CHAPTER

S

FERMAT’S THEOREM

And perhaps posterity will thank me for having shown it that the
ancients did not know everything.
P. DE FERMAT

5.1 PIERRE DE FERMAT

What the ancient world had known was largely forgotten during the intellectual
torpor of the Dark Ages, and it was only after the 12th century that Western Europe
again became conscious of mathematics. The revival of classical scholarship was
stimulated by Latin translations from the Greek and, more especially, from the
Arabic. The Latinization of Arabic versions of Euclid’s great treatise, the Elements,
first appeared in 1120. The translation was not a faithful rendering of the Elements,
having suffered successive, inaccurate translations from the Greek—first into Arabic,
then into Castilian, and finally into Latin—done by copyists not versed in the content
of the work. Nevertheless, this much-used copy, with its accumulation of errors,
served as the foundation of all editions known in Europe until 1505, when the Greek
text was recovered.

With the fall of Constantinople to the Turks in 1453, the Byzantine schol-
ars who had served as the major custodians of mathematics brought the ancient
masterpieces of Greek learning to the West. It is reported that a copy of what sur-
vived of Diophantus’s Arithmetica was found in the Vatican library around 1462 by
Johannes Miiller (better known as Regiomontanus from the Latin name of his native
town, Konigsberg). Presumably, it had been brought to Rome by the refugees from
Byzantium. Regiomontanus observed, “In these books the very flower of the whole
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of arithmetic lies hid,” and tried to interest others in translating it. Notwithstanding
the attention that was called to the work, it remained practically a closed book until
1572 when the first translation and printed edition was brought out by the German
professor Wilhelm Holzmann, who wrote under the Grecian form of his name,
Xylander. The Arithmetica became fully accessible to European mathematicians
when Claude Bachet—borrowing liberally from Xylander—published (1621) the
original Greek text, along with a Latin translation containing notes and comments.
The Bachet edition probably has the distinction of being the work that first directed
the attention of Fermat to the problems of number theory.

Few if any periods were so fruitful for mathematics as was the 17th century;
Northern Europe alone produced as many men of outstanding ability as had ap-
peared during the preceding millennium. At a time when such names as Desargues,
Descartes, Pascal, Wallis, Bernoulli, Leibniz, and Newton were becoming famous, a
certain French civil servant, Pierre de Fermat (1601-1665), stood as an equal among
these brilliant scholars. Fermat, the “Prince of Amateurs,” was the last great mathe-
matician to pursue the subject as a sideline to a nonscientific career. By profession a
lawyer and magistrate attached to the provincial parliament at Toulouse, he sought
refuge from controversy in the abstraction of mathematics. Fermat evidently had no
particular mathematical training and he evidenced no interest in its study until he
was past 30; to him, it was merely a hobby to be cultivated in leisure time. Yet no
practitioner of his day made greater discoveries or contributed more to the advance-
ment of the discipline: one of the inventors of analytic geometry (the actual term was
coined in the early 19th century), he laid the technical foundations of differential
and integral calculus and, with Pascal, established the conceptual guidelines of the
theory of probability. Fermat’s real love in mathematics was undoubtedly number
theory, which he rescued from the realm of superstition and occultism where it had
long been imprisoned. His contributions here overshadow all else; it may well be
said that the revival of interest in the abstract side of number theory began with
Fermat.
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Fermat preferred the pleasure he derived from mathematical research itself to any
reputation that it might bring him; indeed, he published only one major manuscript
during his lifetime and that just 5 years before his death, using the concealing initials
M.PE.A.S. Adamantly refusing to put his work in finished form, he thwarted several
efforts by others to make the results available in print under his name. In partial
compensation for his lack of interest in publication, Fermat carried on a voluminous
correspondence with contemporary mathematicians. Most of what little we know
about his investigations is found in the letters to friends with whom he exchanged
problems and to whom he reported his successes. They did their best to publicize
Fermat’s talents by passing these letters from hand to hand or by making copies,
which were dispatched over the Continent.

As his parliamentary duties demanded an ever greater portion of his time, Fermat
was given to inserting notes in the margin of whatever book he happened to be
using. Fermat’s personal copy of the Bachet edition of Diophantus held in its margin
many of his famous theorems in number theory. These were discovered by his son
Samuel 5 years after Fermat’s death. His son brought out a new edition of the
Arithmetica incorporating Fermat’s celebrated marginalia. Because there was little
space available, Fermat’s habit had been to jot down some result and omit all steps
leading to the conclusion. Posterity has wished many times that the margins of the
Arithmetica had been wider or that Fermat had been a little less secretive about his
methods.

5.2 FERMAT’S LITTLE THEOREM AND PSEUDOPRIMES

The most significant of Fermat’s correspondents in number theory was Bernhard
Frénicle de Bessy (1605-1675), an official at the French mint who was renowned for
his gift of manipulating large numbers. (Frénicle’s facility in numerical calculation is
revealed by the following incident: On hearing that Fermat had proposed the problem
of finding cubes that when increased by their proper divisors become squares, as is the
case with 7> + (1 4+ 7 + 7?) = 207, he immediately gave four different solutions, and
supplied six more the nextday.) Though in no way Fermat’s equal as a mathematician,
Frénicle alone among his contemporaries could challenge Fermat in number theory
and Frénicle’s challenges had the distinction of coaxing out of Fermat some of his
carefully guarded secrets. One of the most striking is the theorem that states: If p
is a prime and a is any integer not divisible by p, then p divides a?~! — 1. Fermat
communicated the result in a letter to Frénicle dated October 18, 1640, along with
the comment, “I would send you the demonstration, if I did not fear its being too
long.” This theorem has since become known as “Fermat’s Little Theorem,” or just
“Fermat’s Theorem,” to distinguish it from Fermat’s “Great” or “Last Theorem,”
which is the subject of Chapter 12. Almost 100 years were to elapse before Euler
published the first proof of the little theorem in 1736. Leibniz, however, seems not
to have received his share of recognition, for he left an identical argument in an
unpublished manuscript sometime before 1683.
We now proceed to a proof of Fermat’s theorem.
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Theorem 5.1 Fermat’s theorem. Let p be a prime and suppose that p } a. Then
a?~! =1 (mod p).

Proof. We begin by considering the first p — 1 positive multiples of a; that is, the
integers
a,2a,3a,...,(p—1a

None of these numbers is congruent modulo p to any other, nor is any congruent to
zero. Indeed, if it happened that

ra = sa (mod p) l<r<s<p-1

then a could be canceled to give r = s (mod p), which is impossible. Therefore, the
previous set of integers must be congruent modulo p to 1,2, 3, ..., p — 1, taken in
some order. Multiplying all these congruences together, we find that

a-2a-3a---(p—1a=1-2-3---(p—1) (mod p)
whence
a?~'(p— 1! = (p — 1)! (mod p)

Once (p — 1)!is canceled from both sides of the preceding congruence (this is possible
because since p f (p — 1)!), our line of reasoning culminates in the statement that
a?~! = 1 (mod p), which is Fermat’s theorem.

This result can be stated in a slightly more general way in which the requirement

that p [ a is dropped.

Corollary. If p is a prime, then a? = a (mod p) for any integer a.
Proof. When p |a, the statement obviously holds; for, in this setting, a? =0=a

(mod p). If p [ a, then according to Fermat’s theorem, we have a?~! = 1 (mod p).
When this congruence is multiplied by a, the conclusion a? = a (mod p) follows.

There is a different proof of the fact that a? = a (mod p), involving induction

on a. If a = 1, the assertion is that 17 = 1 (mod p), which clearly is true, as is the
case a = 0. Assuming that the result holds for a, we must confirm its validity for
a + 1. In light of the binomial theorem,

(a+1)p=ap—|—(f)a”_l—l—---—i-(i)a”_k+--~+(plil)a+l

where the coefficient (7)) is given by

(p)_ p! _plp=D---(p—k+1)
k) kWp—k)! 1-2-3---k

Our argument hinges on the observation that (}) = 0 (mod p) for 1 <k < p — 1.
To see this, note that

k!(i) —p(p—1)---(p—k+1)= 0 (mod p)
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by virtue of which p | k! or p | (¥ ). But p | k! implies that p | j for some j satisfying
1 < j <k < p — 1, an absurdity. Therefore, p | (‘Z ) or, converting to a congruence

statement,
(II:) = (0 (mod p)

The point we wish to make is that
(@+1))=a?+1=a+ 1 (mod p)

where the rightmost congruence uses our inductive assumption. Thus, the desired
conclusion holds for a + 1 and, in consequence, for all a > 0. If a happens to be
a negative integer, there is no problem: because a = r (mod p) for some r, where
O0<r<p-1,wegeta? =r? =r = a (mod p).

Fermat’s theorem has many applications and is central to much of what is done
in number theory. In the least, it can be a labor-saving device in certain calculations.
If asked to verify that 5*® = 4 (mod 11), for instance, we take the congruence 5° = 1
(mod 11) as our starting point. Knowing this,

538 — 510-3+8 — (510)3(52)4
=13.3*=81 =4 (mod 11)

as desired.
Another use of Fermat’s theorem is as a tool in testing the primality of a given
integer n. If it could be shown that the congruence

a” = a (mod n)

fails to hold for some choice of a, then n is necessarily composite. As an example
of this approach, let us look at » = 117. The computation is kept under control by
selecting a small integer for a, say, a = 2. Because 2'!7 may be written as

T _ 971645 _ (97)1655
and 27 = 128 = 11 (mod 117), we have
217 = 111625 = (121)825 = 48 . 2° = 2% (mod 117)
But 22! = (27)3, which leads to
221 =113=121-11=4-11 = 44 (mod 117)
Combining these congruences, we finally obtain
2117 = 44 = 2 (mod 117)

so that 117 must be composite; actually, 117 = 13 - 9.

It might be worthwhile to give an example illustrating the failure of the converse
of Fermat’s theorem to hold, in other words, to show that if a*~! = 1 (mod n) for
some integer a, then n need not be prime. As a prelude we require a technical lemma.

Lemma. If p and g are distinct primes with a? = a (mod ¢) and a? = a (mod p),
then a?? = a (mod pq).



90 ELEMENTARY NUMBER THEORY

Proof. The last corollary tells us that (a?)? = a? (mod p), whereas a? = a (mod p)
holds by hypothesis. Combining these congruences, we obtain a”? = a (mod p) or, in
different terms, p | a?? — a. In an entirely similar manner, q | a?? — a. Corollary 2 to
Theorem 2.4 now yields pq | a?? — a, which can be recast as a?? = a (mod pq).

Our contention is that 234 = 1 (mod 341), where 341 = 11 - 31. In working
toward this end, notice that 2!° = 1024 = 31 - 33 + 1. Thus,

211 =2.219=2.1 =2 (mod 31)
and
221 =221 =2.1°> =2 (mod 11)
Exploiting the lemma,
21131 = 2 (mod 11 - 31)
or 2’41 = 2 (mod 341). After canceling a factor of 2, we pass to
2340 = 1 (mod 341)

so that the converse to Fermat’s theorem is false.

The historical interest in numbers of the form 2" — 2 resides in the claim made by
Chinese mathematicians over 25 centuries ago that n is prime if and only ifn | 2" — 2
(in point of fact, this criterion is reliable for all integers n < 340). Our example,
where 341 |23*! — 2, although 341 = 11 - 31, lays the conjecture to rest; this was
discovered in the year 1819. The situation in which n | 2" — 2 occurs often enough
to merit a name, though: a composite integer n is called pseudoprime whenever
n | 2" — 2. It can be shown that there are infinitely many pseudoprimes, the smallest
four being 341, 561, 645, and 1105.

Theorem 5.2 allows us to construct an increasing sequence of pseudoprimes.

Theorem 5.2. If n is an odd pseudoprime, then M, = 2" — 1 is a larger one.

Proof. Because n is a composite number, we can write n =rs, with 1 <r <
s < n. Then, according to Problem 21, Section 2.3, 2" — 1|2" — 1, or equivalently
2" — 1| M,, making M, composite. By our hypotheses, 2" =2 (mod n); hence
2" — 2 = kn for some integer k. It follows that

2Mn—1 — 22"—2 — 2kn
This yields

2Mn—1 — ] = 2kn ]
=W = 1)(2n(k—1) + 2n(k—2) 2" 4 1)
= M2/« 42742 ... 42" + 1)
= 0 (mod M,)

We see immediately that 2¥» — 2 = 0 (mod M,,), in light of which M,, is a pseudoprime.
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More generally, a composite integer n for which a" = a (mod n) is called a
pseudoprime to the base a. (When a = 2, n is simply said to be a pseudoprime.) For
instance, 91 is the smallest pseudoprime to base 3, whereas 217 is the smallest such
to base 5. It has been proved (1903) that there are infinitely many pseudoprimes to
any given base.

These “prime imposters” are much rarer than are actual primes. Indeed, there are
only 247 pseudoprimes smaller than one million, in comparison with 78498 primes.
The first example of an even pseudoprime, namely, the number

161038 =2-73-1103

was found in 1950.

There exist composite numbers n that are pseudoprimes to every base a;
that is, a"~! = 1 (mod n) for all integers a with gcd(a, n) = 1. The least such is
561. These exceptional numbers are called absolute pseudoprimes or Carmichael
numbers, for R. D. Carmichael, who was the first to notice their existence. In
his first paper on the subject, published in 1910, Carmichael indicated four ab-
solute pseudoprimes including the well-known 561 = 3 .11 - 17. The others are
1105=5-13-17,2821 =7-13-31, and 15841 = 7 - 31 - 73. Two years later he
presented 11 more having three prime factors and discovered one absolute pseudo-
prime with four factors, specifically, 16046641 = 13 - 37 - 73 . 457.

To see that 561 = 3-11-17 must be an absolute pseudoprime, notice that
gcd(a, 561) = 1 gives

gcd(a, 3) = ged(a, 11) = ged(a, 17) =1
An application of Fermat’s theorem leads to the congruences
a>=1mod3) a'®=1@mod1l) a'®=1 (mod17)

and, in turn, to

@ =.(a?*)?? = 1 (mod 3)

a0 = (@19 = 1 (mod 11)

a>® = (a'%)® =1 (mod 17)
These give rise to the single congruence a%° = 1 (mod 561), where ged(a, 561) = 1.
But then a>®! = a (mod 561) for all a, showing 561 to be an absolute pseudoprime.

Any absolute pseudoprime is square-free. This is easy to prove. Suppose

thata” = a (mod n) for every integer a, but k? | nforsomek > 1.If weleta = k,then
k" = k (mod n). Because k? | n, this last congruence holds modulo k?; that is, k =
k" = 0 (mod k?), whence k? | k, which is impossible. Thus, n must be square-free.

Next we present a theorem that furnishes a means for producing absolute
pseudoprimes.

Theorem 5.3. Let n be a composite square-free integer, say, n = pps - - - p,, Where
the p; are distinct primes. If p; —1|n —1fori = 1,2,...,r, then n is an absolute
pseudoprime.
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Proof. Suppose that a is an integer satisfying gcd(a, n) = 1, so that ged(a, p;) = 1
for each i. Then Fermat’s theorem yields p; |a”~! — 1. From the divisibility hy-
pothesis p; — 1|n — 1, we have p; |a"~! — 1, and therefore p; | a" — a for all @ and
i=1,2,...,r. Asaresult of Corollary 2 to Theorem 2.4, we end up withn |a" — a,
which makes #n an absolute pseudoprime.

Examples of integers that satisfy the conditions of Theorem 5.3 are

1729 =7-13-19 6601 =7 -23-41 10585 =5-29-73

It was proven in 1994 that infinitely many absolute pseudoprimes exist, but that they
are fairly rare. There are just 43 of them less than one million, and 105212 less
than 10%.

PROBLEMS 5.2

1.
2.

w

oo

10.

11.

Use Fermat’s theorem to verify that 17 divides 111% 4 1.
(a) If ged(a, 35) = 1, show that a'> = 1 (mod 35).
[Hint: From Fermat’s theorem a® = 1 (mod 7) and a* = 1 (mod 5).]
(b) If ged(a, 42) = 1, show that 168 = 3 - 7 - 8 divides a® — 1.
(c) If ged(a, 133) = ged(b, 133) = 1, show that 133 | a!® — b13,

. From Fermat’s theorem deduce that, for any integer n > 0, 13 1112*+6 4 1,
. Derive each of the following congruences:

(a) a?! = a (mod 15) for all a.
[Hint: By Fermat’s theorem, a®> = a (mod 5).]
(b) @’ = a (mod 42) for all a.
(c) a® =a(mod3-7-13)foralla.
(d) @® = a (mod 30) for all a.

. If gcd(a, 30) = 1, show that 60 divides a* + 59.

(a) Find the units digit of 3% by the use of Fermat’s theorem.
(b) For any integer a, verify that a> and a have the same units digit.

. If 7 f a, prove that either a® + 1 or a® — 1 is divisible by 7.
. The three most recent appearances of Halley’s comet were in the years 1835, 1910, and

1986; the next occurrence will be in 2061. Prove that

1835919 4 1986%%! = 0 (mod 7)

(a) Let p be a prime and gcd(a, p) = 1. Use Fermat’s theorem to verify that x = a?~2b
(mod p) is a solution of the linear congruence ax = b (mod p).

(b) By applying part (a), solve the congruences 2x = 1 (mod 31), 6x = 5 (mod 11), and
3x = 17 (mod 29).

Assuming that a and b are integers not divisible by the prime p, establish the following:

(a) If a? = bP (mod p), then a = b (mod p).

(b) If a? = b? (mod p), then a? = b” (mod p?).
[Hint: By (a),a = b + pk for somek, sothata? — b? = (b + pk)? — b?; now show
that p? divides the latter expression.]

Employ Fermat’s theorem to prove that, if p is an odd prime, then

(@ 17714271431 ... 4 (p—1)?1 = —1 (mod p).

(b) 17 +27 + 37 + ...+ (p — 1)? = 0 (mod p).
[Hint: Recall theidentity 1 +2+3+---+(p — 1) = p(p — 1)/2.]
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13.

14.

15.

16.

17.

18.

19.

20.

21.
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Prove that if p is an odd prime and k is an integer satisfying 1 < k < p — 1, then the
binomial coefficient

<” . 1) = (=1)* (mod p)

Assume that p and g are distinct odd primes such that p — 1 |g — 1. If ged(a, pg) = 1,
show that a?~! = 1 (mod pq).
If p and ¢q are distinct primes, prove that

P91+ ¢? ! =1 (mod pq)

Establish the statements below:

(a) If the number M, = 27 — 1 is composite, where p is a prime, then M, is a pseudo-
prime.

(b) Every composite number F, = 22" + 1 is a pseudoprime (n = 0, 1,2, ...).
[Hint: By Problem 21, Section 2.3, 2"t1|2%" implies that 22" — 1|2F~1 — 1;
but F, |22 — 1]

Confirm that the following integers are absolute pseudoprimes:

(a) 1105=5-13-17.

(b) 2821 =7-13-31.

(c) 2465 =5-17-29.

Show that the smallest pseudoprime 341 is not an absolute pseudoprime by showing that

11341 £ 11 (mod 341).

[Hint: 31 f 1134 —11.]

(a) When n = 2p, where p is an odd prime, prove that a"~! = a (mod n) for any
integer a.

(b) Forn = 195 = 3.5 - 13, verify that a"~? = a (mod n) for any integer a.

Prove that any integer of the form

n = (6k+ 1)(12k + 1)(18k + 1)

is an absolute pseudoprime if all three factors are prime; hence, 1729 =7 -13 - 19is an
absolute pseudoprime.

Show that 561 | 2361 — 2 and 561 | 3°6! — 3. It is an unanswered question whether there
exist infinitely many composite numbers n with the property thatn | 2" — 2andn | 3" — 3.
Establish the congruence

2222335 4+ 55552222 = () (mod 7)

[Hint: First evaluate 1111 modulo 7.]

5.3 WILSON’S THEOREM

We now turn to another milestone in the development of number theory. In his
Meditationes Algebraicae of 1770, the English mathematician Edward Waring
(1734-1798) announced several new theorems. Foremost among these is an in-
teresting property of primes reported to him by one of his former students, a certain
John Wilson. The property is the following: If p is a prime number, then p divides
(p — 1)! 4 1. Wilson appears to have guessed this on the basis of numerical com-
putations; at any rate, neither he nor Waring knew how to prove it. Confessing his
inability to supply a demonstration, Waring added, “Theorems of this kind will be



94 ELEMENTARY NUMBER THEORY

very hard to prove, because of the absence of a notation to express prime numbers.”
(Reading the passage, Gauss uttered his telling comment on “notationes versus no-
tiones,” implying that in questions of this nature it was the notion that really mattered,
not the notation.) Despite Waring’s pessimistic forecast, soon afterward Lagrange
(1771) gave a proof of what in literature is called “Wilson’s theorem” and observed
that the converse also holds. Perhaps it would be more just to name the theorem after
Leibniz, for there is evidence that he was aware of the result almost a century earlier,
but published nothing on the subject.
Now we give a proof of Wilson’s theorem.

Theorem 5.4 Wilson. If p is a prime, then (p — 1)! = —1 (mod p).

Proof. Dismissing the cases p = 2 and p = 3 as being evident, let us take p > 3.
Suppose that a is any one of the p — 1 positive integers

1,2,3,...,p—1

and consider the linear congruence ax = 1 (mod p). Then gcd(a, p) = 1. By Theorem
4.7, this congruence admits a unique solution modulo p; hence, there is a unique integer
a’,with 1 <a’ < p — 1, satisfying aa’ = 1 (mod p).

Because p is prime, a = a’ if and only if a = 1 or a = p — 1. Indeed, the con-
gruence a®> = 1 (mod p) is equivalent to (@ — 1) - (a + 1) = 0 (mod p). Therefore,
eithera — 1 = 0 (mod p), in which casea = 1, ora + 1 = 0 (mod p), in which case
a=p-—1.

If we omit the numbers 1 and p — 1, the effect is to group the remaining integers
2,3,..., p— 2into pairs a, a’, where a # a’, such that their product aa’ = 1 (mod p).
When these (p — 3)/2 congruences are multiplied together and the factors rearranged,
we get

2-3---(p—2)=1(mod p)
or rather
(p—2)! =1 (mod p)
Now multiply by p — 1 to obtain the congruence
(p—D!'=p—-1=-1(mod p)

as was to be proved.

Example 5.1. A concrete example should help to clarify the proof of Wilson’s theorem.
Specifically, let us take p = 13. It is possible to divide the integers 2, 3, ..., 11 into
(p — 3)/2 = 5 pairs, each product of which is congruent to 1 modulo 13. To write
these congruences out explicitly:
2-7=1(mod 13)
3.9 =1 (mod 13)
4.10 =1 (mod 13)
5-8=1(mod 13)
6-11 =1 (mod 13)
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Multiplying these congruences gives the result
1I'=2-73-9)(@4-10)5-8)(6-11) = 1 (mod 13)
and so
12! =12 = —1 (mod 13)
Thus, (p — 1)! = —1 (mod p), with p = 13.

The converse of Wilson’s theorem is also true. If (n — 1)! = —1 (mod n), then
n must be prime. For, if 7 is not a prime, then »n has a divisor d with 1 < d < n.
Furthermore, because d < n — 1, d occurs as one of the factors in (n — 1)!, whence
d|(n — 1)!. Now we are assuming thatn | (n — 1)! + 1,and sod | (n — 1)! + 1, too.
The conclusion is that d | 1, which is nonsense.

Taken together, Wilson’s theorem and its converse provide a necessary and
sufficient condition for determining primality; namely, an integer n > 1 is prime if
andonlyif (n — 1)! = —1 (mod n). Unfortunately, this test is of more theoretical than
practical interest because as n increases, (n — 1)! rapidly becomes unmanageable in
size.

We would like to close this chapter with an application of Wilson’s theorem
to the study of quadratic congruences. [It is understood that quadratic congruence
means a congruence of the form ax? + bx + ¢ = 0 (mod n), with a # 0 (mod 7).]
This is the content of Theorem 5.5.

Theorem 5.5. The quadratic congruence x2 4+ 1 = 0 (mod p), where p is an odd
prime, has a solution if and only if p = 1 (mod 4).

Proof. Let a be any solution of x> + 1 = 0 (mod p), so thata? = —1 (mod p). Because
p [ a, the outcome of applying Fermat’s theorem is
l1=a?! = @*»)P V2 = (=1)?P"Y"2 (mod p)
The possibility that p = 4k + 3 for some k does not arise. If it did, we would have
(_1)(p—1)/2 — (_1)2k+1 =1

hence, 1 = —1 (mod p). The net result of this is that p | 2, which is patently false.
Therefore, p must be of the form 4k + 1.
Now for the opposite direction. In the product

(p-Dl=1.2... 50— . p-2(p-1)
we have the congruences

p—1=—1(mod p)
p—2=—2(mod p)

+1 -1
P =L modp)
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Rearranging the factors produces

—1 -1
(p—l)!z1-(—1>-2-(—2)~-”—-<—”T> (mod p)

2
= (=1)P-b/2 (1 L 1 PT_I) (mod p)

because there are (p — 1)/2 minus signs involved. It is at this point that Wilson’s
theorem can be brought to bear; for, (p — 1)! = —1 (mod p), whence

2
1= (=1)P-D2 [(pT_1> 1] (mod p)

If we assume that p is of the form 4k + 1, then (—1)?~D/2 = 1, leaving us with the

congruence
—1\ 12
—1= [(%) !] (mod p)

The conclusion is that the integer [(p — 1)/2]! satisfies the quadratic congruence x2 + 1
= 0 (mod p).

Let us take a look at an actual example, say, the case p = 13, which is a prime
of the form 4k + 1. Here, we have (p — 1)/2 = 6, and it is easy to see that

6! = 720 = 5 (mod 13)
and
524+ 1 =126=0 (mod 13)

Thus, the assertion that [((p — 1)/2)!]*> + 1 = 0 (mod p) is correct for p = 13.
Wilson’s theorem implies that there exists an infinitude of composite numbers
of the form n! 4 1. On the other hand, it is an open question whether n! + 1 is prime
for infinitely many values of n. The only values of n in the range 1 < n < 100 for
which n! + 1 is known to be a prime numberaren = 1, 2, 3, 11, 27, 37,41, 73, and
77. Currently, the largest prime of the form n! 4 1 is 6380! 4 1, discovered in 2000.

PROBLEMS 5.3

1. (a) Find the remainder when 15! is divided by 17.

(b) Find the remainder when 2(26!) is divided by 29.

Determine whether 17 is a prime by deciding whether 16! = —1 (mod 17).

Arrange the integers 2, 3, 4, ..., 21 in pairs a and b that satisfy ab = 1 (mod 23).
Show that 18! = —1 (mod 437).

(a) Prove that an integer n > 1 is prime if and only if (n — 2)! = 1 (mod n).

(b) If n is a composite integer, show that (n — 1)! = 0 (mod n), except when n = 4.
Given a prime number p, establish the congruence

A ol ol

o

(p—D!'=p—1(modl+2+43+---+(p—1)
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11.

12.

13.

14.

15.

16.
17.
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. If p is a prime, prove that for any integer a,

pla? +(p—1Dla and pl(p—Da? +a
[Hint: By Wilson’s theorem, a? + (p — 1)!la = a? — a (mod p).]

. Find two odd primes p < 13 for which the congruence (p — 1)! = —1 (mod p?) holds.

Using Wilson’s theorem, prove that for any odd prime p,
12.32.5%. .. (p— 2)* = (= )?*V"? (mod p)
[Hint: Because k = —(p — k) (mod p), it follows that
2:4.6---(p—1)=(=DPV21.3.5...(p —2) (mod p).]
(a) For a prime p of the form 4k + 3, prove that either

<p—_1)! =1(mod p) or (p—_l)! = —1 (mod p)
2 2
hence, [(p — 1)/2]! satisfies the quadratic congruence x%2 =1 (mod D).
(b) Use part (a) to show that if p = 4k 4 3 is prime, then the product of all the even
integers less than p is congruent modulo p to either 1 or —1.
[Hint: Fermat’s theorem implies that 2?~1/2 = +1 (mod p).]
Apply Theorem 5.5 to obtain two solutions to each of the quadratic congruences x> = —1
(mod 29) and x2 = —1 (mod 37).
Show that if p = 4k + 3 is prime and a? 4+ b? = 0 (mod p), then a = b = 0 (mod p).
[Hint: If a # 0 (mod p), then there exists an integer ¢ such that ac = 1 (mod p); use this
fact to contradict Theorem 5.5.]
Supply any missing details in the following proof of the irrationality of +/2: Suppose
V2 = a/b, with ged(a, b) = 1. Then a® = 2b?, so that a®> + b?> = 3b%. But 3 | (a® + b?)
implies that 3 |a and 3 | b, a contradiction.
Prove that the odd prime divisors of the integer n? + 1 are of the form 4k + 1.
[Hint: Theorem 5.5.]
Verify that 4(29!) + 5! is divisible by 31.
For a prime p and 0 < k < p — 1, show that k!(p — k — 1)! = (=1)’*! (mod p).
If p and ¢q are distinct primes, prove that for any integer a,

pqla?? —af? —a% +a
Prove that if p and p + 2 are a pair of twin primes, then

4(p—1D!'+ 1)+ p=0(@mod p(p + 2))

5.4 THE FERMAT-KRAITCHIK FACTORIZATION METHOD

In a fragment of a letter, written in all probability to Father Marin Mersenne in 1643,
Fermat described a technique of his for factoring large numbers. This represented
the first real improvement over the classical method of attempting to find a factor
of n by dividing by all primes not exceeding +/n. Fermat’s factorization scheme has
at its heart the observation that the search for factors of an odd integer n (because
powers of 2 are easily recognizable and may be removed at the outset, there is no
loss in assuming that n is odd) is equivalent to obtaining integral solutions x and y
of the equation

n=x%—y>



98 ELEMENTARY NUMBER THEORY

If n is the difference of two squares, then it is apparent that n can be factored as

n=x*—y*=@x+y)x -y

Conversely, when n has the factorizationn = ab, witha > b > 1, then we may write

_(a+b 2 a—b\?
"= 2
Moreover, because 7 is taken to be an odd integer, a and b are themselves odd; hence
(a + b)/2 and (a — b)/2 will be nonnegative integers.

One begins the search for possible x and y satisfying the equation n = x
or what is the same thing, the equation

—n=y?

2 2
_y,

by first determining the smallest integer k for which k2 > n. Now look successively
at the numbers

k> —n,(k+12%—n,k+2?%—n,k+3?%—n,...

until a value of m > /n is found making m? — n a square. The process cannot go
on indefinitely, because we eventually arrive at

() --(5)

the representation of n corresponding to the trivial factorization n = n - 1. If this
point is reached without a square difference having been discovered earlier, then n
has no factors other than n and 1, in which case it is a prime.

Fermat used the procedure just described to factor

2027651281 = 44021 - 46061

in only 11 steps, as compared with making 4580 divisions by the odd primes up to
44021. This was probably a favorable case devised on purpose to show the chief
virtue of his method: It does not require one to know all the primes less than /n to
find factors of n.

Example 5.2. To illustrate the application of Fermat’s method, let us factor the inte-
ger n = 119143. From a table of squares, we find that 3452 < 119143 < 3462; thus
it suffices to consider values of k% — 119143 for those k that satisfy the inequality
346 < k < (119143 + 1)/2 = 59572. The calculations begin as follows:

3462 — 119143 = 119716 — 119143 = 573

3472 — 119143 = 120409 — 119143 = 1266

3482 — 119143 = 121104 — 119143 = 1961

3492 — 119143 = 121801 — 119143 = 2658

350% — 119143 = 122500 — 119143 = 3357

3512 — 119143 = 123201 — 119143 = 4058

3522 — 119143 = 123904 — 119143 = 4761 = 69>
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This last line exhibits the factorization
119143 = 352% — 692 = (352 4+ 69)(352 — 69) = 421 - 283

the two factors themselves being prime. In only seven trials, we have obtained the prime
factorization of the number 119143. Of course, one does not always fare so luckily; it
may take many steps before a difference turns out to be a square.

Fermat’s method is most effective when the two factors of n are of nearly the
same magnitude, for in this case a suitable square will appear quickly. To illustrate,
let us suppose that n = 23449 is to be factored. The smallest square exceeding n is
1542, so that the sequence k2 — n starts with

1542 — 23449 = 23716 — 23449 = 267
1552 — 23449 = 24025 — 23449 = 576 = 242

Hence, factors of 23449 are
23449 = (155 + 24)(155 — 24) =179 - 131

When examining the differences k> — n as possible squares, many values can be
immediately excluded by inspection of the final digits. We know, for instance, that
a square must end in one of the six digits 0, 1, 4, 5, 6, 9 (Problem 2(a), Section 4.3).
This allows us to exclude all values in Example 5.2, save for 1266, 1961, and 4761.
By calculating the squares of the integers from 0 to 99 modulo 100, we see further
that, for a square, the last two digits are limited to the following 22 possibilities:

00 21 41 64 89
01 24 44 69 96
04 25 49 76
09 29 56 81
16 36 61 84

The integer 1266 can be eliminated from consideration in this way. Because 61 is
among the last two digits allowable in a square, it is only necessary to look at the
numbers 1961 and 4761; the former is not a square, but 4761 = 692.

There is a generalization of Fermat’s factorization method that has been used
with some success. Here, we look for distinct integers x and y such that x2 — y? is
a multiple of n rather than n itself; that is,

x2 = y2 (mod n)

Having obtained such integers, d = gcd(x — y, n) (ord = gecd(x + y, n)) can be
calculated by means of the Euclidean Algorithm. Clearly, d is a divisor of n, but is
it a nontrivial divisor? In other words, do we have 1 < d < n?

In practice, n is usually the product of two primes p and g, with p < g, so that
d is equal to 1, p, g, or pq. Now the congruence x?> = y? (mod n) translates into
pq | (x — y)(x + y). Euclid’s lemma tells us that p and ¢ must divide one of the

factors. If it happened that p |x — y and q | x — y, then pg | x — y, or expressed as
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a congruence x = y (mod n). Also, p|x + yand g |x + y yield x = —y (mod n).
By seeking integers x and y satisfying x2 = y? (mod n), where x # £y (mod n),
these two situations are ruled out. The result of all this is that d is either p or g,
giving us a nontrivial divisor of n.

Example 5.3. Suppose we wish to factor the positive integer n = 2189 and happen to
notice that 579% = 182 (mod 2189). Then we compute

gcd(579 — 18, 2189) = gcd(561, 2189) =11
using the Euclidean Algorithm:

2189 = 3. 561 + 506
561 =1-506+ 55
506 =9-55+11
O =k -k

This leads to the prime divisor 11 of 2189. The other factor, namely 199, can be obtained
by observing that

gcd(579 + 18, 2189) = gcd(597, 2189) = 199

The reader might wonder how we ever arrived at a number, such as 579, whose
square modulo 2189 also turns out to be a perfect square. In looking for squares
close to multiples of 2189, it was observed that

812-3.2189=—-6 and 1552 —11-2189 = —54
which translates into
812=—-2-3(mod2189) and  155* = —2-3% (mod 2189)
When these congruences are multiplied, they produce
(81 - 155)* = (2 - 3%)? (mod 2189)

Because the product 81 - 155 = 12555 = —579 (mod 2189), we ended up with the
congruence 5792 = 182 (mod 2189).

The basis of our approach is to find several x; having the property that each xi2
is, modulo n, the product of small prime powers, and such that their product’s square
is congruent to a perfect square.

When n has more than two prime factors, our factorization algorithm may still
be applied; however, there is no guarantee that a particular solution of the congruence
x2 = y? (mod n), with x # £y (mod n), will result in a nontrivial divisor of n. Of
course the more solutions of this congruence that are available, the better the chance
of finding the desired factors of n.

Our next example provides a considerably more efficient variant of this last
factorization method. It was introduced by Maurice Kraitchik in the 1920s and
became the basis of such modern methods as the quadratic sieve algorithm.

Example 5.4. Let n = 12499 be the integer to be factored. The first square just larger

than n is 112? = 12544. So we begin by considering the sequence of numbers x? — n
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for x = 112,113, .... As before, our interest is in obtaining a set of values xi,
X2, ..., x; for which the product (x; —n)---(xx —n) is a square, say y%. Then
(x1 - - - x¢)? = y? (mod n), which might lead to a nontrivial factor of n.

A short search reveals that

112% — 12499 = 45
117% — 12499 = 1190
121% — 12499 = 2142
or, written as congruences,
1122 = 32 . 5 (mod 12499)
117 =2-5-7-17 (mod 12499)
121> = 2-32.7.17 (mod 12499)
Multiplying these together results in the congruence
(112117 - 121> = (2- 3% .5 -7 17)* (mod 12499)
that is,
1585584% = 10710 (mod 12499)
But we are unlucky with this square combination. Because
1585584 = 10710 (mod 12499)
only a trivial divisor of 12499 will be found. To be specific,
gcd(1585584 + 10710, 12499) =1
gcd(1585584 — 10710, 12499) = 12499
After further calculation, we notice that
113> = 2.5 -3 (mod 12499)
127> = 2-3-5- 11? (mod 12499)
which gives rise to the congruence
(113 - 127)* = (2 - 32 - 5- 11)? (mod 12499)
This reduces modulo 12499 to
1852% = 9907 (mod 12499)
and fortunately 1852 # + 990 (mod 12499). Calculating
gcd(1852 — 990, 12499) = gcd(862, 12499) = 431

produces the factorization 12499 = 29 - 431.
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PROBLEMS 5.4

1. Use Fermat’s method to factor each of the following numbers:
(a) 2279.
(b) 10541.
(c) 340663 [Hint: The smallest square just exceeding 340663 is 5842.]
2. Prove that a perfect square must end in one of the following pairs of digits: 00, 01, 04, 09,
16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.
[Hint: Because x2 = (50 + x)? (mod 100) and x2 = (50 — x)? (mod 100), it suffices to
examine the final digits of x2 for the 26 values x =0, 1,2, ..., 25.]
. Factor the number 2!! — 1 by Fermat’s factorization method.
4. In 1647, Mersenne noted that when a number can be written as a sum of two relatively
prime squares in two distinct ways, it is composite and can be factored as follows: If
n = a2+ b*=c?+d? then

w

_ (ac+bd)ac — bd)
 (a+d)a—d

Use this result to factor the numbers
493 = 18% 4+ 132 = 222 4 32
and
38025 = 1682 + 99% = 1562 + 1172

5. Employ the generalized Fermat method to factor each of the following numbers:
(a) 2911 [Hint: 138% = 677 (mod 2911).]
(b) 4573 [Hint: 177 = 92% (mod 4573).]
(c) 6923 [Hint: 208% = 932 (mod 6923).]

6. Factor 13561 with the help of the congruences

2332 =3%2.5(mod 13561) and  1281% =2*.5 (mod 13561)
7. (a) Factor the number 4537 by searching for x such that
x? — k- 4537

is the product of small prime powers.
(b) Use the procedure indicated in part (a) to factor 14429.
[Hint: 120% — 14429 = —29 and 3003% — 625 - 14429 = —116.]
8. Use Kraitchik’s method to factor the number 20437.



