appeared “probably as difficult as any of the unsolved problems in mathematics.” It
is currently known that every even integer is the sum of six or fewer primes.

We remark that if the conjecture of Goldbach is true, then each odd number
larger than 7 must be the sum of three odd primes. To see this, take n to be an odd
integer greater than 7, so that n — 3 is even and greater than 4; if n — 3 could be
expressed as the sum of two odd primes, then n would be the sum of three.

The first real progress on the conjecture in nearly 200 years was made by Hardy
and Littlewood in 1922. On the basis of a certain unproved hypothesis, the so-
called generalized Riemann hypothesis, they showed that every sufficiently large
odd number is the sum of three odd primes. In 1937, the Russian mathematician
I. M. Vinogradov was able to remove the dependence on the generalized Riemann
hypothesis, thereby giving an unconditional proof of this result; that is to say, he
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established that all odd integers greater than some effectively computable ny can be
written as the sum of three odd primes.

n=p+p2+p3 (n odd, n sufficiently large)

Vinogradov was unable to decide how large n(y should be, but Borozdkin (1956)
proved that ng < 33" In 2002, the bound on n( was reduced to 1013, It follows
immediately that every even integer from some point on is the sum of either two
or four primes. Thus, it is enough to answer the question for every odd integer n
in the range 9 < n < n¢, which, for a given integer, becomes a matter of tedious
computation (unfortunately, n( is so large that this exceeds the capabilities of the
most modern electronic computers).

Because of the strong evidence in favor of the famous Goldbach conjecture, we
readily become convinced that it is true. Nevertheless, it might be false. Vinogradov
showed that if A(x) is the number of even integers n < x that are not the sum of two
primes, then

Iim A(x)/x =0
X—>00

This allows us to say that “almost all” even integers satisfy the conjecture. As Edmund
Landau so aptly put it, “The Goldbach conjecture is false for at most 0% of all even
integers; this at most 0% does not exclude, of course, the possibility that there are
infinitely many exceptions.”

Having digressed somewhat, let us observe that according to the Division Al-
gorithm, every positive integer can be written uniquely in one of the forms

4n dn + 1 dn + 2 4dn 4+ 3

for some suitable n > 0. Clearly, the integers 4n and 4n + 2 = 2(2n + 1) are both
even. Thus, all odd integers fall into two progressions: one containing integers of
the form 4n + 1, and the other containing integers of the form 4n + 3.

The question arises as to how these two types of primes are distributed within the
set of positive integers. Let us display the first few odd prime numbers in consecutive
order, putting the 4n + 3 primes in the top row and the 4n + 1 primes under them:

3 7 11 19 23 31 43 47 59 67 71 79 83
5 13 17 29 37 41 53 61 73 89

At this point, one might have the general impression that primes of the form
4n + 3 are more abundant than are those of the form 4n 4 1. To obtain more precise
information, we require the help of the function 7, ;(x), which counts the number
of primes of the form p = an 4 b not exceeding x. Our small table, for instance,
indicates that 74 1(89) = 10 and 74 3(89) = 13.

In a famous letter written in 1853, Tchebycheff remarked that 74 1(x) < w4 3(x)
for small values of x. He also implied that he had a proof that the inequality always
held. In 1914, J. E. Littlewood showed that the inequality fails infinitely often, but
his method gave no indication of the value of x for which this first happens. It turned
out to be quite difficult to find. Not until 1957 did a computer search reveal that
x = 26861 is the smallest prime for which 74 1(x) > w4 3(x); here, 4 1(x) = 1473
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and m4 3(x) = 1472. This is an isolated situation, because the next prime at which a
reversal occurs is x = 616,841. Remarkably, 74 1(x) > m4 3(x) for the 410 million
successive integers x lying between 18540000000 and 18950000000.

The behavior of primes of the form 3n £ 1 provided more of a computa-
tional challenge: the inequality 73 ;(x) < m32(x) holds for all x until one reaches
x = 608981813029.

This furnishes a pleasant opportunity for a repeat performance of Euclid’s
method for proving the existence of an infinitude of primes. A slight modifica-
tion of his argument reveals that there is an infinite number of primes of the form
4n + 3. We approach the proof through a simple lemma.

Lemma. The product of two or more integers of the form 4n 4 1 is of the same form.

Proof. 1tis sufficient to consider the product of just two integers. Letus take k = 4n + 1
and k' = 4m + 1. Multiplying these together, we obtain

kk' = (4n + D(dm + 1)
=16nm+4n+4m+1=4@nm+n+m)+1

which is of the desired form.

This paves the way for Theorem 3.6.

Theorem 3.6. There are an infinite number of primes of the form 4n + 3.

Proof. In anticipation of a contradiction, let us assume that there exist only finitely
many primes of the form 4n 4 3; call them g, ¢>, . . ., g;. Consider the positive integer

N =4q192---qs =1 =Hq192---¢s = D +3

and let N = ryr, - - - r; be its prime factorization. Because N is an odd integer, we have
rr # 2 for all k, so that each ry is either of the form 4n + 1 or 4n + 3. By the lemma,
the product of any number of primes of the form 4n 4 1 is again an integer of this type.
For N to take the form 4n + 3, as it clearly does, N must contain at least one prime
factor r; of the form 4n + 3. But r; cannot be found among the listing ¢, ¢», . . ., gs,
for this would lead to the contradiction that r; | 1. The only possible conclusion is that
there are infinitely many primes of the form 4n + 3.

Having just seen that there are infinitely many primes of the form 4n + 3, we
might reasonably ask: Is the number of primes of the form 4n + 1 also infinite? This
answer is likewise in the affirmative, but a demonstration must await the development
of the necessary mathematical machinery. Both these results are special cases of a
remarkable theorem by P. G. L. Dirichlet on primes in arithmetic progressions,
established in 1837. The proof is much too difficult for inclusion here, so that we
must content ourselves with the mere statement.

Theorem 3.7 Dirichlet. If a and b are relatively prime positive integers, then the
arithmetic progression

a,a+b,a+2b,a+3b,...

contains infinitely many primes.
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Dirichlet’s theorem tells us, for instance, that there are infinitely many prime
numbers ending in 999, such as 1999, 100999, 1000999, . .. for these appear in the
arithmetic progression determined by 1000n + 999, where gcd(1000, 999) = 1.

There is no arithmetic progression a, a + b, a + 2b, . . . that consists solely of
prime numbers. To see this, suppose that a + nb = p, where p is a prime. If we put
ny =n-+kpfork =1,2,3,...then the n;th term in the progression is

a+nb=a+ n+kp)b=(a+nb)+kpb=p-+kpb

Because each term on the right-hand side is divisible by p, so is a + nib. In other
words, the progression must contain infinitely many composite numbers.

It was proved in 2008 that there are finite but arbitrarily long arithmetic progres-
sions consisting only of prime numbers (not necessarily consecutive primes). The
longest progression found to date is composed of the 23 primes:

56211383760397 + 44546738095860n 0 <n < 22
The prime factorization of the common difference between the terms is
22.3.5.7-11-13-17-19-23 - 99839

which is divisible by 9699690, the product of the primes less than 23. This takes
place according to Theorem 3.8.

Theorem 3.8. If all the n > 2 terms of the arithmetic progression
p,p+d,p+2d,....,p+m—1)d

are prime numbers, then the common difference d is divisible by every prime g < n.

Proof. Consider a prime number g < n and assume to the contrary that g f d. We
claim that the first g terms of the progression

p,p+d,p+2d,...,p+(q—1d (1)

will leave different remainders when divided by g. Otherwise there exist integers j
and k, with 0 < j < k < g — 1, such that the numbers p + jd and p + kd yield the
same remainder upon division by g. Then ¢ divides their difference (k — j)d. But
gcd(g, d) = 1, and so Euclid’s lemma leads to g | kK — j, which is nonsense in light of
the inequality k — j < ¢q — 1.

Because the ¢ different remainders produced from Eq. (1) are drawn from the
q integers 0, 1,...,q — 1, one of these remainders must be zero. This means that
q|p + td for some t satisfying 0 <t < g — 1. Because of the inequality ¢ < n <
p < p +td, we are forced to conclude that p + td is composite. (If p were less
than 7, one of the terms of the progression would be p + pd = p(1 + d).) With this
contradiction, the proof that g | d is complete.

It has been conjectured that there exist arithmetic progressions of finite (but
otherwise arbitrary) length, composed of consecutive prime numbers. Examples of
such progressions consisting of three and four primes, respectively, are 47, 53, 59,
and 251, 257, 263, 269.

Most recently a sequence of 10 consecutive primes was discovered in which each
term exceeds its predecessor by just 210; the smallest of these primes has 93 digits.
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Finding an arithmetic progression consisting of 11 consecutive primes is likely to
be out of reach for some time. Absent the restriction that the primes involved be
consecutive, strings of 11-term arithmetic progressions are easily located. One such
is

110437 + 13860n 0<n<10

In the interest of completeness, we might mention another famous problem that,
so far, has resisted the most determined attack. For centuries, mathematicians have
sought a simple formula that would yield every prime number or, failing this, a
formula that would produce nothing but primes. At first glance, the request seems
modest enough: find a function f(n) whose domain is, say, the nonnegative integers
and whose range is some infinite subset of the set of all primes. It was widely believed
years ago that the quadratic polynomial

f(n) =n*+n+41

assumed only prime values. This was shown to be false by Euler, in 1772. As
evidenced by the following table, the claim is a correct one forn =0, 1,2, ..., 39.

n f(n) n fn) n f(n)

0 41 14 251 28 853
1 43 15 281 29 911
2 47 16 313 30 971
3 53 17 347 31 1033
4 61 18 383 32 1097
5 71 19 421 33 1163
6 83 20 461 34 1231
7 97 21 503 35 1301
8 113 22 547 36 1373
9 131 23 593 37 1447
10 151 24 641 38 1523
11 173 25 691 39 1601
12 197 26 743
13 223 27 797

However, this provocative conjecture is shattered in the cases n = 40 and n = 41,
where there is a factor of 41:

£(40) = 40 - 41 + 41 = 412
and
f(41)=41-42+41=41-43

The next value f(42) = 1847 turns out to be prime once again. In fact, for the
first 100 integer values of n, the so-called Euler polynomial represents 86 primes.
Although it starts off very well in the production of primes, there are other quadratics
such as

g(n) = n® 4+ n + 27941
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that begin to best f(n) as the values of n become larger. For example, g(n) is prime
for 286129 values of 0 < n < 10%, whereas its famous rival yields 261081 primes
in this range.

It has been shown that no polynomial of the form n? + n + g, with ¢ a prime,
can do better than the Euler polynomial in giving primes for successive values of n.
Indeed, until fairly recently no other quadratic polynomial of any kind was known
to produce more than 40 successive prime values. The polynomial

h(n) = 103n% — 3945n + 34381

found in 1988, produces 43 distinct prime valuesforn = 0, 1, 2, ..., 42. The current
record holder in this regard

k(n) = 36n% — 810n + 2753

does slightly better by giving a string of 45 prime values.

The failure of the previous functions to be prime-producing is no accident,
for it is easy to prove that there is no nonconstant polynomial f(n) with integral
coefficients that takes on just prime values for integral n > 0. We assume that such
a polynomial f(n) actually does exist and argue until a contradiction is reached. Let

f(n)= aknk + ak_1nk_l o R a2n2 +ain+ap

where all the coefficients ay, ay, . . ., a; are integers, and a; # 0. For a fixed value of
(no), p = f(np)is a prime number. Now, for any integer ¢, we consider the following
expression:

f(no+tp) = arlng + tp)* + -+ - + ar(ng + tp) + ag
= (akng + - -+ +aino + ao) + pO(t)
= f(no) + pQ()
=p+p0@®) =p(l+0@))

where Q(¢) is a polynomial in ¢ having integral coefficients. Our reasoning shows
that p | f(no + tp); hence, from our own assumption that f(n) takes on only prime
values, f(no + tp) = p for any integer ¢. Because a polynomial of degree k can-
not assume the same value more than k times, we have obtained the required
contradiction.

Recent years have seen a measure of success in the search for prime-producing
functions. W. H. Mills proved (1947) that there exists a positive real number r such
that the expression f(n) = [r3"] is prime for n = 1, 2, 3, ... (the brackets indicate
the greatest integer function). Needless to say, this is strictly an existence theorem
and nothing is known about the actual value of r. Mills’s function does not produce
all the primes.

There are several celebrated, still unresolved, conjectures about primes. One
posed by G. H. Hardy and J. E. Littlewood in 1922 asks whether there are infinitely
many primes that can be represented in the form n? + 1. The closest thing to an
answer, so far, came in 1978 when it was proved that there are infinitely many values
of n for which n? + 1 is either a prime or the product of just two primes. One can
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start to see this for the smallest values

224+41=5 5241=2-13 924+1=2.41
324+1=2.5 624+1=237 102+ 1 =101
£241=17 8 +1=5-31

PROBLEMS 3.3

[

& W

10.

11.

12.

13.

14.

15.

16.

. Verify that the integers 1949 and 1951 are twin primes.

(a) If 1 is added to a product of twin primes, prove that a perfect square is always

obtained.

(b) Show that the sum of twin primes p and p + 2 is divisible by 12, provided that p > 3.

. Find all pairs of primes p and ¢ satisfying p — g = 3.

Sylvester (1896) rephrased the Goldbach conjecture: Every even integer 2n greater than

4 is the sum of two primes, one larger than n/2 and the other less than 3n /2. Verify this

version of the conjecture for all even integers between 6 and 76.

. In 1752, Goldbach submitted the following conjecture to Euler: Every odd integer can

be written in the form p 4 2a?, where p is either a prime or 1 and a > 0. Show that the

integer 5777 refutes this conjecture.

Prove that the Goldbach conjecture that every even integer greater than 2 is the sum of

two primes is equivalent to the statement that every integer greater than 5 is the sum of

three primes.

[Hint: If2n — 2 = p1 + pa, then2n = p; + po +2and 2n + 1 = p; + p> + 3.]

. A conjecture of Lagrange (1775) asserts that every odd integer greater than 5 can be
written as a sum p; + 2p,, where p;, p, are both primes. Confirm this for all odd
integers through 75.

. Given a positive integer n, it can be shown that there exists an even integer a that is

representable as the sum of two odd primes in n different ways. Confirm that the integers

60, 78, and 84 can be written as the sum of two primes in six, seven, and eight ways,

respectively.

(a) For n > 3, show that the integers n, n + 2, n + 4 cannot all be prime.

(b) Three integers p, p + 2, p + 6, which are all prime, are called a prime-triplet. Find

five sets of prime-triplets.

Establish that the sequence

m+D! =2+ 1! =3,...,(n+ D —(@m+1)

produces n consecutive composite integers for n > 2.

Find the smallest positive integer n for which the function f(n) = n® + n + 17 is com-
posite. Do the same for the functions g(n) = n? + 21n + 1 and h(n) = 3n% + 3n + 23.
Let p, denote the nth prime number. For n > 3, prove that p,zl +3 < PnPn+1Pn+2-

[Hint: Note that pZ, 5 < 4p2., < 8Pnt1Pni2.]

Apply the same method of proof as in Theorem 3.6 to show that there are infinitely many
primes of the form 6n + 5.

Find a prime divisor of the integer N = 4(3 - 7 - 11) — 1 of the form 4n + 3. Do the same
forN =43-7-11-15) - 1.

Another unanswered question is whether there exists an infinite number of sets of five
consecutive odd integers of which four are primes. Find five such sets of integers.

Let the sequence of primes, with 1 adjoined, be denoted by py = 1, p; =2, p, = 3,
p3 =35, ....Foreachn > 1, it is known that there exists a suitable choice of coefficients
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€ = £1 such that

2n—2 2n—1

Pon = Pam—1+ Z €k Dk Dont+1 = 2pon + Z €1 Pk
k=0 k=0

To illustrate:
L3 ="1-E2i— 3 — 5 -
and
17=1+2-3-5+7-11+2-13

Determine similar representations for the primes 23, 29, 31, and 37.

In 1848, de Polignac claimed that every odd integer is the sum of a prime and a power of
2. For example, 55 = 47 + 23 = 23 + 25. Show that the integers 509 and 877 discredit
this claim.

(a) If p is a prime and p f b, prove that in the arithmetic progression

a,a+b,a+2b,a+3b,...

every pth term is divisible by p.
[Hint: Because gcd(p, b) = 1, there exist integers r and s satisfying pr + bs = 1.
Putny = kp —as fork = 1,2, ... and show that p | (@ + nib).]
(b) From part (a), conclude that if b is an odd integer, then every other term in the
indicated progression is even.
In 1950, it was proved that any integer n > 9 can be written as a sum of distinct odd
primes. Express the integers 25, 69, 81, and 125 in this fashion.
If p and p? + 8 are both prime numbers, prove that p3 + 4 is also prime.
(a) For any integer k > 0, establish that the arithmetic progression

a+b,a+2b,a+3b,...

where gcd(a, b) = 1, contains k consecutive terms that are composite.
[Hint: Putn = (a + b)(a + 2b) - - - (a + kb) and consider the k terms a + (n + 1)b,
a+m+2)b,...,a+(n+k)b.]

(b) Find five consecutive composite terms in the arithmetic progression

6, 11, 16, 21, 26, 31, 36, ...

Show that 13 is the largest prime that can divide two successive integers of the form

n?+3.

(a) The arithmetic mean of the twin primes 5 and 7 is the triangular number 6. Are there
any other twin primes with a triangular mean?

(b) The arithmetic mean of the twin primes 3 and 5 is the perfect square 4. Are there any
other twin primes with a square mean?

Determine all twin primes p and ¢ = p + 2 for which pg — 2 is also prime.

Let p, denote the nth prime. For n > 3, show that

Pn<Ppr+p2+t-+ P

[Hint: Use induction and the Bertrand conjecture.]

Verify the following:

(a) There exist infinitely many primes ending in 33, such as 233, 433, 733, 1033, ....
[Hint: Apply Dirichlet’s theorem.]
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(b) There exist infinitely many primes that do not belong to any pair of twin primes.
[Hint: Consider the arithmetic progression 21k + 5Sfork =1,2,....]

(c) There exists a prime ending in as many consecutive 1’s as desired.
[Hint: To obtain a prime ending in n consecutive 1’s, consider the arithmetic pro-
gression 10"k + R, fork =1,2,....]

(d) There exist infinitely many primes that contain but do not end in the block of digits
123456789.
[Hint: Consider the arithmetic progression 10!k + 1234567891 fork = 1,2, ... .]

Prove that for every n > 2 there exists a prime p with p <n < 2p.

[Hint: In the case where n = 2k + 1, then by the Bertrand conjecture there exists a prime

psuchthatk < p < 2k.]

(a) If n > 1, show that n! is never a perfect square.

(b) Find the values of n > 1 for which

n!'+ @+ D!+ +2)!

is a perfect square.
[Hint: Note thatn! + (n + 1)! + (n + 2)! = n!(n + 2)*]



