CHAPTER

0

NUMBER-THEORETIC FUNCTIONS

Mathematicians are like Frenchmen: whatever you say to them they translate
into their own language and forthwith it is something entirely different.
GOETHE

6.1 THE SUM AND NUMBER OF DIVISORS

Certain functions are found to be of special importance in connection with the study
of the divisors of an integer. Any function whose domain of definition is the set of
positive integers is said to be a number-theoretic (or arithmetic) function. Although
the value of a number-theoretic function is not required to be a positive integer or,
for that matter, even an integer, most of the number-theoretic functions that we shall
encounter are integer-valued. Among the easiest to handle, and the most natural, are
the functions 7 and 0.

Definition 6.1. Given a positive integer n, let t(n) denote the number of positive
divisors of n and o (n) denote the sum of these divisors.

For an example of these notions, consider n = 12. Because 12 has the positive
divisors 1, 2, 3, 4, 6, 12, we find that

7(12) =6 and 0(12)=14+2+3+4+6+12=28
For the first few integers,

=1 t@=2 t3)=2 t@=3 5)=2 6)=4,...
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104 ELEMENTARY NUMBER THEORY

and
o(l)=1,02)=3,03)=4,04)=7,0(5)=6,0(6)=12,...

It is not difficult to see that 7(n) = 2 if and only if n is a prime number; also,
o(n) =n + 1if and only if n is a prime.

Before studying the functions 7 and o in more detail, we wish to introduce
notation that will clarify a number of situations later. It is customary to interpret the

symbol
Y f@)

d|n

to mean, “Sum the values f(d) as d runs over all the positive divisors of the positive
integer n.” For instance, we have

Z f@=f+ fQ+ f@+ f5)+ f(10) + f(20)
d|20
With this understanding, T and o may be expressed in the form
M=) 1 om=)d
dln d|n

The notation ), \» 1, n particular, says that we are to add together as many 1’s as
there are positive divisors of n. To illustrate: the integer 10 has the four positive
divisors 1, 2, 5, 10, whence

r(10)221:1+1+1+1:4
d|10
and
c(10)=) d=1+2+5+10=18
d[10
Our first theorem makes it easy to obtain the positive divisors of a positive
integer n once its prime factorization is known.

Theorem 6.1. If n = p'fl p'z€2 -+ p¥ is the prime factorization of n > 1, then the pos-

itive divisors of n are precisely those integers d of the form

d=p‘f1pgz---pf’
where0 <a; <k; (i =1,2,...,r).
Proof. Note that the divisor d = 1 is obtained whena; =a; =--- =a, =0, and n
itself occurs when a; = ki, a; = ks, ..., a, = k,. Suppose that d divides n nontriv-

ially; say, n = dd’, where d > 1, d’ > 1. Express both d and d’ as products of (not
necessarily distinct) primes:

d=qq2---qs d =ttr---1,
with ¢;, ¢; prime. Then

ki _k k _
Pi'PyY Py =q1gst1++
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are two prime factorizations of the positive integer n. By the uniqueness of the prime
factorization, each prime g; must be one of the p;. Collecting the equal primes into a
single integral power, we get

a . a

d:qlqz...qs = p, D) ...pf’
where the possibility that a; = 0 is allowed.

Conversely, every number d = p{' p5* - -- p% (0 < a; < k;) turns out to be a di-
visor of n. For we can write

_ ki _k k,
R=p1 Py D

1,82 ki—ar ko—ap

= (p' P} "Pr‘-z')(Pl 12
=dd

50 p’lfr“ar)

with d’ = p’fl_‘” p§2‘“2 ... pf=ar and k; — a; > O foreachi. Thend’ > 0 and d | n.

We put this theorem to work at once.

Theorem 6.2. If n = p’f‘ p’z€2 .- p¥ is the prime factorization of n > 1, then

(@) t(n) = (ks + D(k2 + 1)- - - (k, + 1), and

k1+1 ko+1 k.+1

)4 —-1p -1 py =1
(b) o(n) == 2

pi—1 py—1 pr—1

Proof. According to Theorem 6.1, the positive divisors of n are precisely those integers

d=py'py--p’
where 0 < a; < k;. There are k; + 1 choices for the exponent a;; k; + 1 choices for
a», ...;and k, + 1 choices for a,. Hence, there are

(k1 + Dz + 1) - - - (k, + 1)

possible divisors of n.
To evaluate o (n), consider the product

(14 pi+p2 4+ p) 1+ p2+ P+ -+ DY)
...(1+pr+pr2+..._|_plr<r)

Each positive divisor of n appears once and only once as a term in the expansion of
this product, so that

Applying the formula for the sum of a finite geometric series to the ith factor on the
right-hand side, we get

1+pi+pi2+...+pl],“':_‘—
pi—1
It follows that
p11c1+1 1 plzcz+1 -1 pf’“ -1

pi—1 py—1 pr—1
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Corresponding to the ) notation for sums, the notation for products may be
defined using [ [, the Greek capital letter pi. The restriction delimiting the numbers
over which the product is to be made is usually put under the | sign. Examples are

[] f@=rr@r3 o)

1=d<5

[]7@ = r)r3)r©)

d|9

[] &= r@r3)f6)

p |30
p prime

With this convention, the conclusion to Theorem 6.2 takes the compact form: if

n= p]fl p]f .-+ p* is the prime factorization of n > 1, then

tm)= [] ®+D

1<i<r
and
ki+1
p; -1
ag(n)= _
1£:£r pi —1

Example 6.1. The number 180 = 22 - 32 . 5 has
t(180) =2+ 12+ DA +1)=18
positive divisors. These are integers of the form
R B
wherea; =0,1,2;a, =0, 1,2; and a3 = 0, 1. Specifically, we obtain
1,2,3,4,5,6,9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180
The sum of these integers is

(180)_23—133—152—1_72624_7 6 sac
o T2 13-15-1 124" -

One of the more interesting properties of the divisor function t is that the product
of the positive divisors of an integer n > 1 is equal to n*™/2, It is not difficult to
get at this fact: Let d denote an arbitrary positive divisor of n, so that n = dd’ for
some d’. As d ranges over all t(n) positive divisors of n, 7(n) such equations occur.
Multiplying these together, we get

n®=[]d-[]

d|n d |n
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But as d runs through the divisors of n, so does d’; hence, [ | d\n d = ]_[d, W d'. The

situation is now this:
2
n'™ = <1_[ d>
d|n

ntm/2 _ l_[ d

d|n

or equivalently

The reader might (or, at any rate, should) have one lingering doubt concerning
this equation. For it is by no means obvious that the left-hand side is always an
integer. If 7(n) is even, there is certainly no problem. When 7(n) is odd, n turns out
to be a perfect square (Problem 7, Section 6.1), say, n = m?; thus n?®/2 = m ™™,
settling all suspicions.

For a numerical example, the product of the five divisors of 16 (namely, 1, 2, 4,
8,16) is

[]4 =169 =16"> =4 = 1024
d|16

Multiplicative functions arise naturally in the study of the prime factorization
of an integer. Before presenting the definition, we observe that

12-10)=71t20)=6#2-4=1(2)-7(10)
At the same time,
0(2-10)=0(20)=42#3-18=0(2)-0(10)
These calculations bring out the nasty fact that, in general, it need not be true that
t(mn) = t(m)t(n) and o(mn) = o(m)o(n)

On the positive side of the ledger, equality always holds provided we stick to rela-
tively prime m and n. This circumstance is what prompts Definition 6.2.

Definition 6.2. A number-theoretic function f is said to be multiplicative if

f(mn) = f(m)f(n)

whenever gcd(m, n) = 1.

For simple illustrations of multiplicative functions, we need only consider the
functions given by f(n) =1 and g(n) = n for all n > 1. It follows by induction
that if f is multiplicative and n1, n,, ..., n, are positive integers that are pairwise
relatively prime, then

fminy---n,) = f(n1)f(na)--- f(n,)

Multiplicative functions have one big advantage for us: they are completely
determined once their values at prime powers are known. Indeed, if n > 1 is a given

positive integer, then we can write n = p;' p,° - - - p* in canonical form; because the
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pff are relatively prime in pairs, the multiplicative property ensures that

foy = f(p7)f(py) - f(pr)
If f is a multiplicative function that does not vanish identically, then there exists
an integer n such that f(n) # 0. But

f)=f@-1)= f(n)fQ1)
Being nonzero, f(n) may be canceled from both sides of this equation to give
f(1) = 1. The point to which we wish to call attention is that f(1) = 1 for any
multiplicative function not identically zero.
We now establish that T and o have the multiplicative property.

Theorem 6.3. The functions t and o are both multiplicative functions.

Proof. Let m and n be relatively prime integers. Because the result is trivially true if
either m or n 1s equal to 1, we may assume thatm > 1 andn > 1. If

ki _k i1 _J i
m=pi'py---pf and n=gqiq’ gl

are the prime factorizations of m and n, then because gcd(m, n) = 1, no p; can occur
among the g;. It follows that the prime factorization of the product mn is given by
mn=py'pral oo qd
Appealing to Theorem 6.2, we obtain
t(mn) =[(ki + 1)--- (b + DI[GL+ 1D -+ (s + D]
= t(m)t(n)
In a similar fashion, Theorem 6.2 gives

Pf’“ -1 q{1+1 -1 sjs+1 _1
p1—1 pr—1 q1—1 gs — 1

=o(m)o(n)

Thus, T and o are multiplicative functions.

We continue our program by proving a general result on multiplicative functions.
This requires a preparatory lemma.

Lemma. If gcd(m,n) =1, then the set of positive divisors of mn consists of all
products did», where d; |m, d, | n and gcd(dy, d;) = 1; furthermore, these products
are all distinct.

Proof. 1t is harmless to assume that m > 1 and n > 1; let m = plfl p’zCZ .- pk and

n= q{l qu x -qus be their respective prime factorizations. Inasmuch as the primes
P1s---» Prsq1, - - -, qs are all distinct, the prime factorization of mn is

k j '
mn = pll . pf’q{l . q!*
Hence, any positive divisor d of mn will be uniquely representable in the form

d=pi'---pray-qp  0<a<k,0<b <]
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This allows us to write d as d = did,, where d; = p’fl--- pyr divides m and

d, = qi’ I...gb divides n. Because no p; is equal to any g j» we surely must have
gcd(dy, dy) = 1.

A keystone in much of our subsequent work is Theorem 6.4.

Theorem 6.4. If f is a multiplicative function and F is defined by
F(n)=_ f(d)
d|n

then F is also multiplicative.

Proof. Let m and n be relatively prime positive integers. Then

F(mn)= ) f(d)

d|mn

=) fldidy)

dy|m
dy|n

because every divisor d of mn can be uniquely written as a product of a divisor d; of
m and a divisor d; of n, where gcd(d;, d;) = 1. By the definition of a multiplicative
function,

fldidy) = f(d)f(d2)
It follows that

F(mn) = f(d)f(d2)

dy|m
dy ||

= (Z f(dl)) (Z f(dz))
dy|m da|n
= F(m)F(n)

It might be helpful to take time out and run through the proof of Theorem 6.4
in a concrete case. Letting m = 8 and n = 3, we have

F@-3) =) f)

d|24

= f)+ @+ fO) + f@ + fO) + ) + f(12) + f(24)

=f-D+f@ D+ fA-3)+ f@4- D+ f2-3)
+fB- 1)+ f@4-3)+ f(8-3)

= fFD)+ F@FM) + FDFG) + FAFD) + F)fG)
+ FOfD) + FOFG) + f®)f(3)

= [fD)+ f@Q+ fF@ + FOISD) + f3)]

=Y f@-)_ fd)=F®F®)

d|8 d|3
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Theorem 6.4 provides a deceptively short way of drawing the conclusion that
7 and o are multiplicative.

Corollary. The functions t and o are multiplicative functions.

Proof. We have mentioned that the constant function f(n) = 1 is multiplicative, as is
the identity function f(n) = n. Because t and o may be represented in the form

t(n):Zl and a(n)=Zd

d|n d|n
the stated result follows immediately from Theorem 6.4.

PROBLEMS 6.1

1. Let m and n be positive integers and pi, p», ..., p, be the distinct primes that divide at
least one of m or n. Then m and n may be written in the form

m=php2...pk withk; > 0fori=1,2,...,r

n=plph...pl  withj>0fori=12...,r
Prove that

uy Uy V1 V2

ged(m,n) = py'py*---p;”  lem(m,n) = py'py*---p;
where u; = min {k;, j;}, the smaller of k; and j;; and v; = max {k;, j;}, the larger of k;
and j;.
. Use the result of Problem 1 to calculate gcd(12378, 3054) and lcm(12378, 3054).
. Deduce from Problem 1 that gcd(m, n) lem(m, n) = mn for positive integers m and n.
. In the notation of Problem 1, show that gcd(m,n) =1 if and only if k; j; = 0 for
i=1,2,...,r.
5. (a) Verify thatt(n) = t(n + 1) = t(n + 2) = t(n + 3) holds for n = 3655 and 4503.
(b) When n = 14, 206, and 957, show that o(n) = o (n + 1).
6. For any integer n > 1, establish the inequality t(r) < 2./n.
[Hint: If d | n, then one of d or n/d is less than or equal to 4/7.]
7. Prove the following.
(a) t(n)is an odd integer if and only if » is a perfect square.
(b) o(n) is an odd integer if and only if #n is a perfect square or twice a perfect square.
[Hint: If p is an odd prime, then 1 + p + p% + - - - 4+ p* is odd only when & is even.]
. Show that ) _, \n 1/d = o(n)/n for every positive integer n.
. If n is a square-free integer, prove that t(n) = 2", where r is the number of prime divisors
of n.
10. Establish the assertions below:
(@) If n = plfl pgz -+ p¥ is the prime factorization of n > 1, then

1> 2 ><1—i)(1—i).--(1—i)
a(n) p1 P2 Pr

(b) For any positive integer n,

a(n!)>1+1+1+ +1
n! = 2 3 n

S W N

o o0

[Hint: See Problem 8.]
(c) If n > 1is a composite number, then o (n) > n + /n.
[Hint: Letd |n,where 1 <d <n,s0l <n/d <n.Ifd < \/n,thenn/d > /n.]
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Given a positive integer k > 1, show that there are infinitely many integers n for which

t(n) = k, but at most finitely many n with o (n) = k.

[Hint: Use Problem 10(a).]

(a) Find the form of all positive integers n satisfying t(n) = 10. What is the smallest
positive integer for which this is true?

(b) Show that there are no positive integers n satisfying o (n) = 10.
[Hint: Note that forn > 1, o(n) > n.]

Prove that there are infinitely many pairs of integers m and n with o(m?) = o (n?).

[Hint: Choose k such that gcd(k, 10) = 1 and consider the integers m = 5k, n = 4k.]

For k > 2, show each of the following:

(a) n = 2! satisfies the equation o (n) = 2n — 1.

(b) If 2% — 1is prime, then n = 2F~1(2% — 1) satisfies the equation o (1) = 2n.

(c) If 2 — 3 is prime, then n = 2¥~1(2% — 3) satisfies o (n) = 2n + 2.

It is not known if there are any positive integers n for which o(n) = 2n + 1.

If n and n + 2 are a pair of twin primes, establish that o(n + 2) = o(n) + 2; this also

holds for n = 434 and 8575.

(a) For any integer n > 1, prove that there exist integers n; and n, for which
t(ny) + t(ny) = n.

(b) Prove that the Goldbach conjecture implies that for each even integer 2n there exist
integers ny and n, with o (n1) + o (ny) = 2n.

For a fixed integer k, show that the function f defined by f(n) = n* is multiplicative.

Let f and g be multiplicative functions that are not identically zero and have the property

that f(p*) = g(p*) for each prime p and k > 1. Prove that f = g.

Provethatif f and g are multiplicative functions, then so is their product fg and quotient

f/g (whenever the latter function is defined).

Let w(n) denote the number of distinct prime divisors of n > 1, with w(1) = 0. For

instance, w(360) = w(23 - 3% . 5) = 3.

(a) Show that 2™ is a multiplicative function.

(b) For a positive integer n, establish the formula

T(n?) =) 27

dln

For any positive integer n, prove that ), , 7(d)’ = (3,4, T(@))*.
[Hint: Both sides of the equation in question are multiplicative functions of #, so that it
suffices to consider the case n = p*, where p is a prime.]

Given n > 1, let o5(n) denote the sum of the sth powers of the positive divisors of 7;
that is,
os(n) =Y d°
d|n
Verify the following:

(@) op=tando; =o0.
(b) o, is a multiplicative function.

[Hint: The function f, defined by f(rn) = n’, is multiplicative.]
(c) If n = p'fl p’gz .-+ p¥ is the prime factorization of n, then

pitD _p\ [ pstetD g pitetD _
os(n) = . - o F——
pi—1 py—1 p;—1
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23. For any positive integer n, show the following:
@ Y4, 0d) = Y y,(n/d)r(d).
) Xy /d)o@d) = 3, de(d).

[Hint: Because the functions

F(n):Za(d) and G(n):Z

d|n d|n

(d)

|

are both multiplicative, it suffices to prove that F(p*) = G(p*) for any prime p.]

6.2 THE MOBIUS INVERSION FORMULA

We introduce another naturally defined function on the positive integers, the Mobius
u-function.

Definition 6.3. For a positive integer n, define i by the rules

1 ifn=1
un)=40 if p? | n for some prime p
-1y ifn = p1p,--- p,, where p; are distinct primes

Put somewhat differently, Definition 6.3 states that (n) = 0 if n is not a square-
free integer, whereas u(n) = (—1)" if n is square-free with r prime factors. For
example: 1(30) = u(2 -3 - 5) = (—=1)*> = —1. The first few values of u are

p)=1 u@2)=-1 pB)=-1 u@H=0 pB)=-1 w®6)=1,...

If p is a prime number, it is clear that u(p) = —1; in addition, u(p*) = 0 for k > 2.
As the reader may have guessed already, the Mobius p-function is multiplicative.
This is the content of Theorem 6.5.

Theorem 6.5. The function p is a multiplicative function.

Proof. We want to show that w(mn) = w(m)u(n), whenever m and n are rela-
tively prime. If either p? |m or p?|n, p a prime, then p? | mn; hence, u(mn) = 0 =
u(m)u(n), and the formula holds trivially. We therefore may assume that both m and
n are square-free integers. Say, m = pip>--- p,, B = q1q2 - - - q5, With all the primes
pi and g; being distinct. Then

pw(mn) = u(p1--- prq1---qs) = (=1
= (=1y'(-=1) = u(m)u(n)
which completes the proof.

Let us see what happens if u(d) is evaluated for all the positive divisors d of
an integer n and the results are added. In the case where n = 1, the answer is easy;
here,

> )= pl) =1

d|l
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Suppose that n > 1 and put
F(n)= Y u(d)
d|n
To prepare the ground, we first calculate F(n) for the power of a prime, say, n = p*.
The positive divisors of p* are just the k + 1 integers 1, p, p?, ..., p*, so that

F(p) =Y u(d) = n(1) + pu(p) + u(p? + - - + u(p®)
d|p*
=p()+u(p)=1+(-1)=0

Because u is known to be a multiplicative function, an appeal to Theorem 6.4 is
legitimate; this result guarantees that F' also is multiplicative. Thus, if the canonical

factorizationofnisn = p]fl p’z<2 “e pf’ ,then F'(n) is the product of the values assigned
to F for the prime powers in this representation:

Fn) = F(pb)F(p5) - F(pk) = 0

We record this result as Theorem 6.6.

Theorem 6.6. For each positive integern > 1,
1 ifn=1
2 ud) = {0 ifn > 1
d|n

where d runs through the positive divisors of n.

For an illustration of this last theorem, consider n = 10. The positive divisors
of 10 are 1, 2, 5, 10 and the desired sum is

> ild) = (1) + (@) + u(5) + u(10)
d|10
=1+C-D+(-1)+1=0

The full significance of the Mobius w-function should become apparent with
the next theorem.

Theorem 6.7 Mdbius inversion formula. Let F and f be two number-theoretic
functions related by the formula

F(r)=Y_ f(d)
dl|n

Then

fo) =Y w@F () =Y u(5) F@)

dl|n dl|n

Proof. The two sums mentioned in the conclusion of the theorem are seen to be the
same upon replacing the dummy index d by d’ = n/d; as d ranges over all positive
divisors of n, so does d’.
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Carrying out the required computation, we get

Y HF ) =2 (u(d) > f(c))

d|n c|(n/d)

=3 ( >, u(d)f(6)>

dln \c|(@n/d)

It is easily verified that d | n and c | (n/d) if and only if ¢ | n and d | (n/c). Because of
this, the last expression in Eq. (1) becomes

Z( > u(d)f(c)> = Z( > f(c)u(d)>

d|n \c|(n/d) cln \d|(@n/c)

=> <f(c) > u(d)>

cln d|(n/c)

In compliance with Theorem 6.6, the sum }_;, /., #(d) must vanish except when
n/c =1 (that is, when n = c), in which case it is equal to 1; the upshot is that the
right-hand side of Eq. (2) simplifies to

> <f(c) > u(a’)> =Y f)-1

cln d|(n/c)
= f(n)

giving us the stated result.

Let us use n = 10 again to illustrate how the double sum in Eq. (2) is turned
around. In this instance, we find that

Z < Z M(d)f(c)> =uD[ D)+ FQR)+ F(5)+ fQ0)]

d |10 \c|(10/d)
+u@QUf D)+ O]+ @)L+ f)]
+ 1 (10) (1)
= f(DIu() + n(2) + n(5) + n10)]
+ fDlu) + uG) + fS)[u(1) + n)]
+ f(10)u(1)

= Z( > f(c‘)u(d)>

c|10 \d|(10/c)

To see how the Mobius inversion formula works in a particular case, we remind
the reader that the functions T and o may both be described as “sum functions™:

T(n) = Z 1 and o(n) = Zd

d|n d|n
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Theorem 6.7 tells us that these formulas may be inverted to give
n n
1= (—)rd and n= (—)ad
;’; n(y) @ ; n(z)o@

which are valid for all n > 1.

Theorem 6.4 ensures that if f is a multiplicative function, then so is F(n) =
4 f(d). Turning the situation around, one might ask whether the multiplicative
nature of F forces that of f. Surprisingly enough, this is exactly what happens.

Theorem 6.8. If F is a multiplicative function and
Fr)=)_ f(d)
d|n

then f is also multiplicative.

Proof. Let m and n be relatively prime positive integers. We recall that any divisor
d of mn can be uniquely written as d = d d,, where d, | m,d; | n, and gcd(d;, d3) = 1.
Thus, using the inversion formula,

fammy= Y w@F (=)

d|mn d
mn
= ) uwldidr)F (—)
; BF (3

m n
= Y ud)u@)F (d—l) F ((72)

dy|m
dy |n

m n
=Y wd)F (d—l) > wd)F (g)

di|m d|n
= f(m)f(n)

which is the assertion of the theorem. Needless to say, the multiplicative character of
w and of F is crucial to the previous calculation.

For n > 1, we define the sum
M) =) nk)
k=1

Then M(n) is the difference between the number of square-free positive integers
k < n with an even number of prime factors and those with an odd number of prime
factors. For example, M(9) = 2 — 4 = —2. In 1897, Franz Mertens (1840-1927)
published a paper with a 50-page table of values of M(n) forn =1, 2, ..., 10000.
On the basis of the tabular evidence, Mertens concluded that the inequality

IM(n)| < V/n n>1

is “very probable.” (In the previous example, |M(9)| = 2 < +/9.) This conclusion
later became known as the Mertens conjecture. A computer search carried out in
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1963 verified the conjecture for all n up to 10 billion. But in 1984, Andrew Odlyzko
and Herman te Riele showed that the Mertens conjecture is false. Their proof, which
involved the use of a computer, was indirect and produced no specific value of n
for which |M(n)| > 4/n; all it demonstrated was that such a number n must exist
somewhere. Subsequently, it has been shown that there is a counterexample to the
Mertens conjecture for at least one n < (3.21)10%.

PROBLEMS 6.2

1. (a) For each positive integer n, show that

pmpn + Du(n +2)u(n + 3) =

(b) For any integer n > 3, show that ) ; _; u(k!) = 1.
2. The Mangoldt function A is defined by

log p if n = p*, where p is a prime and k > 1
An) = ;
0 otherwise

Prove that A(n) = ), , u(n/d)logd = =3 _,,, u(d)logd.
[Hint: First show that ) \n A(d) = logn and then apply the Mobius inversion formula. ]
3. Letn = p’fl p’z€2 .- p¥ be the prime factorization of the integer n > 1. If f is a multiplica-

tive function that is not identically zero, prove that

> u@f@) =1 - fpo)l — f(p))--- (1= f(p,)

d|n

[Hint: By Theorem 6.4, the function F' defined by Fin)=>, In w(d) f (d) is multiplica-
tive; hence, F'(n) is the product of the values F( pl .1
ki ko

4. If the integer n > 1 has the prime factorization n = p}' p;*--- p*, use Problem 3 to
establish the following:
@) Yy, d)r(d) = (1Y
() >y, nd)o(d)=(=1)pip2---pr.
© 24 pd)/d=(1=1/p)1—=1/p2)---(1=1/p,).

d > 4,dud) =0 —p))1 = p2)---(1 = py).
5. Let S(n) denote the number of square-free divisors of n. Establish that

Sy =) () = 2"

d|n

where w(n) is the number of distinct prime divisors of 7.
[Hint: S is a multiplicative function.]

6. Find formulas for 3, u*(d)/t(d) and }_,,, u*(d)/c(d) in terms of the prime factor-
ization of n.

7. The Liouville A-function is defined by A(1) = 1 and A(n) = (—1)bi+k2++k if the prime
factorization of n > lisn = p{' p,* - -- p’jr. For instance,

A(360) = A(2%-32.5) = (1D = (1) =1

(a) Prove that A 1s a multiplicative function.
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(b) Given a positive integer n, verify that

1 if n = m? for some integer m
> @) = 0

T otherwise

8. For an integer n > 1, verify the formulas below:
@) X410 WD) = 2°0.
(b) Zdlnk(n/d)?"(d) =1.

6.3 THE GREATEST INTEGER FUNCTION

The greatest integer or “bracket” function [ ] is especially suitable for treating di-
visibility problems. Although not strictly a number-theoretic function, its study has
a natural place in this chapter.

Definition 6.4. For an arbitrary real number x, we denote by [x] the largest integer
less than or equal to x; that is, [x] is the unique integer satisfying x — 1 < [x] < x.

By way of illustration, [ ] assumes the particular values
[-3/2]1=-2 [V2]1=1 [1/3]=0 [r]=3 [-n]=—4

The important observation to be made here is that the equality [x] = x holds if
and only if x is an integer. Definition 6.4 also makes plain that any real number x
can be written as

x=[x]+06

for a suitable choice of 8, with0 < 6 < 1.
We now plan to investigate the question of how many times a particular prime
p appears in n!. For instance, if p = 3 and n = 9, then
99=1-2-3-4.5-6-7-8-9
=27.3*.5.7
so that the exact power of 3 that divides 9! is 4. It is desirable to have a formula that

will give this count, without the necessity of always writing ! in canonical form.
This is accomplished by Theorem 6.9.

Theorem 6.9. If n is a positive integer and p a prime, then the exponent of the highest
power of p that divides n! is

2

where the series is finite, because [r/p*] = 0 for p* > n.

Proof. Among the first n positive integers, those divisible by p are p, 2p, ..., tp,
where ¢ is the largest integer such that tp < n; in other words, ¢ is the largest integer



118 ELEMENTARY NUMBER THEORY

less than or equal to n/p (which is to say t = [r/p]). Thus, there are exactly [n/p]
multiples of p occurring in the product that defines n!, namely,

p,zp,...,[i]p (1)
14

The exponent of p in the prime factorization of n! is obtained by adding to the
number of integers in Eq. (1), the number of integers among 1, 2, ..., n divisible by
p?, and then the number divisible by p3, and so on. Reasoning as in the first paragraph,
the integers between 1 and # that are divisible by p? are

n
pzvzpza'--,[_z] pz (2)

4
which are [#/p?] in number. Of these, [/ p*] are again divisible by p:

n

p
After a finite number of repetitions of this process, we are led to conclude that the total
number of times p divides n! is

X n
Y. =

t=1 LP

This result can be cast as the following equation, which usually appears under
the name of the Legendre formula:

n! = l_[ pLiciln/p']

p=n

Example 6.2. We would like to find the number of zeros with which the decimal
representation of 50! terminates. In determining the number of times 10 enters into the
product 50!, it is enough to find the exponents of 2 and 5 in the prime factorization of
50!, and then to select the smaller figure.

By direct calculation we see that

[50/2] + [50/22] + [50/23] + [50/2%] + [50/2°]
=25+12+6+3+1

Theorem 6.9 tells us that 2*7 divides 50!, but 2% does not. Similarly,
[50/5]1 + [50/5*] = 10 +2 = 12

and so the highest power of 5 dividing 50! is 12. This means that 50! ends with 12
ZEeros.

We cannot resist using Theorem 6.9 to prove the following fact.
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Theorem 6.10. If » and r are positive integers with 1 < r < n, then the binomial
coefficient

n n!

r) rln—=r)

Proof. The argument rests on the observation that if a and b are arbitrary real numbers,
then [a + b] > [a] + [b]. In particular, for each prime factor p of r!(n — r)!,

n r (n—r)
FlF 0] e

Adding these inequalities, we obtain

o 8 B (oL B

% % A
k=1 LP k=1 LP =1 14

is also an integer.

The left-hand side of Eq. (1) gives the exponent of the highest power of the prime
p that divides n!, whereas the right-hand side equals the highest power of this prime
contained in r!(n — r)!. Hence, p appears in the numerator of n!/r!(n — r)! at least
as many times as it occurs in the denominator. Because this holds true for every prime
divisor of the denominator, r !(n — r)! must divide n!, making n!/r!(n — r)! an integer.

Corollary. For a positive integer r, the product of any r consecutive positive integers

is divisible by r!.

Proof. The product of r consecutive positive integers, the largest of which is n, is
nn—1)n—-2)---n—r+1)

Now we have

n!
nn—1)---n—r+1)= (—)r!

r!(n —r)!

Because n!/r!(n — r)! is an integer by the theorem, it follows that r! must divide the
productn(n — 1)---(n —r + 1), as asserted.

We pick up a few loose threads. Having introduced the greatest integer function,
let us see what it has to do with the study of number-theoretic functions. Their
relationship is brought out by Theorem 6.11.

Theorem 6.11. Let f and F' be number-theoretic functions such that

F(r)=Y_ f(d)

d|n

Then, for any positive integer N,

N N N
Y Fm)y=)_ fk) [;]
n=1 k=1
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Proof. We begin by noting that

N N
Z = Z Y f@ (1)
n=1 n=1d|n
The strategy is to collect terms with equal values of f(d) in this double sum. For a
fixed positive integer k < N, the term f(k) appears in Zdln f(d) if and only if & is
a divisor of n. (Because each integer has itself as a divisor, the right-hand side of Eq.
(1) includes f (k), at least once.) Now, to calculate the number of sums ), In f(d)in

which f(k) occurs as a term, it is sufficient to find the number of integers among 1,
2, ..., N, which are divisible by k. There are exactly [N/ k] of them:

k,2k,3k,...,|:—1;:i]k

Thus, foreach k suchthat 1 < k < N, f(k) is a term of the sum Zd|n f(d)for[N/k]
different positive integers less than or equal to N. Knowing this, we may rewrite the
double sum in Eq. (1) as

ZZ f@d) = Z f(k)[ ]

n=1d|n

and our task is complete.
As an immediate application of Theorem 6.11, we deduce Corollary 1.

Corollary 1. If N is a positive integer, then

-

Proof. Noting that t(n) = ) |» 1, we may write 7 for F and take f to be the constant
function f(n) = 1 for all .

In the same way, the relation o(n) = ), \» d yields Corollary 2.

Corollary 2. If N is a positive integer, then

These last two corollaries, can perhaps, be clarified with an example.

Example 6.3. Consider the case N = 6. The definition of t tells us that
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From Corollary 1,

5.6
3 [;] = [6] + [3] + [2] + [3/2] + [6/5]1 + [1]

n=1

=6+3+2+1+1+1
=14

as it should. In the present case, we also have

M-

o(n) =33

n=1

and a simple calculation leads to

6
Y n [ﬂ = 1[6] + 2[3] + 3[2] + 4[3/2] + 5[6/5] + 6[1]
n=1

=1.64+2-343-244-1+5-1+6-1
=85

PROBLEMS 6.3

1.

Z

3.
4.
S8

6.

Given integers a and b > 0, show that there exists a unique integer r with 0 <r < b
satisfying a = [a/b]b + .
Let x and y be real numbers. Prove that the greatest integer function satisfies the following
properties:
(a) [x + n] = [x] + n for any integer n.
(b) [x]+ [—x] = 0 or —1, according as x is an integer or not.
[Hint: Write x = [x] + 0, with0 <6 < 1,sothat —x = —[x] -1+ (1 — 6).]
(¢) [x]1+ [y] < [x + y] and, when x and y are positive, [x][y] < [xy].
(d) [x/n] = [[x]/n] for any positive integer n.
[Hint: Let x/n = [x/n] + 6, where 0 < 6 < 1; then [x] = n[x/n] + [r6].]
(e) [nm/k] > n[m/k] for positive integers, n, m, k.
® [x]1+ [y]1+[x +y] < [2x] + [2y].
[Hint: Letx = [x]+6,0<6 < 1,andy = [y] + 6’,0 < 8’ < 1. Consider cases in
which neither, one, or both of 8 and 6’ are greater than or equal to %.]
Find the highest power of 5 dividing 1000! and the highest power of 7 dividing 2000!.
For an integer n > 0, show that [n/2] — [—-nr/2] = n.
(a) Verify that 1000! terminates in 249 zeros.
(b) For what values of n does n! terminate in 37 zeros?
If n > 1 and p is a prime, prove that
(@) (2n)!/(n!)? is an even integer.
[Hint: Use Theorem 6.10.]
(b) The exponent of the highest power of p that divides (2n)!/(n!)? is

([ 2n n
2 ([5]-2l5)
k=1 \LP p
(c) In the prime factorization of (2n)!/(n!)> the exponent of any prime p such that
n < p<2nisequalto 1.
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7. Let the positive integer n be written in terms of powers of the prime p so that we have
n=ap*+---+ayp*+ap+ay, where 0 < a; < p. Show that the exponent of the
highest power of p appearing in the prime factorization of n! is

n—(a+---+a+a+ap)
p—1

8. (a) Using Problem 7, show that the exponent of highest power of p dividing (p* — 1)!
is [p* — (p — Dk = 11/(p = D).
[Hint: Recall the identity p* — 1 =(p — D(p* ' +--- + p2+ p+ 1).]

(b) Determine the highest power of 3 dividing 80! and the highest power of 7 dividing

2400!.
[Hint: 2400 = 7% — 1]

9. Find an integer n > 1 such that the highest power of 5 contained in n! is 100.

[Hint: Because the sum of coefficients of the powers of 5 needed to express 7 in the base
S is at least 1, begin by considering the equation (n — 1)/4 = 100.]
10. Given a positive integer N, show the following:
(@ Yooy w()IN/n] = 1.
(b) | 3o w(m)/n| < 1.
11. Illustrate Problem 10 in the case where N = 6.
12. Verify that the formula

éx(n)[g] = [vN]

holds for any positive integer N.
[Hint: Apply Theorem 6.11 to the multiplicative function F(n) = ) _, |n M(d), noting that

there are [\/n] perfect squares not exceeding r.]
13. If N is a positive integer, establish the following:

@ N =32 tmn)—- YN [2N/n].

(®) t(N) = 35 (IN/n] = [(N = 1)/n]).

6.4 AN APPLICATION TO THE CALENDAR

Our familiar calendar, the Gregorian calendar, goes back as far as the second half
of the 16th century. The earlier Julian calendar, introduced by Julius Caesar, was
based on a year of 365 % days, with a leap year every fourth year. This was not a
precise enough measure, because the length of a solar year—the time required for
the earth to complete an orbit about the sun—is apparently 365.2422 days. The small
error meant that the Julian calendar receded a day from its astronomical norm every
128 years.

By the 16th century, the accumulating inaccuracy caused the vernal equinox
(the first day of Spring) to fall on March 11 instead of its proper day, March 21.
The calendar’s inaccuracy naturally persisted throughout the year, but at this season
it meant that the Easter festival was celebrated at the wrong astronomical time.
Pope Gregory XIII rectified the discrepancy in a new calendar, imposed on the
predominantly Catholic countries of Europe. He decreed that 10 days were to be
omitted from the year 1582, by having October 15 of that year immediately follow
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October 4. At the same time, the Jesuit mathematician Christopher Clavius amended
the scheme for leap years: these would be years divisible by 4, except for those
marking centuries. Century years would be leap years only if they were divisible by
400. (For example, the century years 1600 and 2000 are leap years, but 1700, 1800,
1900, and 2100 are not.)

Because the edict came from Rome, Protestant England and her possessions—
including the American colonies—resisted. They did not officially adopt the Gre-
gorian calendar until 1752. By then it was necessary to drop 11 days in September
from the Old Style, or Julian, calendar. So it happened that George Washington, who
was born on February 11, 1732, celebrated his birthday as an adult on February 22.
Other nations gradually adopted the reformed calendar: Russia in 1918, and China
as late as 1949.

Our goal in the present section is to determine the day of the week for a given
date after the year 1600 in the Gregorian calendar. Because the leap year day is added
at the end of February, let us adopt the convenient fiction that each year ends at the
end of February. According to this plan, in the Gregorian year ¥ March and April
are counted as the first and second months. January and February of the Gregorian
year Y + 1 are, for convenience, counted as the eleventh and twelfth months of the
year Y.

Another convenience is to designate the days of the week, Sunday through
Saturday, by the numbers 0, 1, ..., 6:

Sun Mon Tue Wed Thu Fri Sat
0 1 2 3 4 5 6

The number of days in a common year is 365 = 1 (mod 7), whereas in leap
years there are 366 = 2 (mod 7) days. Because February 28 is the 365th day of the
year, and 365 = 1 (mod 7), February 28 always falls on the same weekday as the
previous March 1. Thus if a particular March 1 immediately follows February 28,
its weekday number will be one more, modulo 7, than the weekday number of the
previous March 1. But if it follows a leap year day, February 29, its weekday number
will be increased by two.

For instance, if D¢ is the weekday number for March 1, 1600, then March 1
in the years 1601, 1602, and 1603 has numbers congruent modulo 7 to Dgpp + 1,
D160 + 2, and Digoo + 3, respectively; but the number corresponding to March 1,
1604 is Digoo + 5 (mod 7).

We can summarize this: the weekday number Dy for March 1 of any year
Y > 1600 will satisfy the congruence

Dy = Digoo + (Y — 1600) + L (mod 7) (1)

where L is the number of leap year days between March 1, 1600, and March 1 of
the year Y.

Let us first find L, the number of leap year days between 1600 and the year Y.
To do this, we count the number of these years that are divisible by 4, deduct the
number of century years, and then add back the number of century years divisible by
400. According to Problem 2(a) of Section 6.3, [x — a] = [x] — a whenever a is an
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integer. Hence the number of years # in the interval 1600 < n < Y that are divisible

by 4 is given by
Y — 1600 Y Y
——F— | =|—-—400| = | —| — 400
=[] -5

Likewise, the number of elapsed century years is

Y — 1600 _ L—l6 _ r —16
100 100 100

whereas among those there are

Y —16007 [ Y 4_L_4
400 ~ | 400 ~ | 400

century years that are divisible by 400. Taken together, these statements yield
Y Y Y
L =F | == - —=|- — | —4
(1] -#) - ([i0) - 19) * (L] -*)
_ X Y + Y 388
L4 100 400

Let us obtain, for a typical example, the number of leap years between 1600 and
1995. We compute:

L =1[1995/4] — [1995/100] + [1995/400] — 388
=498 —19+4 —-388=95

Together with congruence (1), this allows us to find a value for Diggg. Days
and dates of recent years can still be recalled; we can easily look up the weekday
(Wednesday) for March 1, 1995. That is, D995 = 3. Then from (1),

3= D1600 + (1995 — 1600) + 95 = D16()() (mod 7)

and so March 1, 1600, also occurred on a Wednesday. The congruence giving the
day of the week for March 1 in any year Y may now be reformulated as

Dy =3+ (Y —1600) + L (mod 7) 2)
An alternate formula for L comes from writing the year Y as
Y =100c + y 0<y<100

where ¢ denotes the number of centuries and y the year number within the century.
Upon substitution, the previous expression for L becomes
Yy

L=[250+Z]—[c+1ym]+[%+ﬁ]—388

= 24c + [%] + [2] _ 388
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(Notice that [y/100] = 0 and y/400 < %.) Then the congruence for Dy appears as

Dy =3+ (100c + y — 1600) + 24c + [ﬁ] + [2] — 388 (mod 7)
which reduces to
C

Dyz3—20-|—y+[4

] + [ﬁ] (mod 7) 3)

Example 6.4 We can use the latest congruence to calculate the day of the week on
which March 1, 1990, fell. For this year, c = 19 and y = 90 so that (3) gives

Diggo = 3 — 38 + 90 + [19/4] + [90/4]
=554+4+4+22=4 (mod7)

March 1 was on a Thursday in 1990.

We move on to determining the day of the week on which the first of each month
of the year would fall. Because 30 = 2 (mod 7), a 30-day month advances by two
the weekday on which the next month begins. A 31-day month increases it by 3. So,
for example, the number of June 1 will always be 3 4+ 2 4 3 = 1 (mod 7) greater
than that of the preceding March 1 because March, April, and May are months of
31, 30, and 31 days, respectively. The table below gives the value that must be added
to the day-number of March 1 to arrive at the number of the first day of each month
in any year Y.

March 0O September 2

April 3 October 4

May 5 November 0

June 1 December 2

July 3 January 5

August 6 February 1
Form =1,2,..., 12, the expression

[(2.6)m — 0.2] — 2 (mod 7)

produces the same monthly increases as indicated by the table. Thus the number of
the first day of the mth month of the year Y is given by

Dy 4+ [(2.6)m — 0.2] — 2 (mod 7)
Taking December 1, 1990, as an example, we have
Diggo + [(2.6)10 —0.2] —2=4+25—-2 =6 (mod 7)

that is, the first of December in 1990 fell on a Saturday.
Finally, the number w of day d, month m, year Y = 100c + y is determined
from congruence

w=(—-1)+ Dy + [(2.6)m — 0.2] — 2 (mod 7)
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We can use Eq. (3) to recast this:

c
4
We summarize the results of this section in the following theorem.

w=d+[26m—021-2+y+[S]+ [ﬁ] il @)

Theorem 6.12. The date with month m, day d, year Y = 100c + y where ¢ > 16 and
0 < y < 100, has weekday number

T4 [3] wa
provided that March is taken as the first month of the year and January and February

are assumed to be the eleventh and twelfth months of the previous year.
Let us give an example using the calendar formula.

w=d+[26m—021-2+y+|

Example 6.5. On what day of the week will January 14, 2020, occur?
In our convention, January of 2020 is treated as the eleventh month of the year
2019. The weekday number corresponding to its fourteenth day is computed as

w = 14 + [(2.6)11 — 0.2] — 40 + 19 + [20/4] + [19/4]
=14+28-40+19+5+4=2(mod7)
We conclude that January 14, 2020, will take place on a Tuesday.

An interesting question to ask about the calendar is whether every year contains a
Friday the thirteenth. Phrased differently, does the congruence
c

4] i [%] (mod 7)

hold for each year Y = 100c + y? Notice that the expression [(2.6)m — 0.2] assumes,
modulo 7, each of the values 0, 1, . . ., 6 as m varies from 3 to 9—values corresponding
to the months May through November. Hence there will always be a month for which
the indicated congruence is satisfied: in fact, there will always be a Friday the thirteenth
during these seven months of any year. For the year 2022, as an example, the Friday
the thirteenth congruence reduces to

0= [(2.6)m — 0.2] (mod 7)
which holds when m = 3. In 2022, there is a Friday the thirteenth in May.

5=13+[26m - 020~ 2 +y+|

PROBLEMS 6.4

1. Find the number 7 of leap years such that 1600 < n < Y, when
(a) Y = 1825.
(b) Y = 1950.
(c) Y = 2075.
. Determine the day of the week on which you were born.
. Find the day of the week for the important dates below:
(a) November 19, 1863 (Lincoln’s Gettysburg Address).
(b) April 18, 1906 (San Francisco earthquake).
(c) November 11, 1918 (Great War ends).
(d) October 24, 1929 (Black Day on the New York stock market).

W N



NUMBER-THEORETIC FUNCTIONS 127

(e) June 6, 1944 (Allies land in Normandy).
(f) February 15, 1898 (Battleship Maine blown up).
4. Show that days with the identical calendar date in the years 1999 and 1915 fell on the
same day of the week.
[Hint: If Wi and W, are the weekday numbers for the same date in 1999 and 1915,
respectively, verify that Wi — W, = 0 (mod 7).]
5. For the year 2010, determine the following:
(a) the calendar dates on which Mondays will occur in March.
(b) the months in which the thirteenth will fall on a Friday.
6. Find the years in the decade 2000 to 2009 when November 29 is on a Sunday.



