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PRELIMINARIES

Number was born in superstition and reared in mystery, . .. numbers were once
made the foundation of religion and philosophy, and the tricks of figures

have had a marvellous effect on a credulous people.

F. W. PARKER

1.1 MATHEMATICAL INDUCTION

The theory of numbers is concerned, at least in its elementary aspects, with properties
of the integers and more particularly with the positive integers 1, 2, 3,... (also
known as the natural numbers). The origin of this misnomer harks back to the
early Greeks for whom the word number meant positive integer, and nothing else.
The natural numbers have been known to us for so long that the mathematician
Leopold Kronecker once remarked, “God created the natural numbers, and all the
rest is the work of man.” Far from being a gift from Heaven, number theory has
had a long and sometimes painful evolution, a story that is told in the ensuing
pages.

We shall make no attempt to construct the integers axiomatically, assuming
instead that they are already given and that any reader of this book is familiar with
many elementary facts about them. Among these is the Well-Ordering Principle,
stated here to refresh the memory.

Well-Ordering Principle. Every nonempty set S of nonnegative integers contains a
least element; that is, there is some integer a in S such that a < b for all b’s belonging
to S.
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Because this principle plays a critical role in the proofs here and in subsequent
chapters, let us use it to show that the set of positive integers has what is known as
the Archimedean property.

Theorem 1.1 Archimedean property. If a and b are any positive integers, then
there exists a positive integer n such that na > b.

Proof. Assume that the statement of the theorem is not true, so that for some a and b,
na < b for every positive integer n. Then the set

S = {b — na | n a positive integer}

consists entirely of positive integers. By the Well-Ordering Principle, S will possess a
least element, say, b — ma. Notice that b — (m + 1)a also lies in S, because S contains
all integers of this form. Furthermore, we have

b—(m+1a=0b—-—ma)—a<b—ma

contrary to the choice of b — ma as the smallest integer in S. This contradiction arose
out of our original assumption that the Archimedean property did not hold; hence, this
property is proven true.

With the Well-Ordering Principle available, it is an easy matter to derive the First
Principle of Finite Induction, which provides a basis for a method of proof called
mathematical induction. Loosely speaking, the First Principle of Finite Induction
asserts that if a set of positive integers has two specific properties, then it is the set
of all positive integers. To be less cryptic, we state this principle in Theorem 1.2.

Theorem 1.2 First Principle of Finite Induction. Let S be a set of positive integers
with the following properties:

(a) The integer 1 belongs to S.
(b) Whenever the integer k is in S, the next integer k£ + 1 must also be in S.

Then S is the set of all positive integers.

Proof. Let T be the set of all positive integers not in S, and assume that 7' is nonempty.
The Well-Ordering Principle tells us that T possesses a least element, which we denote
by a. Because 1 1sin §, certainly a > 1,and so 0 < a — 1 < a. The choice of a as the
smallest positive integer in 7 implies that a — 1 is not a member of T', or equivalently
that a — 1 belongs to S. By hypothesis, S must also contain (a — 1) + 1 = a, which
contradicts the fact that a lies in 7. We conclude that the set 7 is empty and in
consequence that S contains all the positive integers.

Here is a typical formula that can be established by mathematical induction:

, _nn+ ?(" +1) -

forn =1,2,3,.... In anticipation of using Theorem 1.2, let S denote the set of
all positive integers n for which Eq. (1) is true. We observe that when n = 1, the

12422 4+3%+.--+n
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formula becomes
_1e+na+1)
— - —

This means that 1 is in §. Next, assume that k belongs to S (where & is a fixed but
unspecified integer) so that

12 1

_ kQk+ 1)k +1)
N 6

To obtain the sum of the first k + 1 squares, we merely add the next one, (k + 1)?,
to both sides of Eq. (2). This gives

12 +22 43+ 4k

()

k(2k + 1)k + 1)
6
After some algebraic manipulation, the right-hand side becomes

2
k(2k+1)6+6(k+1)] =(k+1)[2k +67k+6]

24224+ 42+ k4172 = + (k+ 1)

(k+1)[

_ (k+ D)2k +3)(k +2)
N 6

which is precisely the right-hand member of Eq. (1) whenn = k 4 1. Our reasoning
shows that the set S contains the integer k£ + 1 whenever it contains the integer k.
By Theorem 1.2, S must be all the positive integers; that is, the given formula is true
forn=1,2,3,....

Although mathematical induction provides a standard technique for attempting
to prove a statement about the positive integers, one disadvantage is that it gives no
aid in formulating such statements. Of course, if we can make an “educated guess”
at a property that we believe might hold in general, then its validity can often be
tested by the induction principle. Consider, for instance, the list of equalities

1=1
1+2=3
1+2+22=17

14+242°+2°=15
1+2+22423+24=31
1+2+224+224+242°=63
We seek a rule that gives the integers on the right-hand side. After a little reflection,
the reader might notice that
1=2-1 3=22-1 7=2*-1
15=2-1 31=25-1 63=20-1

(How one arrives at this observation is hard to say, but experience helps.) The pattern
emerging from these few cases suggests a formula for obtaining the value of the



4 ELEMENTARY NUMBER THEORY

expression 1 + 2 + 22 + 23 + ... + 2"~1; namely,
142422422 4. 4o l=0n 1 (3)

for every positive integer n.

To confirm that our guess is correct, let S be the set of positive integers n for
which Eq. (3) holds. For n = 1, Eq. (3) is certainly true, whence 1 belongs to the set
S. We assume that Eq. (3) is true for a fixed integer k, so that for this &

1+24224 ... 421 ok _

and we attempt to prove the validity of the formula for k£ + 1. Addition of the term
2% to both sides of the last-written equation leads to

1424224 42k 1 4ok =k ] 4 ok
=2.2F—1=2k1_1

But this says that Eq. (3) holds when n = k + 1, putting the integer kK + 1 in S so
that k£ + 1 is in § whenever & is in §. According to the induction principle, S must
be the set of all positive integers.

Remark. When giving induction proofs, we shall usually shorten the argument by
eliminating all reference to the set §, and proceed to show simply that the result in
question is true for the integer 1, and if true for the integer k is then also true for k + 1.

We should inject a word of caution at this point, to wit, that one must be careful
to establish both conditions of Theorem 1.2 before drawing any conclusions; neither
is sufficient alone. The proof of condition (a) is usually called the basis for the
induction, and the proof of (b) is called the induction step. The assumptions made in
carrying out the induction step are known as the induction hypotheses. The induction
situation has been likened to an infinite row of dominoes all standing on edge and
arranged in such a way that when one falls it knocks down the next in line. If either
no domino is pushed over (that is, there is no basis for the induction) or if the spacing
is too large (that is, the induction step fails), then the complete line will not fall.

The validity of the induction step does not necessarily depend on the truth of
the statement that one is endeavoring to prove. Let us look at the false formula

14+34+5+.---+@n—-1)=n%>+3 4)
Assume that this holds for n = k; in other words,
14+3+5+--+Qk—1)=k"+3
Knowing this, we then obtain
143+5++Qk—D+Qk+1D)=k>+3+2k+1
=k+12+3

which is precisely the form that Eq. (4) should take when n = k + 1. Thus, if
Eq. (4) holds for a given integer, then it also holds for the succeeding integer. It
is not possible, however, to find a value of n for which the formula is true.
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There is a variant of the induction principle that is often used when Theorem 1.2
alone seems ineffective. As with the first version, this Second Principle of Finite In-
duction gives two conditions that guarantee a certain set of positive integers actually
consists of all positive integers. This is what happens: we retain requirement (a), but
(b) is replaced by

(b") If k is a positive integer such that 1, 2, . . ., k belong to S, then k + 1 must also
bein S.

The proof that S consists of all positive integers has the same flavor as that of
Theorem 1.2. Again, let T represent the set of positive integers not in S. Assuming
that T is nonempty, we choose n to be the smallest integer in 7. Then n > 1,
by supposition (a). The minimal nature of n allows us to conclude that none of the
integers 1, 2, ...,n — 1liesin T, or, if we prefer a positive assertion, 1,2, ...,n — 1
all belong to S. Property (b’) then puts n = (n — 1) + 1 in S, which is an obvious
contradiction. The result of all this is to make 7' empty.

The First Principle of Finite Induction is used more often than is the Second;
however, there are occasions when the Second is favored and the reader should be
familiar with both versions. It sometimes happens that in attempting to show that
k 4+ 1 is a member of S, we require proof of the fact that not only k, but all positive
integers that precede k, lie in S. Our formulation of these induction principles has
been for the case in which the induction begins with 1. Each form can be generalized
to start with any positive integer ng. In this circumstance, the conclusion reads as
“Then S is the set of all positive integers n > ngy.”

Mathematical induction is often used as a method of definition as well as a
method of proof. For example, a common way of introducing the symbol n! (pro-
nounced “n factorial”) is by means of the inductive definition

(@) 1!'=1,
) n!'=n-(n—1)!forn > 1.

This pair of conditions provides a rule whereby the meaning of n! is specified for
each positive integer n. Thus, by (a), 1! = 1; (a) and (b) yield
21=2-11=2-1
while by (b), again,
31=3.21=3.2.1

Continuing in this manner, using condition (b) repeatedly, the numbers 1!, 2!, 3!, ...,
n! are defined in succession up to any chosen . In fact,

nl=n-(n—1)---3-2-1

Induction enters in showing that n!, as a function on the positive integers, exists and
is unique; however, we shall make no attempt to give the argument.

It will be convenient to extend the definition of n! to the case in which n = 0
by stipulating that 0! = 1.
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Example 1.1. To illustrate a proof that requires the Second Principle of Finite Induc-
tion, consider the so-called Lucas sequence:

1,3,4,7,11, 18, 29,47, 76, ...

Except for the first two terms, each term of this sequence is the sum of the preceding
two, so that the sequence may be defined inductively by

a1=1
a2=3
an = ap-1+ an_n foralln > 3

We contend that the inequality
a, < (7/4)"

holds for every positive integer n. The argument used is interesting because in the
inductive step, it is necessary to know the truth of this inequality for two successive
values of n to establish its truth for the following value.

First of all, forn = 1 and 2, we have

a=1<@@/H' =7/4 and a; =3 < (7/4)* =49/16

whence the inequality in question holds in these two cases. This provides a basis for
the induction. For the induction step, choose an integer k£ > 3 and assume that the
inequality is valid forn = 1, 2, ...,k — 1. Then, in particular,

a_y < (/AT and gy < (7/4)F72
By the way in which the Lucas sequence is formed, it follows that

ar = ax_1 + ar— < (T/4F1 4+ (7/4)F2
= (7/42T/4+ 1)
= (7/4)2(11/4)
< (1/HF2(1/4) = (1/4)

Because the inequality is true for n = k whenever it is true for the integers 1, 2, . . .,
k — 1, we conclude by the second induction principle that a, < (7/4)" for alln > 1

Among other things, this example suggests that if objects are defined inductively,
then mathematical induction is an important tool for establishing the properties of
these objects.

PROBLEMS 1.1

1. Establish the formulas below by mathematical induction:

@ 142434 +n= "("2 D foralln > 1.

®) 1+34+5+---+@2n—1)=n?foralln > 1.

D + 2
© 124234344 +n@m+1)= 0T ;("Jr ) foralln > 1.
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,  n@n—12n+1)

d 12+324+52+...+2n—1) 3 foralln > 1.
D12
(e) 13+23+33+-.-+n3=["("T+)] foralln > 1.
If r # 1, show that for any positive integer n,
n+1_1
a+ar+ar2+---+ar”:a(r—1)
r_

. Use the Second Principle of Finite Induction to establish that for all n > 1,

a"—1l=@—-D@" '+a" 2 +a"3+---4a+1)
[Hint: a"*!' —1=(a+ D@* —1)—a@ ' —1).]

. Prove that the cube of any integer can be written as the difference of two squares. [Hint:

Notice that
B =+ 4+ 40— B+ 4+ 1= 1))

(a) Find the values of n < 7 for which n! 4 1 is a perfect square (it is unknown whether
n! + 11is a square for any n > 7).
(b) True or false? For positive integers m and n, (mn)! = m!n!and (m + n)! = m! + nl.

. Prove that n! > n? for every integer n > 4, whereas n! > n> for every integer n > 6.

Use mathematical induction to derive the following formula for all n > 1:
1aH+22H+33H+---+nmh)=m+ 1! -1
(a) Verify that foralln > 1,

_ @n)!

2-6-10-14----- (4n —2)
n!

(b) Use part (a) to obtain the inequality 2"(n!)> < (2n)! foralln > 1.

. Establish the Bernoulli inequality: If 1 + a > 0, then

A+a)*>1+na

foralln > 1.

For all n > 1, prove the following by mathematical induction:
1 1 1 1 1
— L L = L 550 b = = 9 =

(a)12+22+32+ +n2_ ;.
1 2 3 n n+2

b) — 4+ — 4+ — 4. =2

()2+22+23+ +2” ok

Show that the expression (2n)!/2"n! is an integer for all n > 0.

Consider the function defined by
3 1
nt for n odd
T(n)=1,
) for n even

The 3n + 1 conjecture is the claim that starting from any integer n > 1, the sequence
of iterates T'(n), T(T (n)), T(T (T (n))), ..., eventually reaches the integer 1 and subse-
quently runs through the values 1 and 2. This has been verified for all n < 10'6. Confirm
the conjecture in the cases n = 21 and n = 23.
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13. Suppose that the numbers a, are defined inductively by a; = 1,a; = 2,a3 = 3, and
an, = ay—1 + ay—2 + a,_3 for all n > 4. Use the Second Principle of Finite Induction to
show that a, < 2" for every positive integer n.

14. If the numbers a, are defined by a; = 11, a, = 21, and a, = 3a,-; — 2a,_, forn > 3,
prove that

a,=5-2"+1 n>1

1.2 THE BINOMIAL THEOREM

Closely connected with the factorial notation are the binomial coefficients (3 ). For
any positive integer n and any integer k satisfying 0 < k < n, these are defined by

ny n!
<k> ~ kl(n —k)!

By canceling out either k! or (n — k)!, (',Z) can be written as

n\ nm-1---Gk+1) n@-1---(a—k+1)
(k>_ (n —k)! B k!

For example, with n = 8 and k = 3, we have

8 8 8.7-6-5-4 8:7-6
3] 3150 5! T

56

Also observe that if k = 0 or k = n, the quantity 0! appears on the right-hand side
of the definition of (Z ); because we have taken 0! as 1, these special values of k give

(5)-()-

There are numerous useful identities connecting binomial coefficients. One that we
require here is Pascal’s rule:

(:)Jr(kil):(n:l) =ksr

Its proof consists of multiplying the identity
1 1 n—+1

cTh—k+l kn—k+D
by n!/(k — 1)!(n — k)! to obtain

n! n!
kk—Din—k)! T k= Dln—k + D —&)!
(n + Dn!
T kk—Dn—k + D —k)!
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Falling back on the definition of the factorial function, this says that
n! 4+ n! B (n+1)!
kin—k)!  (—=Dn—k+1! kln+1—k)!

from which Pascal’s rule follows.
This relation gives rise to a configuration, known as Pascal’s triangle, in which

the binomial coefficient (} ) appears as the (k + 1)th number in the nth row:

11
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The rule of formation should be clear. The borders of the triangle are composed of
1’s; a number not on the border is the sum of the two numbers nearest it in the row
immediately above.

The so-called binomial theorem is in reality a formula for the complete expansion
of (a + b)", n > 1, into a sum of powers of a and b. This expression appears with
great frequency in all phases of number theory, and it is well worth our time to look
at it now. By direct multiplication, it is easy to verify that

@+b)l=a+b
(a + b)* = a® + 2ab + b?
(a + b)® = a® + 3a?b + 3ab? + b?
(a + b)* = a* + 4a’b + 6a°b* + 4ab® + b*, etc.
The question is how to predict the coefficients. A clue lies in the observation that

the coefficients of these first few expansions form the successive rows of Pascal’s
triangle. This leads us to suspect that the general binomial expansion takes the form

(@a+b)' = " a" + " a" b+ " a"2p?
—\o 1 2
n n—1 n n
+--- 4+ ab + b
n—1 n

or, written more compactly,
(a + b)n — i <n> an—kbk
k=0 k

Mathematical induction provides the best means for confirming this guess. When
n = 1, the conjectured formula reduces to

1
1 1 1
(a+b) =Z<k)a1_kbk= (())albo—l—(l)aob1 =a+b

k=0
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which is certainly correct. Assuming that the formula holds for some fixed integer
m, we go on to show that it also must hold for m + 1. The starting point is to notice
that

(a+ b =a(@+b)" + bla +b)"

Under the induction hypothesis,

and

b(ﬂ X b)m — Z (T) am—jbj-i-l

j=0

_ = m m+1—ky k m+1
_Z(k—l)a b* +b

k=1

Upon adding these expressions, we obtain

m+l _ _m+1 5 m m m+1—kyk m+1
(a+b) =a +Z[(k)+(k—l)]a b* +b

k=1
m+1

_ E (m + 1) g1k pk
=\ K

which is the formula in the case n = m + 1. This establishes the binomial theorem
by induction.

Before abandoning these ideas, we might remark that the first acceptable for-
mulation of the method of mathematical induction appears in the treatise Traité du
Triangle Arithmetiqué, by the 17th century French mathematician and philosopher
Blaise Pascal. This short work was written in 1653, but not printed until 1665 be-
cause Pascal had withdrawn from mathematics (at the age of 25) to dedicate his
talents to religion. His careful analysis of the properties of the binomial coefficients
helped lay the foundations of probability theory.

PROBLEMS 1.2

1. (a) Derive Newton’s identity

(O -G wzrzrzc
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(b) Use part (a) to express (Z) in terms of its predecessor:
n n—k+1 n
= >k>1
(k) k (k— 1) T=rE

. If2 <k <n— 2, show that

n n—2 5 n—2 i n—2 o

k) = \k=2 k—1 k "=

. For n > 1, derive each of the identities below:

(@) (g)+<’;)+<g)+...+(z) o

[Hint: Leta = b = 1 in the binomial theorem.]

o (5)-(1)+(5) -+ (f) =0
© <’})+2<’;>+3<’;)++n<z) R

11

[Hint: After expanding n(1 + b1 by the binomial theorem, let » = 1; note also

that

"(n:):(k“)(k-’:l)']
@ (’3)+2(’})+22><’;)+...+2n<z) o

[Hint: Use parts (a) and (b).]

n 1 (n 1 (n D" (n\ 1
(D<0>_§<1>+§<2)_”'+n+1(n)_n+1'

[Hint: The left-hand side equals

1 n+1 n+1 n+1 . (n+1
(1)~ (31)+ (15 e (G3)

. Prove the following forn > 1:
1
(a) (’:) < <r—’|1-1> ifand only if 0 < r < E(n_ D.

n no\ . . 1
(b) (r) > <r+1>1fandonly1fn—lzr> 5(n_1)_

n n . e . . 1
(©) (r) = (r i 1) if and only if # is an odd integer, and r = E(n - 1.
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(a) Forn > 2, prove that

(2)+ )+ (G)++(3)=("3)

[Hint: Use induction and Pascal’s rule.]
(b) From part (a), and the relation m* = 2("; ) + m for m > 2, deduce the formula

_nn+1)2rn+1)

12422432 +... 452 c

(c) Apply the formula in part (a) to obtain a proof that

nn+ 1)(n + 2)
3

1:242-34+--+nn+1)=

[Hint: Observe that (m — 1)m = 2(%5).]

. Derive the binomial identity

2 4 6 2n B nn+ 1)(4n —1)
(2)+(2>+(2>+'”+(2>‘ 6 =2

[Hint: Form > 2, (%') = 2('5 ) + m?.]
For n > 1, verify that

12+32+52—|—---+(2n—1)2=(2'13_"1)

. Show that, forn > 1,

2n _1-3-5---(2n—1)22n
n)  2:4.6---2n

. Establish the inequality 2" < (2,1") <22 forn > 1.

[Hint: Put x =2-4-6---2n),y=1-3.5---2n—1),and z=1-2-3---n; show
that x > y > z, hence x> > xy > xz.]

The Catalan numbers, defined by
1 2 2n)!
C = e
n+1\n nl(n + 1)!

form the sequence 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . ... They first appeared in
1838 when Eugene Catalan (1814—1894) showed that there are C,, ways of parenthesizing
a nonassociative product of n + 1 factors. [For instance, when n = 3 there are five ways:
((ab)c)d, (a(bc))d, a((bc)d), a(b(cd)), (ab)(ac).] Forn > 1, prove that C, can be given
inductively by

2(2n — 1)
Cn - 7t 1 Cn—l



