CHAPTER

2

DIVISIBILITY THEORY IN THE INTEGERS

Integral numbers are the fountainhead of all mathematics.
H. MINKOWSKI

2.1 EARLY NUMBER THEORY

Before becoming weighted down with detail, we should say a few words about
the origin of number theory. The theory of numbers is one of the oldest branches
of mathematics; an enthusiast, by stretching a point here and there, could extend
its roots back to a surprisingly remote date. Although it seems probable that the
Greeks were largely indebted to the Babylonians and ancient Egyptians for a core
of information about the properties of the natural numbers, the first rudiments of an
actual theory are generally credited to Pythagoras and his disciples.

Our knowledge of the life of Pythagoras is scanty, and little can be said with any
certainty. According to the best estimates, he was born between 580 and 562 B.C. on
the Aegean island of Samos. It seems that he studied not only in Egypt, but may even
have extended his journeys as far east as Babylonia. When Pythagoras reappeared
after years of wandering, he sought out a favorable place for a school and finally
settled upon Croton, a prosperous Greek settlement on the heel of the Italian boot.
The school concentrated on four mathemata, or subjects of study: arithmetica (arith-
metic, in the sense of number theory, rather than the art of calculating), harmonia
(music), geometria (geometry), and astrologia (astronomy). This fourfold division
of knowledge became known in the Middle Ages as the quadrivium, to which was
added the trivium of logic, grammar, and rhetoric. These seven liberal arts came to
be looked upon as the necessary course of study for an educated person.
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14 ELEMENTARY NUMBER THEORY

Pythagoras divided those who attended his lectures into two groups: the Pro-
bationers (or listeners) and the Pythagoreans. After three years in the first class, a
listener could be initiated into the second class, to whom were confided the main
discoveries of the school. The Pythagoreans were a closely knit brotherhood, hold-
ing all worldly goods in common and bound by an oath not to reveal the founder’s
secrets. Legend has it that a talkative Pythagorean was drowned in a shipwreck as
the gods’ punishment for publicly boasting that he had added the dodecahedron to
the number of regular solids enumerated by Pythagoras. For a time, the autocratic
Pythagoreans succeeded in dominating the local government in Croton, but a pop-
ular revolt in 501 B.C. led to the murder of many of its prominent members, and
Pythagoras himself was killed shortly thereafter. Although the political influence of
the Pythagoreans thus was destroyed, they continued to exist for at least two centuries
more as a philosophical and mathematical society. To the end, they remained a secret
order, publishing nothing and, with noble self-denial, ascribing all their discoveries
to the Master.

The Pythagoreans believed that the key to an explanation of the universe lay in
number and form, their general thesis being that “Everything is Number.” (By num-
ber, they meant, of course, a positive integer.) For a rational understanding of nature,
they considered it sufficient to analyze the properties of certain numbers. Pythagoras
himself, we are told “seems to have attached supreme importance to the study of
arithmetic, which he advanced and took out of the realm of commercial utility.”

The Pythagorean doctrine is a curious mixture of cosmic philosophy and number
mysticism, a sort of supernumerology that assigned to everything material or spiritual
a definite integer. Among their writings, we find that 1 represented reason, for reason
could produce only one consistent body of truth; 2 stood for man and 3 for woman;
4 was the Pythagorean symbol for justice, being the first number that is the product
of equals; 5 was identified with marriage, because it is formed by the union of 2 and
3; and so forth. All the even numbers, after the first one, were capable of separation
into other numbers; hence, they were prolific and were considered as feminine and
earthy—and somewhat less highly regarded in general. Being a predominantly male
society, the Pythagoreans classified the odd numbers, after the first two, as masculine
and divine.

Although these speculations about numbers as models of “things” appear friv-
olous today, it must be borne in mind that the intellectuals of the classical Greek
period were largely absorbed in philosophy and that these same men, because they
had such intellectual interests, were the very ones who were engaged in laying the
foundations for mathematics as a system of thought. To Pythagoras and his followers,
mathematics was largely a means to an end, the end being philosophy. Only with
the founding of the School of Alexandria do we enter a new phase in which the
cultivation of mathematics was pursued for its own sake.

It was at Alexandria, not Athens, that a science of numbers divorced from mystic
philosophy first began to develop. For nearly a thousand years, until its destruction
by the Arabs in 641 A.D., Alexandria stood at the cultural and commercial center of
the Hellenistic world. (After the fall of Alexandria, most of its scholars migrated to
Constantinople. During the next 800 years, while formal learning in the West all but
disappeared, this enclave at Constantinople preserved for us the mathematical works
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of the various Greek schools.) The so-called Alexandrian Museum, a forerunner of
the modern university, brought together the leading poets and scholars of the day;
adjacent to it there was established an enormous library, reputed to hold over 700,000
volumes—hand-copied—at its height. Of all the distinguished names connected with
the museum, that of Euclid (fl. ¢.300 B.C.), founder of the School of Mathematics,
is in a special class. Posterity has come to know him as the author of the Elements,
the oldest Greek treatise on mathematics to reach us in its entirety. The Elements
is a compilation of much of the mathematical knowledge available at that time,
organized into 13 parts or Books, as they are called. The name of Euclid is so often
associated with geometry that one tends to forget that three of the Books—VII, VIII,
and IX—are devoted to number theory.

Euclid’s Elements constitutes one of the great success stories of world literature.
Scarcely any other book save the Bible has been more widely circulated or stud-
ied. Over a thousand editions of it have appeared since the first printed version in
1482, and before its printing, manuscript copies dominated much of the teaching of
mathematics in Western Europe. Unfortunately, no copy of the work has been found
that actually dates from Euclid’s own time; the modern editions are descendants of
a revision prepared by Theon of Alexandria, a commentator of the 4th century A.D.

PROBLEMS 2.1

1. Each of the numbers

1=1,3=14+2,6=14+2+3,10=14+2+3+44,...
represents the number of dots that can be arranged evenly in an equilateral triangle:

This led the ancient Greeks to call a number triangular if it is the sum of consecutive

integers, beginning with 1. Prove the following facts concerning triangular numbers:

(a) A number is triangular if and only if it is of the form n(n + 1)/2 for some n > 1.
(Pythagoras, circa 550 B.C.)

(b) Theintegern is a triangular number if and only if 8n + 1 is a perfect square. (Plutarch,
circa 100 AD))

(c) The sum of any two consecutive triangular numbers is a perfect square. (Nicomachus,
circa 100 AD))

(d) If n is a triangular number, then so are 9n + 1, 251 + 3, and 49n + 6. (Euler, 1775)

2. If ¢, denotes the nth triangular number, prove that in terms of the binomial coefficients,

tn:(n-51> n>1

3. Derive the following formula for the sum of triangular numbers, attributed to the Hindu
mathematician Aryabhata (circa 500 A.D.):

_nn+1)(n+2)
B 6

[Hint: Group the terms on the left-hand side in pairs, noting the identity #;_; + t; = k2.]

h+bh+B+--+1, >1
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. Prove that the square of any odd multiple of 3 is the difference of two triangular numbers;

specifically, that

92n + 1)* = ton4s — B3nt1

. In the sequence of triangular numbers, find the following:

(a) Two triangular numbers whose sum and difference are also triangular numbers.
(b) Three successive triangular numbers whose product is a perfect square.
(c) Three successive triangular numbers whose sum is a perfect square.

. (a) If the triangular number ¢, is a perfect square, prove that #4,(,+1) 1s also a square.

(b) Use part (a) to find three examples of squares that are also triangular numbers.

. Show that the difference between the squares of two consecutive triangular numbers is

always a cube.

. Prove that the sum of the reciprocals of the first n triangular numbers is less than 2; that
is,
! + ! + ! + ! 000 g ! 2
— — — — 000 —_<
1 3 6 10 tn
T 2 _ ol 1
[Hint. Obs_erve thfat D = 205 — =i ).]
. (a) Establish the identity ¢, = t, + t,, where
nn+3 nn+3

and n > 1, thereby proving that there are infinitely many triangular numbers that are
the sum of two other such numbers.

(b) Find three examples of triangular numbers that are sums of two other triangular
numbers.

Each of the numbers

,5=144,12=14447,22=1+4+7+10,...

represents the number of dots that can be arranged evenly in a pentagon:

SRS

The ancient Greeks called these pentagonal numbers. If p, denotes the nth pentagonal
number, where p; = 1 and p, = p,—1 + (3n — 2) for n > 2, prove that

n(Bn —1)
n=— > 1

p 5 n

For n > 2, verify the following relations between the pentagonal, square, and triangular
numbers:

(@) Pn = In—1 +n2

(b) Pn = Mpat+n=2t_1+1,
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2.2 THE DIVISION ALGORITHM

We have been exposed to relationships between integers for several pages and, as
yet, not a single divisibility property has been derived. It is time to remedy this
situation. One theorem, the Division Algorithm, acts as the foundation stone upon
which our whole development rests. The result is familiar to most of us; roughly, it
asserts that an integer a can be “divided” by a positive integer b in such a way that
the remainder is smaller than is b. The exact statement of this fact is Theorem 2.1.

Theorem 2.1 Division Algorithm. Given integers a and b, with b > 0, there exist
unique integers g and r satisfying

a=qgb+r O0<r<b
The integers g and r are called, respectively, the quotient and remainder in the division
of a by b.
Proof. We begin by proving that the set
S = {a — xb | x an integer; a — xb > 0}

is nonempty. To do this, it suffices to exhibit a value of x making a — xb nonnegative.
Because the integer » > 1, we have |a |b > | a |, and so

a—(—lal)b=a+|alb>a+|a|>0

For the choice x = —|a |, then,a — xb lies in S. This paves the way for an application
of the Well-Ordering Principle (Chapter 1), from which we infer that the set S contains
a smallest integer; call it . By the definition of S, there exists an integer g satisfying

r=a—gqb 0<r
We argue that r < b. If this were not the case, then r > b and
a—@@+Db=@—-—gb)—b=r—->b>0

The implication is that the integer a — (¢ + 1)b has the proper form to belong to the
set S. Buta — (@ + 1)b =r — b < r, leading to a contradiction of the choice of r as
the smallest member of S. Hence, r < b.

Next we turn to the task of showing the uniqueness of g and r. Suppose that a has
two representations of the desired form, say,

a=qgb+r=qb+r

where 0 <r < b,0 <r’ < b.Thenr’ —r = b(q — q’) and, owing to the fact that the
absolute value of a product is equal to the product of the absolute values,

7' —rl=blqg—q'l

Upon adding the two inequalites —b < —r <0 and 0 <r' < b, we obtain
—b <r' —r < bor, in equivalent terms, |r' —r | < b. Thus, b|q — q'| < b, which
yields

0<lg—q'|l<1

Because | ¢ — ¢’ | is a nonnegative integer, the only possibility is that |g — g’ | = 0,
whence g = ¢'; this, in turn, gives r = r/, ending the proof.
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A more general version of the Division Algorithm is obtained on replacing the
restriction that b must be positive by the simple requirement that b # 0.

Corollary. If a and b are integers, with b # 0, then there exist unique integers ¢ and
r such that
a=qgb+r O<r<|b]
Proof. 1t is enough to consider the case in which b is negative. Then |b| > 0, and
Theorem 2.1 produces unique integers ¢’ and r for which
a=q'|b|+r 0<r<|b]|
Noting that | b | = —b, wemaytakeq = —q'toarriveata = gb + r,withO <r < |b|.

To illustrate the Division Algorithm when b < 0, let us take b = —7. Then, for
the choicesof a = 1, —2, 61, and —59, we obtain the expressions

1=0(-7)+1
~2=1(-7)+5
61 = (—=8)(=7)+5
~59 = 9(~7) + 4

We wish to focus our attention on the applications of the Division Algorithm,
and not so much on the algorithm itself. As a first illustration, note that with b = 2
the possible remainders are r = O andr = 1. Whenr = 0, the integer a has the form
a = 2q and is called even; when r = 1, the integer a has the forma = 2g + 1 and is
called odd. Now a? is either of the form (2g)?> = 4kor (2g + 1> = 4(¢* +q) + 1 =
4k + 1. The point to be made is that the square of an integer leaves the remainder 0
or 1 upon division by 4.

We also can show the following: the square of any odd integer is of the form
8k + 1. For, by the Division Algorithm, any integer is representable as one of the
four forms: 4q,4qg + 1, 4q + 2, 4qg + 3. In this classification, only those integers of
the forms 4g + 1 and 4g + 3 are odd. When the latter are squared, we find that

(4g + 1> =8Q2¢* +q)+1 =8k +1
and similarly
(4g +3% =82¢%>+3g+1)+1=8k+1

As examples, the square of the odd integer 7 is 72 = 49 = 8 - 6 + 1, and the square
of 13is 132 =169 = 8- 21 + 1.

As these remarks indicate, the advantage of the Division Algorithm is that it
allows us to prove assertions about all the integers by considering only a finite
number of cases. Let us illustrate this with one final example.

Example 2.1. We propose to show that the expression a(a® + 2)/3 is an integer for
all @ > 1. According to the Division Algorithm, every a is of the form 3¢, 3g + 1, or
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3g + 2. Assume the first of these cases. Then

a(a*+2)
3
which clearly is an integer. Similarly, if a = 3¢ + 1, then
(g + 1)((3q + 1)* + 2)
3
and a(a® + 2)/3 is an integer in this instance also. Finally, for a = 3¢q + 2, we obtain
(3¢ +2)(3g +2)* +2)
3
an integer once more. Consequently, our result is established in all cases.

=q(9g* +2)

=Bg+1Bg*>+29+1)

= (3q +2)(3¢> + 4q + 2)

PROBLEMS 2.2

1.

2.
3.

=)

9.

10.
11.

Prove that if a and b are integers, with b > 0, then there exist unique integers g and r
satisfying a = gb + r, where 2b < r < 3b.

Show that any integer of the form 6k + 5 is also of the form 3 + 2, but not conversely.
Use the Division Algorithm to establish the following:

(a) The square of any integer is either of the form 3k or 3k + 1.

(b) The cube of any integer has one of the forms: 9%, 9k + 1, or 9k + 8.

(c) The fourth power of any integer is either of the form 5k or 5k + 1.

. Prove that 3a? — 1 is never a perfect square.

[Hint: Problem 3(a).]

. Forn > 1, prove that n(n + 1)(2n + 1)/6 is an integer.

[Hint: By the Division Algorithm, n has one of the forms 6k, 6k + 1, ..., 6k + 5; estab-
lish the result in each of these six cases.]

. Show that the cube of any integer is of the form 7k or 7k + 1.
. Obtain the following version of the Division Algorithm: For integers a and b, with b # 0,

there exist unique integers ¢ and r that satisfy a = gb + r, where —%l bl|<r< %l b|.
[Hint: First writea = ¢'b + r’,where 0 <r’ < |b|.When0 < r’ < %Ibl,letr =r"and
q=q’;when%|b| <r' <|bl,letr=r'"—|b|landqg =q¢'+ 1ifb >00rqg =q' — 1
if b < 0.]

. Prove that no integer in the following sequence is a perfect square:

11,111, 1111, 11111, ...
[Hint: A typical term 111 --- 111 can be written as
111---111 =111---108 + 3 = 4k + 3.]

Verify that if an integer is simultaneously a square and a cube (as is the case with
64 = 82 = 43), then it must be either of the form 7k or 7k + 1.

For n > 1, establish that the integer n(7n® + 5) is of the form 6k.

If n is an odd integer, show that n* + 4n2 + 11 is of the form 16k.

2.3 THE GREATEST COMMON DIVISOR

Of special significance is the case in which the remainder in the Division Algorithm
turns out to be zero. Let us look into this situation now.
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Definition 2.1. An integer b is said to be divisible by an integer a # 0, in symbols
a | b, if there exists some integer ¢ such that b = ac. We write a f b to indicate that b
is not divisible by a.

Thus, for example, —12 is divisible by 4, because —12 = 4(—3). However, 10
is not divisible by 3; for there is no integer ¢ that makes the statement 10 = 3c true.

There is other language for expressing the divisibility relation a | 5. We could
say that a is a divisor of b, that a is a factor of b, or that b is a multiple of a. Notice
that in Definition 2.1 there is a restriction on the divisor a: whenever the notation
a | b is employed, it is understood that a is different from zero.

If a is a divisor of b, then b is also divisible by —a (indeed, b = ac implies that
b = (—a)(—c)), so that the divisors of an integer always occur in pairs. To find all
the divisors of a given integer, it is sufficient to obtain the positive divisors and then
adjoin to them the corresponding negative integers. For this reason, we shall usually
limit ourselves to a consideration of positive divisors.

It will be helpful to list some immediate consequences of Definition 2.1. (The
reader is again reminded that, although not stated, divisors are assumed to be
nonzero.)

Theorem 2.2. For integers a, b, c, the following hold:

@) al0,1|a,a|a.

(b) a|lifand onlyifa = +£1.

(c) Ifa|bandc|d, then ac | bd.

(d) Ifa|band b|c,thena|c.

() a|band b |a if and only if a = +b.

(f) Ifa|band b # 0,then |a| < |b]|.

(g) Ifa|banda |c,thena | (bx + cy) for arbitrary integers x and y.

Proof. We shall prove assertions (f) and (g), leaving the other parts as an exercise. If
a | b, then there exists an integer ¢ such that b = ac; also, b # 0 implies that ¢ # 0.
Upon taking absolute values, we get |b | = |ac| = |a||c|. Because ¢ # 0, it follows
that |[c| > 1, whence |b| = |al|lc| > |a].

As regards (g), the relations a | b and a | c ensure that b = ar and ¢ = as for
suitable integers r and s. But then whatever the choice of x and y,

bx +cy =arx +asy = a(rx + sy)

Because rx + sy is an integer, this says that a | (bx + cy), as desired.

It is worth pointing out that property (g) of Theorem 2.2 extends by induction
to sums of more than two terms. That is, ifa | by fork = 1,2, ..., n, then

al|(bixy + byxy + -+ bpxy,)

for all integers x1, x3, ..., x,. The few details needed for the proof are so straight-
forward that we omit them.

If a and b are arbitrary integers, then an integer d is said to be a common
divisor of a and b if both d |a and d | b. Because 1 is a divisor of every integer,
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1 is a common divisor of a and b; hence, their set of positive common divisors is
nonempty. Now every integer divides zero, so that if a = b = 0, then every integer
serves as a common divisor of a and b. In this instance, the set of positive common
divisors of a and b is infinite. However, when at least one of a or b is different from
zero, there are only a finite number of positive common divisors. Among these, there
is a largest one, called the greatest common divisor of a and b. We frame this as
Definition 2.2.

Definition 2.2. Let a and b be given integers, with at least one of them different from
zero. The greatest common divisor of a and b, denoted by gcd(a, b), is the positive
integer d satisfying the following:

(@) d|aandd | b.
(b) If claand c | b, thenc < d.

Example 2.2. The positive divisors of —12 are 1, 2, 3, 4, 6, 12, whereas those of 30
are 1,2, 3,5, 6, 10, 15, 30; hence, the positive common divisors of —12 and 30 are 1,
2, 3, 6. Because 6 is the largest of these integers, it follows that gcd(—12, 30) = 6. In
the same way, we can show that

gcd(—5,5)=5  gcd(8,17)=1  gcd(—8, —36) = 4
The next theorem indicates that gcd(a, b) can be represented as a linear combi-

nation of a and b. (By a linear combination of a and b, we mean an expression of
the form ax + by, where x and y are integers.) This is illustrated by, say,

ged(—12,30) =6 =(—12)2+30- 1
or
gcd(—8, —36) = 4 = (—8)4 + (—36)(—1)
Now for the theorem.
Theorem 2.3. Given integers a and b, not both of which are zero, there exist integers
x and y such that

gcd(a, b) = ax + by

Proof. Consider the set S of all positive linear combinations of a and b:
S ={au + bv |au + bv > O;u, v integers}

Notice first that S is not empty. For example, ifa # 0, thentheinteger |a | = au + b -0
lies in S, where we choose u = 1 or u = —1 according as a is positive or negative.
By virtue of the Well-Ordering Principle, S must contain a smallest element d. Thus,
from the very definition of S, there exist integers x and y for which d = ax + by. We
claim that d = gcd(a, b).
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Taking stock of the Division Algorithm, we can obtain integers g and r such that
a = qd +r,where 0 < r < d. Then r can be written in the form

r=a—qd =a— q(ax + by)
= a(l —gx) + b(—qy)

If r were positive, then this representation would imply that » is a member of S,
contradicting the fact that d is the least integer in S (recall that » < d). Therefore,
r =0, and so a = qd, or equivalently d | a. By similar reasoning, d | b, the effect of
which is to make d a common divisor of a and b.

Now if ¢ is an arbitrary positive common divisor of the integers a and b, then part
(g) of Theorem 2.2 allows us to conclude that c | (ax + by); that is, ¢ | d. By part (f) of
the same theorem,c = | ¢ | < |d | = d, so thatd is greater than every positive common
divisor of a and b. Piecing the bits of information together, we see that d = gcd(a, b).

It should be noted that the foregoing argument is merely an “existence” proof

and does not provide a practical method for finding the values of x and y. This will
come later.

A perusal of the proof of Theorem 2.3 reveals that the greatest common divisor

of a and b may be described as the smallest positive integer of the form ax + by.
Consider the case in which a = 6 and b = 15. Here, the set S becomes

§={6(-2)+15-1,6(-1)+15-1,6-14+15-0,...}
=1{3,9,6,...}

We observe that 3 is the smallest integer in S, whence 3 = gcd(6, 15).

The nature of the members of S appearing in this illustration suggests another

result, which we give in the next corollary.

Corollary. If a and b are given integers, not both zero, then the set
T = {ax + by | x, y are integers}
is precisely the set of all multiples of d = gcd(a, b).
Proof. Because d |a and d | b, we know that d | (ax + by) for all integers x, y. Thus,

every member of T is a multiple of d. Conversely, d may be written as d = axo + byy
for suitable integers xo and yp, so that any multiple nd of d is of the form

nd = n(axg + byy) = a(nxg) + b(nyo)

Hence, nd is a linear combination of a and b, and, by definition, lies in 7.

It may happen that 1 and —1 are the only common divisors of a given pair of

integers a and b, whence gcd(a, b) = 1. For example:

ged(2, 5) = ged(—9, 16) = ged(—27, —35) =1

This situation occurs often enough to prompt a definition.

Definition 2.3. Twointegers a and b, not both of which are zero, are said to be relatively
prime whenever gcd(a, b) = 1.
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The following theorem characterizes relatively prime integers in terms of linear
combinations.

Theorem 2.4. Leta and b be integers, not both zero. Then a and b are relatively prime
if and only if there exist integers x and y such that 1 = ax + by.

Proof. If a and b are relatively prime so that gcd(a, b) = 1, then Theorem 2.3 guar-
antees the existence of integers x and y satisfying 1 = ax 4 by. As for the converse,
suppose that 1 = ax + by for some choice of x and y, and thatd = gcd(a, b). Because
d|a and d | b, Theorem 2.2 yields d | (ax + by), or d | 1. Inasmuch as d is a positive
integer, this last divisibility condition forces d to equal 1 (part (b) of Theorem 2.2 plays
a role here), and the desired conclusion follows.

This result leads to an observation that is useful in certain situations; namely,
Corollary 1. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

Proof. Before starting with the proof proper, we should observe that although a/d and
b/d have the appearance of fractions, in fact, they are integers because d is a divisor
both of a and of b. Now, knowing that gcd(a, b) = d, it is possible to find integers x
and y such that d = ax + by. Upon dividing each side of this equation by d, we obtain

the expression
1=(5)x+ 2
= — 11X il
d d)’

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The conclu-
sion is that a/d and b/d are relatively prime.

For an illustration of the last corollary, let us observe that gcd(—12, 30) = 6 and
gcd(—12/6,30/6) = ged(—2,5) =1

as it should be.

It is not true, without adding an extra condition, that a | c and b | ¢ together give
ab | c. For instance, 6 | 24 and 8 | 24, but 6 - 8 f 24. If 6 and 8 were relatively prime,
of course, this situation would not arise. This brings us to Corollary 2.

Corollary 2. If a | c and b | ¢, with gcd(a, b) = 1, then ab | c.

Proof. Inasmuch asa | c and b | ¢, integers r and s can be found such thatc = ar = bs.
Now the relation gcd(a, b) = 1 allows us to write 1 = ax + by for some choice of
integers x and y. Multiplying the last equation by c, it appears that

c=c-1=clax + by) =acx + bcy
If the appropriate substitutions are now made on the right-hand side, then
c = a(bs)x + b(ar)y = ab(sx +ry)

or, as a divisibility statement, ab | c.
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Our next result seems mild enough, but is of fundamental importance.
Theorem 2.5 Euclid’s lemma. If a | bc, with gcd(a, b) = 1, thena | c.

Proof. We start again from Theorem 2.3, writing 1 = ax + by, where x and y are
integers. Multiplication of this equation by ¢ produces

c=1-c=(ax + by)c = acx + bcy

Because a |ac and a | bc, it follows that a | (acx + bcy), which can be recast as a | c.

If a and b are not relatively prime, then the conclusion of Euclid’s lemma may

fail to hold. Here is a specific example: 129 - 8,but 12 f 9and 12 f 8.

The subsequent theorem often serves as a definition of gcd(a, b). The advantage

of using it as a definition is that order relationship is not involved. Thus, it may be
used in algebraic systems having no order relation.

Theorem 2.6. Let a, b be integers, not both zero. For a positive integer d,
d = gcd(a, b) if and only if

(@) d|aandd |b.
(b) Whenever c|a and c | b, then c | d.

Proof. To begin, suppose that d = gcd(a, b). Certainly, d |a and d | b, so that (a)
holds. In light of Theorem 2.3, d is expressible as d = ax + by for some integers x, y.
Thus, if ¢ |a and c | b, then ¢ | (ax + by), or rather c | d. In short, condition (b) holds.
Conversely, let d be any positive integer satisfying the stated conditions. Given any
common divisor ¢ of a and b, we have c | d from hypothesis (b). The implication is
that d > c, and consequently d is the greatest common divisor of a and b.

PROBLEMS 2.3

. If a | b, show that (—a) | b, a | (—b), and (—a) | (—b).
. Given integers a, b, c, d, verify the following:

(@) Ifa | b, thena | bc.

(b) Ifa|b and a | c, then a? | bc.

(c) a|bif and only if ac | bc, where ¢ # 0.
(d) Ifa|bandc|d, thenac|bd.

3. Prove or disprove: If a | (b 4 ¢), then eithera |b ora | c.
4. For n > 1, use mathematical induction to establish each of the following divisibility
statements:
(a) 8]5% +17.
[Hint: 526D 417 =525% + )+ (71— 52-7).]
(b) 15|2% —1.

(C) 5 | 33n+1 + 2n+1_
(d) 21|47+ 4 5201,
(e) 24|2-7*+3-5" 5.

. Prove that for any integer a, one of the integers a, a + 2, a + 4 is divisible by 3.
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13.
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17.
18.

19.

20.
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. For an arbitrary integer a, verify the following:

(@) 2|a(a+ 1),and 3|a(a + D(a + 2).
() 3|aa? + 7).
(c) If a is odd, then 32| (a® + 3)(@* + 7).

. Prove that if a and b are both odd integers, then 16 | a* + bt - 2.
. Prove the following:

(a) The sum of the squares of two odd integers cannot be a perfect square.
(b) The product of four consecutive integers is 1 less than a perfect square.

. Establish that the difference of two consecutive cubes is never divisible by 2.
10.
11.

For a nonzero integer a, show that gcd(a, 0) = | a |, gcd(a, a) = | a |, and ged(a, 1) = 1.
If a and b are integers, not both of which are zero, verify that

gcd(a, b) = gcd(—a, b) = ged(a, —b) = ged(—a, —b)

Prove that, for a positive integer n and any integer a, gcd(a, a + n) divides n; hence,
ged(a,a+1)=1.
Given integers a and b, prove the following:
(a) There exist integers x and y for which ¢ = ax + by if and only if gcd(a, b) | c.
(b) If there exist integers x and y for which ax 4+ by = gcd(a, b), then ged(x, y) = 1.
For any integer a, show the following:
(a) ged(2a +1,9a +4) = 1.
(b) gcd(ba +2,7a +3) = 1.
(c) If a is odd, then gcd(3a, 3a + 2) = 1.
If a and b are integers, not both of which are zero, prove that gcd(2a — 3b, 4a — 5b)
divides b; hence, gcd(2a + 3,4a + 5) = 1.
Given an odd integer a, establish that
A +@+2°+@+4*+1

is divisible by 12.
Prove that the expression (3r)!/(3!)" is an integer for all n > 0.
Prove: The product of any three consecutive integers is divisible by 6; the product of any
four consecutive integers is divisible by 24; the product of any five consecutive integers
is divisible by 120.
[Hint: See Corollary 2 to Theorem 2.4.]
Establish each of the assertions below:
(a) If a is an arbitrary integer, then 6 | a(a® + 11).
(b) If a is an odd integer, then 24 | a(a® —1).

[Hint: The square of an odd integer is of the form 8k + 1.]
(c) If a and b are odd integers, then 8 | (a — b?).
(d) If a is an integer not divisible by 2 or 3, then 24 | (a? + 23).
(e) If a is an arbitrary integer, then 360 | a?(a® — 1)(a® — 4).
Confirm the following properties of the greatest common divisor:
(a) If gcd(a, b) = 1, and ged(a, ¢) = 1, then ged(a, be) = 1.

[Hint: Because 1 = ax + by = au + cv for some x, y, u, v,

1 = (ax + by)(au + cv) = a(aux + cvx + byu) + bc(yv).]
(b) If gcd(a, b) =1, and c | a, then gcd(b, c) = 1.
(c) If gcd(a, b) = 1, then ged(ac, b) = ged(c, b).
(d) If gcd(a, b) = 1, and c | a + b, then ged(a, ¢) = ged(b, c) = 1.

[Hint: Letd = ged(a, ¢). Thend |a, d | c implies thatd | (@ + b) — a,ord | b.]
(e) If gcd(a,b) =1,d |ac,and d | bc, thend | c.
(f) If ged(a, b) = 1, then ged(a?, b?) = 1.

[Hint: First show that gcd(a, b*) = gcd(a?, b) = 1.]
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21. (a) Prove thatifd |n, then2? —1]2" — 1.
[Hint: Use the identity
F—l=—-DE 2+ x + 1))

(b) Verify that 233 — 1 is divisible by 31 and 127.
22. Let t, denote the nth triangular number. For what values of n does #, divide the sum

H4+t+--+1,?

[Hint: See Problem 1(c), Section 1.1.]
23. If a | bc, show that a | gcd(a, b) gcd(a, c).

2.4 THE EUCLIDEAN ALGORITHM

The greatest common divisor of two integers can be found by listing all their pos-
itive divisors and choosing the largest one common to each; but this is cumber-
some for large numbers. A more efficient process, involving repeated application
of the Division Algorithm, is given in the seventh book of the Elements. Although
there is historical evidence that this method predates Euclid, today it is referred to
as the Euclidean Algorithm.

The Euclidean Algorithm may be described as follows: Let a and b be two inte-
gers whose greatest common divisor is desired. Because gcd(|a |, | b |) = gcd(a, b),
there is no harm in assuming that a > b > 0. The first step is to apply the Division
Algorithm to a and b to get

a=qb+nr 0<ri<b
If it happens that r{ = 0, then b | a and gcd(a, b) = b. When r; # 0, divide b by r;
to produce integers g, and r, satisfying

b=qri+r2 0=<rn<n
If r, = 0, then we stop; otherwise, proceed as before to obtain

ry=qsry+rs3 0<rs<n

This division process continues until some zero remainder appears, say, at the
(n 4+ 1)th stage where r,_; is divided by r, (a zero remainder occurs sooner or
later because the decreasing sequence b > r; > r, > --- > 0 cannot contain more
than b integers).

The result is the following system of equations:

a=qb+r O<ri<b
b=gqyr1+nr O<rm<n
ry =qsrp+r3 0<r3<r2

Tn—2 =quln—1+1n 0<r, <rp
Tn-1= qn+1Tn + 0

We argue that r,, the last nonzero remainder that appears in this manner, is equal to
gcd(a, b). Our proof is based on the lemma below.

Lemma. If a = gb + r, then gcd(a, b) = ged(b, r).
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Proof. 1If d = gcd(a, b), then the relations d|a and d|b together imply that
d|(a —gb), or d|r. Thus, d is a common divisor of both » and r. On the other
hand, if ¢ is an arbitrary common divisor of » and r, then c|(gb + r), whence
c | a. This makes ¢ a common divisor of a and b, so that ¢ < d. It now follows from
the definition of gcd(b, r) that d = ged(b, r).

Using the result of this lemma, we simply work down the displayed system of
equations, obtaining

gced(a, b) = ged(b, ry)) = - - - = ged(ry,—1, ry) = ged(ry, 0) = 1y

as claimed.

Theorem 2.3 asserts that gcd(a, b) can be expressed in the form ax + by, but the
proof of the theorem gives no hint as to how to determine the integers x and y. For
this, we fall back on the Euclidean Algorithm. Starting with the next-to-last equation
arising from the algorithm, we write

tn =V¥p—2 — 4nltn-1
Now solve the preceding equation in the algorithm for r,,_; and substitute to obtain

rp ="rp—2 — qn(rn—3 - Qn—lrn—Z)
= (1 + ann—l)rn—Z + (_Qn)rn—3

This represents r, as a linear combination of r,,_; and r,_3. Continuing backward
through the system of equations, we successively eliminate the remainders r,_1,
Tn_2,..., 12, r1 until a stage is reached where r, = gcd(a, b) is expressed as a linear
combination of a and b.

Example 2.3. Let us see how the Euclidean Algorithm works in a concrete case
by calculating, say, gcd(12378, 3054). The appropriate applications of the Division
Algorithm produce the equations

12378 = 4 - 3054 + 162
3054 = 18- 162 4 138
162=1-138+24
138=5-24418
24=1-18+6

18=3-640

Our previous discussion tells us that the last nonzero remainder appearing in these
equations, namely, the integer 6, is the greatest common divisor of 12378 and 3054:

6 = gcd(12378, 3054)

To represent 6 as a linear combination of the integers 12378 and 3054, we start with
the next-to-last of the displayed equations and successively eliminate the remainders
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18, 24, 138, and 162:

6=24—18
— 24— (138 — 5-24)
—6-24—138
— 6(162 — 138) — 138
—6-162—7-138
—6-162 —7(3054 — 18 - 162)
= 132-162 — 7 - 3054
= 132(12378 — 4 - 3054) — 7 - 3054
= 132 - 12378 + (—535)3054

Thus, we have
6 = gcd(12378, 3054) = 12378x + 3054y

where x = 132 and y = —535. Note that this is not the only way to express the integer
6 as a linear combination of 12378 and 3054; among other possibilities, we could add
and subtract 3054 - 12378 to get

6 = (132 +3054)12378 + (=535 — 12378)3054
= 3186 - 12378 + (—12913)3054

The French mathematician Gabriel Lamé (1795-1870) proved that the number
of steps required in the Euclidean Algorithm is at most five times the number of
digits in the smaller integer. In Example 2.3, the smaller integer (namely, 3054)
has four digits, so that the total number of divisions cannot be greater than 20; in
actuality only six divisions were needed. Another observation of interest is that for
each n > 0, it is possible to find integers a, and b,, such that exactly n divisions are
required to compute gcd(a,, b,) by the Euclidean Algorithm. We shall prove this
fact in Chapter 14.

One more remark is necessary. The number of steps in the Euclidean Algorithm
usually can be reduced by selecting remainders ri 1 such that | ryy 1 | < /2, thatis,
by working with least absolute remainders in the divisions. Thus, repeating Example
2.3, it is more efficient to write

12378 = 4 - 3054 4 162
3054 =19-162 — 24
162=7-24—-6
24 = (—4)(—6)+0
As evidenced by this set of equations, this scheme is apt to produce the negative of
the value of the greatest common divisor of two integers (the last nonzero remainder

being —6), rather than the greatest common divisor itself.
An important consequence of the Euclidean Algorithm is the following theorem.

Theorem 2.7. If k > 0, then gcd(ka, kb) = k gcd(a, b).
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Proof. If each of the equations appearing in the Euclidean Algorithm for a and b (see
page 28) is multiplied by k, we obtain

ak = q1(bk) + rik 0 < rk < bk

bk = q,(r1k) + rk 0 <nrk <rk

Tn—ok = qu(rn—1k) + rmk 0 <rpk <r,_1k
Tn—1k = qn+1(rnk) + 0

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that
their greatest common divisor is the last nonzero remainder r,,k; that is,

gcd(ka, kb) = ryk = k ged(a, b)

as stated in the theorem.
Corollary. For any integer k # 0, gcd(ka, kb) = | k | gcd(a, b).

Proof. 1t suffices to consider the case in which k¥ < 0. Then —k = | k| > 0 and, by
Theorem 2.7,

gcd(ak, bk) = ged(—ak, —bk)
= ged(a |k, b | k[)
= | k| gcd(a, b)

An alternate proof of Theorem 2.7 runs very quickly as follows: gcd(ak, bk) is
the smallest positive integer of the form (ak)x + (bk)y, which, in turn, is equal to
k times the smallest positive integer of the form ax + by; the latter value is equal to
k gcd(a, b).

By way of illustrating Theorem 2.7, we see that

ged(12,30) = 3 ged(4,10) =3-2gcd(2,5)=6-1=6

There is a concept parallel to that of the greatest common divisor of two integers,
known as their least common multiple; but we shall not have much occasion to make
use of it. An integer c is said to be a common multiple of two nonzero integers a
and b whenever a | ¢ and b | c. Evidently, zero is a common multiple of a and b. To
see there exist common multiples that are not trivial, just note that the products ab
and —(ab) are both common multiples of a and b, and one of these is positive. By
the Well-Ordering Principle, the set of positive common multiples of a and b must
contain a smallest integer; we call it the least common multiple of a and b.

For the record, here is the official definition.

Definition 2.4. The least common multiple of two nonzero integers a and b, denoted
by lem(a, b), is the positive integer m satisfying the following:

(@) a|lmand b |m.
(b) Ifa|cand b |c, withc > 0,thenm < c.



30 ELEMENTARY NUMBER THEORY

As an example, the positive common multiples of the integers —12 and 30 are
60, 120, 180, ...; hence, lcm(—12, 30) = 60.

The following remark is clear from our discussion: given nonzero integers a
and b, Ilcm(a, b) always exists and lcm(a, b) < |ab |.

We lack a relationship between the ideas of greatest common divisor and least
common multiple. This gap is filled by Theorem 2.8.

Theorem 2.8. For positive integers a and b

gcd(a, b) lem(a, b) = ab

Proof. To begin, put d = gcd(a, b) and write a = dr, b = ds for integers r and s. If
m = ab/d,then m = as = rb, the effect of which is to make m a (positive) common
multiple of a and b.

Now let ¢ be any positive integer that is a common multiple of a and b; say,
for definiteness, ¢ = au = bv. As we know, there exist integers x and y satisfying
d = ax + by. In consequence,

m  ab ab b
This equation states that m | ¢, allowing us to conclude that m < c. Thus, in accordance
with Definition 2.4, m = Icm(a, b); that is,

G cd clax +b c G
—u=( ) +( )y=vx+uy

a

lem(a, b) ab ab
a, = 1= —
d gcd(a, b)

which is what we started out to prove.
Theorem 2.8 has a corollary that is worth a separate statement.

Corollary. For any choice of positive integers a and b, lcm(a, b) = ab if and only if
gcd(a, b) = 1.

Perhaps the chief virtue of Theorem 2.8 is that it makes the calculation of the
least common multiple of two integers dependent on the value of their greatest
common divisor—which, in turn, can be calculated from the Euclidean Algorithm.
When considering the positive integers 3054 and 12378, for instance, we found that
gcd(3054, 12378) = 6; whence,

3054 - 12378
lem(3054, 12378) = == = 6300402

Before moving on to other matters, let us observe that the notion of greatest
common divisor can be extended to more than two integers in an obvious way. In the
case of three integers, a, b, c, not all zero, gcd(a, b, c) is defined to be the positive
integer d having the following properties:

(a) d is a divisor of each of a, b, c.
(b) If e divides the integers a, b, ¢, then e < d.
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We cite two examples:

gcd(39,42,54) =3 and gcd(49, 210, 350) =7

The reader is cautioned that it is possible for three integers to be relatively prime as
a triple (in other words, gcd(a, b, ¢) = 1), yet not relatively prime in pairs; this is
brought out by the integers 6, 10, and 15.

PROBLEMS 2.4

1.
2.

=)

e

10.

11.

Find gcd(143, 227), gcd(306, 657), and gcd(272, 1479).

Use the Euclidean Algorithm to obtain integers x and y satisfying the following:
(@) ged(56, 72) = 56x + 72y.

(b) gcd(24, 138) = 24x + 138y.

(c) gcd(119, 272) = 119x + 272y.

(d) gcd(1769, 2378) = 1769x + 2378y.

. Prove that if d is a common divisor of a and b, then d = gcd(a, b) if and only if

gcd(a/d, b/d) = 1.
[Hint: Use Theorem 2.7.]

. Assuming that gcd(a, b) = 1, prove the following:

(a) gcd(a +b,a —b) =1o0r2.
[Hint: Let d = gcd(a + b,a — b) and show that d|2a, d|2b, and thus that
d < gcd(2a, 2b) = 2 ged(a, b).]
(b) gcd(2a + b,a + 2b) = 1 or 3.
(c) ged(@ + b, a’ +b*>) =1or2.
[Hint: a* + b?> = (a + b)(a — b) + 2b>.]
(d) gcd(a + b, a®? —ab + b*) =1 o0r3.
[Hint: a®> — ab + b* = (a + b)*> — 3ab.]

. For n > 1, and positive integers a, b, show the following:

(a) If gcd(a, b) = 1, then ged(a”, b") = 1.
[Hint: See Problem 20(a), Section 2.2.]

(b) The relation a” | b™ implies that a | b.
[Hint: Putd = gcd(a, b) and write a = rd, b = sd, where gcd(r, s) = 1. By part (a),
ged(r™, s") = 1. Show thatr = 1, whence a = d.]

. Prove that if gcd(a, b) = 1, then gcd(a + b, ab) = 1.
. For nonzero integers a and b, verify that the following conditions are equivalent:

(@) a|b.
(b) ged(a, b) = |al.
(c) lem(a, b) = | b|.

. Find lem(143, 227), lcm(306, 657), and lcm(272, 1479).
. Prove that the greatest common divisor of two positive integers divides their least common

multiple.

Given nonzero integers a and b, establish the following facts concerning Icm(a, b):

(a) ged(a, b) = lem(a, b) if and only if a = +b.

(b) If k > 0, then Icm(ka, kb) = k lcm(a, b).

(c) If m is any common multiple of a and b, then lcm(a, b) | m.
[Hint: Putt = lcm(a, b) and use the Division Algorithm to write m = gt + r, where
0 < r < t. Show that r is a common multiple of a and b.]

Let a, b, ¢ be integers, no two of which are zero, and d = gcd(a, b, ¢). Show that

d = ged(ged(a, b), ¢) = ged(a, ged(b, ¢)) = ged(ged(a, ¢), b)



32 ELEMENTARY NUMBER THEORY

12. Find integers x, y, z satisfying
gcd(198, 288, 512) = 198x + 288y + 5127

[Hint: Put d = gcd(198, 288). Because gcd(198, 288, 512) = ged(d, 512), first find
integers u and v for which ged(d, 512) = du + 512v.]

2.5 THE DIOPHANTINE EQUATION ax 4+ by = ¢

We now change focus somewhat and take up the study of Diophantine equations.
The name honors the mathematician Diophantus, who initiated the study of such
equations. Practically nothing is known of Diophantus as an individual, save that
he lived in Alexandria sometime around 250 A.D. The only positive evidence as to
the date of his activity is that the Bishop of Laodicea, who began his episcopate in
270, dedicated a book on Egyptian computation to his friend Diophantus. Although
Diophantus’s works were written in Greek and he displayed the Greek genius for the-
oretical abstraction, he was most likely a Hellenized Babylonian. The only personal
particulars we have of his career come from the wording of an epigram-problem
(apparently dating from the 4th century): his boyhood lasted 1/6 of his life; his beard
grew after 1/12 more; after 1/7 more he married, and his son was born 5 years later;
the son lived to half his father’s age and the father died 4 years after his son. If x
was the age at which Diophantus died, these data lead to the equation

1 1 1 5 1 4

6x+ 12x+7x+ +2x+ =X
with solution x = 84. Thus, he must have reached an age of 84, but in what year or
even in what century is not certain.

The great work upon which the reputation of Diophantus rests is his Arithmetica,
which may be described as the earliest treatise on algebra. Only six books of the
original thirteen have been preserved. It is in the Arithmetica that we find the first
systematic use of mathematical notation, although the signs employed are of the
nature of abbreviations for words rather than algebraic symbols in the sense with
which we use them today. Special symbols are introduced to represent frequently
occurring concepts, such as the unknown quantity in an equation and the different
powers of the unknown up to the sixth power; Diophantus also had a symbol to
express subtraction, and another for equality.

The part of the Arithmetica that has come down to us consists of some 200
problems, which we could now express as equations, together with their worked-
out solutions in specific numbers. Considerable attention was devoted to problems
involving squares or cubes. Even for problems with infinitely many solutions, Dio-
phantus was content with finding just one. Solutions were usually given in terms
of positive rational numbers, sometimes admitting positive integers; there was no
notion at that time of negative numbers as mathematical entities.

Although the Arithmetica does not fall into the realm of number theory, which
involves properties of the integers, it nevertheless gave great impetus to subsequent
European development of the subject. In the mid-17th century, the French mathe-
matician Pierre de Fermat acquired a Latin translation of the rediscovered books of
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Diophantus’s treatise. Fermat embarked on a careful study of its solution techniques,
looking for integral solutions to replace the rational ones of Diophantus and opening
up new paths at which the Arithmetica only hinted. As an example, one problem
asked the following: find four numbers such that the product of any two, increased
by 1, is a square. Diophantus’s methods had led him to the set ]—16, %, %, %; but
Fermat produced the four positive integers 1, 3, 8, 120. (Another set is 3, 8, 21,
2081.)

The Arithmetica became a treasure trove for later number theorists. Through
the years, mathematicians have been intrigued by such problems, extending and
generalizing them in one way and another. Consider, for instance, Diophantus’s
problem of finding three numbers such that the product of any two, increased by
the sum of the same two, is a square. In the 18th century, Leonhard Euler treated
the same problem with four numbers; and recently a set of five numbers with the
indicated property has been found. To this day the Arithmetica remains a source of
inspiration to number theorists.

It is customary to apply the term Diophantine equation to any equation in one or
more unknowns that is to be solved in the integers. The simplest type of Diophantine

equation that we shall consider is the linear Diophantine equation in two unknowns:
ax + by =c

where a, b, c are given integers and a, b are not both zero. A solution of this equation
is a pair of integers x, yo that, when substituted into the equation, satisfy it; that is,
we ask that axy 4+ byy = c. Curiously enough, the linear equation does not appear
in the extant works of Diophantus (the theory required for its solution is to be found
in Euclid’s Elements), possibly because he viewed it as trivial; most of his problems
deal with finding squares or cubes with certain properties.

A given linear Diophantine equation can have a number of solutions, as is the
case with 3x 4+ 6y = 18, where

3-446-1=18
3(-6)+6-6=18
3-10+6(—-2) =18

By contrast, there is no solution to the equation 2x + 10y = 17. Indeed, the left-hand
side is an even integer whatever the choice of x and y, whereas the right-hand side is
not. Faced with this, it is reasonable to enquire about the circumstances under which
a solution is possible and, when a solution does exist, whether we can determine all
solutions explicitly.

The condition for solvability is easy to state: the linear Diophantine equation
ax + by = c admits asolutionif and only ifd | c, whered = gcd(a, b). We know that
there are integers r and s for whicha = dr and b = ds. If a solution of ax + by = ¢
exists, so that axg + byy = c for suitable x( and y, then

¢ = axg + byy = drxo + dsyy = d(rxo + syo)

which simply says that d | c. Conversely, assume that d |c, say ¢ = dt. Using
Theorem 2.3, integers xo and yo can be found satisfying d = axy + byy. When
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this relation is multiplied by ¢, we get
c =dt = (axg + byo)t = a(txg) + b(tyo)

Hence, the Diophantine equation ax 4+ by = c has x = txp and y = ¢y as a partic-
ular solution. This proves part of our next theorem.

Theorem 2.9. The linear Diophantine equation ax + by = c has a solution if and only
if d | c, where d = gcd(a, b). If x, yo is any particular solution of this equation, then
all other solutions are given by

x=x0+(§)t y=y0—(§)r

where ¢ is an arbitrary integer.

Proof. To establish the second assertion of the theorem, let us suppose that a solution
X0, yo of the given equation is known. If x’, y’ is any other solution, then

axg + byy = ¢ = ax’ + by’
which is equivalent to
a(x" — xo) = b(yo — »")
By the corollary to Theorem 2.4, there exist relatively prime integers r and s such that
a = dr, b = ds. Substituting these values into the last-written equation and canceling
the common factor d, we find that
r(x" —xo) = s(yo — y")

The situation is now this: r | s(yo — y’), with ged(r, s) = 1. Using Euclid’s lemma, it
must be the case that r | (yo — y’); or, in other words, yp — y’ = rt for some integer ¢.
Substituting, we obtain

x' —xp = st

This leads us to the formulas

—
= Xg + S5t = xo + p 1

=y —rt = yo— (2
Y=y-rt=y—(7)¢

It is easy to see that these values satisfy the Diophantine equation, regardless of the
choice of the integer ¢; for

ax' + by = a [x0+ <§> t] +b[yo - (g) t]

b
= (axo + byo) + (7 - ‘;—b)r

=c+0-¢
=z

Thus, there are an infinite number of solutions of the given equation, one for each value
of .



DIVISIBILITY THEORY IN THE INTEGERS 35

Example 2.4. Consider the linear Diophantine equation
172x + 20y = 1000
Applying the Euclidean’s Algorithm to the evaluation of gcd(172, 20), we find that
172 =8-20+ 12

20=1-12+8
12=1-8+4
8=2-4

whence gcd(172,20) = 4. Because 4 | 1000, a solution to this equation exists. To obtain
the integer 4 as a linear combination of 172 and 20, we work backward through the
previous calculations, as follows:

4=12-8
= 12— (20 — 12)
—2.12-20

=2(172-8-20) - 20
=2-172+ (-17)20
Upon multiplying this relation by 250, we arrive at
1000 = 250 - 4 = 250[2 - 172 4 (—17)20]
= 500 - 172 4 (—4250)20

so that x = 500 and y = —4250 provide one solution to the Diophantine equation in
question. All other solutions are expressed by

x =500+ (20/4)t = 500 + 5¢
y = —4250 — (172/4)t = —4250 — 43¢

for some integer ¢.
A little further effort produces the solutions in the positive integers, if any happen
to exist. For this,  must be chosen to satisfy simultaneously the inequalities

5t +500 >0 — 43t — 4250 > 0
or, what amounts to the same thing,
—98§ >t > —100
43

Because t must be an integer, we are forced to conclude that t = —99. Thus, our
Diophantine equation has a unique positive solution x = 5, y = 7 corresponding to
the value t = —99.

It might be helpful to record the form that Theorem 2.9 takes when the coeffi-
cients are relatively prime integers.

Corollary. If gcd(a, b) = 1 and if x, yg is a particular solution of the linear Diophan-
tine equation ax + by = c, then all solutions are given by
x=Xxo+bt y=y —at

for integral values of ¢.
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Here is an example. The equation 5x 4 22y = 18 has xo = 8, yp = —1 as one
solution; from the corollary, a complete solution is given by x = 8 4 22¢,
y = —1 — 5t for arbitrary ¢.

Diophantine equations frequently arise when solving certain types of traditional
word problems, as evidenced by Example 2.5.

Example 2.5. A customer bought a dozen pieces of fruit, apples and oranges, for
$1.32. If an apple costs 3 cents more than an orange and more apples than oranges
were purchased, how many pieces of each kind were bought?

To set up this problem as a Diophantine equation, let x be the number of apples
and y be the number of oranges purchased; in addition, let z represent the cost (in
cents) of an orange. Then the conditions of the problem lead to

Z+3)x+zy=132
or equivalently
3x+(x+y)z=132
Because x + y = 12, the previous equation may be replaced by
3x +12z2 =132

which, in turn, simplifies to x + 4z = 44.
Stripped of inessentials, the object is to find integers x and z satisfying the
Diophantine equation

X+4z=44 (1)

Inasmuch as ged (1, 4) = 1 is a divisor of 44, there is a solution to this equation. Upon
multiplying the relation 1 = 1(—3) + 4 - 1 by 44 to get

44 = 1(~132) + 4 - 44

it follows that xo = —132, zp = 44 serves as one solution. All other solutions of
Eq. (1) are of the form

x=—13244 7=44—1

where ¢ is an integer.

Not all of the choices for ¢ furnish solutions to the original problem. Only values
of ¢ that ensure 12 > x > 6 should be considered. This requires obtaining those values
of ¢ such that

12> —1324+4t > 6

Now, 12 > —132 4 4¢ implies that ¢ < 36, whereas —132 + 4t > 6 gives ¢ > 34%.
The only integral values of ¢ to satisfy both inequalities are + = 35 and ¢t = 36. Thus,
there are two possible purchases: a dozen apples costing 11 cents apiece (the case
where ¢t = 36), or 8 apples at 12 cents each and 4 oranges at 9 cents each (the case
where t = 35).

Linear indeterminate problems such as these have a long history, occurring as
early as the Ist century in the Chinese mathematical literature. Owing to a lack of
algebraic symbolism, they often appeared in the guise of rhetorical puzzles or riddles.
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The contents of the Mathematical Classic of Chang Ch’ iu-chien (6th century) attest
to the algebraic abilities of the Chinese scholars. This elaborate treatise contains one
of the most famous problems in indeterminate equations, in the sense of transmission
to other societies—the problem of the “hundred fowls.” The problem states:

If a cock is worth 5 coins, a hen 3 coins, and three chicks together 1 coin, how many
cocks, hens, and chicks, totaling 100, can be bought for 100 coins?

In terms of equations, the problem would be written (if x equals the number of cocks,
y the number of hens, z the number of chicks):

1
5x+3y+§z=100 x+y+z=100

Eliminating one of the unknowns, we are left with a linear Diophantine equation
in the two other unknowns. Specifically, because the quantity z = 100 — x — y, we
have 5x + 3y + $(100 — x — y) = 100, or

7x +4y =100

This equation has the general solution x = 4¢, y = 25 — 7¢, so that z = 75 + 3¢,
where ¢ is an arbitrary integer. Chang himself gave several answers:

x=4 y=18 z=78
x=238 y=11 z=281
x=12 y=4 z7=284

A little further effort produces all solutions in the positive integers. For this,  must
be chosen to satisfy simultaneously the inequalities

4t > 0 25—-T7t >0 75+ 3t >0

The last two of these are equivalent to the requirement —25 < ¢t < 3%. Because ¢
must have a positive value, we conclude that t+ = 1, 2, 3, leading to precisely the
values Chang obtained.

PROBLEMS 2.5

1. Which of the following Diophantine equations cannot be solved?
(a) 6x + 51y = 22.
(b) 33x + 14y = 115.
(c) 14x + 35y = 93.
2. Determine all solutions in the integers of the following Diophantine equations:
(a) 56x + 72y = 40.
(b) 24x + 138y = 18.
(c) 221x + 35y = 11.
3. Determine all solutions in the positive integers of the following Diophantine equations:
(a) 18x + 5y = 48.
(b) 54x + 21y = 906.
(c) 123x + 360y = 99.
(d) 158x =57y =1.
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. If a and b are relatively prime positive integers, prove that the Diophantine equation

ax — by = c has infinitely many solutions in the positive integers.

[Hint: There exist integers xo and yo such that axo + byy = c¢. For any integer ¢,

which is larger than both | xo | /b and | yo | /a, a positive solution of the given equation is

x=x9+bt,y =—(yo — at).]

(a) A man has $4.55 in change composed entirely of dimes and quarters. What are the
maximum and minimum number of coins that he can have? Is it possible for the
number of dimes to equal the number of quarters?

(b) The neighborhood theater charges $1.80 for adult admissions and $.75 for children.
On a particular evening the total receipts were $90. Assuming that more adults than
children were present, how many people attended?

(c) A certain number of sixes and nines is added to give a sum of 126; if the number of
sixes and nines is interchanged, the new sum is 114. How many of each were there
originally?

. A farmer purchased 100 head of livestock for a total cost of $4000. Prices were as follow:

calves, $120 each; lambs, $50 each; piglets, $25 each. If the farmer obtained at least one
animal of each type, how many of each did he buy?

. When Mr. Smith cashed a check at his bank, the teller mistook the number of cents for

the number of dollars and vice versa. Unaware of this, Mr. Smith spent 68 cents and then
noticed to his surprise that he had twice the amount of the original check. Determine the
smallest value for which the check could have been written.

[Hint: If x denotes the number of dollars and y the number of cents in the check, then
100y + x — 68 = 2(100x + y).]

. Solve each of the puzzle-problems below:

(a) Alcuin of York, 775. One hundred bushels of grain are distributed among 100 persons
in such a way that each man receives 3 bushels, each woman 2 bushels, and each child
% bushel. How many men, women, and children are there?

(b) Mahaviracarya, 850. There were 63 equal piles of plantain fruit put together and 7
single fruits. They were divided evenly among 23 travelers. What is the number of
fruits in each pile?

[Hint: Consider the Diophantine equation 63x 4+ 7 = 23y.]

(c) Yen Kung, 1372. We have an unknown number of coins. If you make 77 strings of
them, you are 50 coins short; but if you make 78 strings, it is exact. How many coins
are there?

[Hint: If N is the number of coins, then N = 77x + 27 =78y for integers
x and y.]

(d) Christoff Rudolff, 1526. Find the number of men, women, and children in a company
of 20 persons if together they pay 20 coins, each man paying 3, each woman 2, and
each child %

(e) Euler, 1770. Divide 100 into two summands such that one is divisible by 7 and the
other by 11.





