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Continuity

Continuous Function
A function f is defined to be continuous at x0 if the following three conditions hold:

 (i)   f (x0) is defined;

(ii)  lim ( )
x x

f x
→ 0

 exists;

(iii) lim ( ) ( )
x x

f x f x
→

=
0

0 .

For example, f (x) = x2 + 1 is continuous at 2, since lim ( ) ( ).
x

f x f
→

= =
2

5 2  Condition (i) implies that a func-

tion can be continuous only at points of its domain. Thus, f x x( ) = −4 2  is not continuous at 3 because f (3) 
is not defined.

Let f be a function that is defined on an interval (a, x0) to the left of x0 and/or on an interval (x0, b) to the 
right of x0. We say that f is discontinuous at x0 if f is not continuous at x0, that is, if one or more of the condi-
tions (i)–(iii) fails.

EXAMPLE 8.1:
(a) f x

x
( ) = −

1
2

 is discontinuous at 2 because f (2) is not defined and also because lim ( )
x

f x
→2

 does not exist 
(since lim ( )

x
f x

→
= ∞

2
). See Fig. 8-1.

Fig. 8-1

(b) f x
x
x

( ) = −
−

2 4
2  is discontinuous at 2 because f (2) is not defined. However, lim ( ) lim

( )( )
x x

f x
x x

x→ →
= + −

− =
2 2

2 2
2  

lim( )
x

x
→

+ =
2

2 4 so that condition (ii) holds.

The discontinuity at 2 in Example 8.1(b) is said to be removable because, if we extended the function f 
by defining its value at x = 2 to be 4, then the extended function g would be continuous at 2. Note that g(x) =
x + 2 for all x. The graphs of f x

x
x

( ) = −
−

2 4
2  and g(x) = x + 2 are identical except at x = 2, where the former has 

a “hole.” (See Fig. 8-2.) Removing the discontinuity consists simply of filling the “hole.”
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CHAPTER 8  Continuity 67

Fig. 8-2

The discontinuity at 2 in Example 8.1(a) is not removable. Redefining the value of f at 2 cannot change 
the fact that lim

x x→ −2

1
2  does not exist.

We also call a discontinuity of a function f at x0 removable when f (x0) is defined and changing the value 
of the function at x0 produces a function that is continuous at x0.

EXAMPLE 8.2: Define a function f as follows:

f x
x x

x
( ) = ≠

=
⎧
⎨
⎩

2 2
0 2

if
if

Here lim ( )
x

f x
→

=
2

4, but f (2) = 0. Hence, condition (iii) fails, so that f has a discontinuity at 2. But if we change the 
value of f at 2 to be 4, then we obtain a function h such that h(x) = x2 for all x, and h is continuous at 2. Thus, the 
discontinuity of f at 2 was removable.

EXAMPLE 8.3: Let f be the function such that f x
x
x

( ) =  for all x ≠ 0. The graph of f is shown in Fig. 8-3.  f is dis-
continuous at 0 because f (0) is not defined. Moreover,

lim ( ) lim lim ( ) lim
x x x x

f x x
x

f x
→ → → →+ + −

= = =
0 0 0

1 and
00

1
−

− = −x
x

Thus, lim ( ) lim ( ).
x x

f x f x
→ →− +

≠
0 0

 Hence, the discontinuity of f at 0 is not removable.

Fig. 8-3

The kind of discontinuity shown in Example 8.3 is called a jump discontinuity. In general, a function f 
has a jump discontinuity at x0 if limx x

f x
→ −

( )
0

 and lim ( )
x x

f x
→ +

0

 both exist and lim ( ) lim ( ).
x x x x

f x f x
→ →− +

≠
0 0

 Such a discontinuity 
is not removable.

EXAMPLE 8.4: The function of Problem 4 in Chapter 6 has a jump discontinuity at every positive integer.

Properties of limits lead to corresponding properties of continuity.
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Theorem 8.1: Assume that f and g are continuous at x0. Then:
(a) The constant function h(x) = c for all x is continuous at every x0.
(b) cf is continuous at x0, for any constant c. (Recall that cf has the value c · f (x) for each argument x.)
(c) f + g is continuous at x0.
(d) f − g is continuous at x0.
(e) fg is continuous at x0.
(f) f/g is continuous at x0 if g(x0) ≠ 0.

(g) fn  is continuous at x0 if f xn ( )0  is defined.

These results follow immediately from Theorems 7.1–7.6. For example, (c) holds because

lim ( ( ) ( )) lim ( ) lim ( )
x x x x x x

f x g x f x g x
→ → →

+ = + =
0 0 0

ff x g x( ) ( )0 0+

Theorem 8.2: The identify function I(x) = x is continuous at every x0.

This follows from the fact that lim
x x

x x
→

=
0

0 .

We say that a function f is continuous on a set A if f is continuous at every point of A. Moreover, if we just 
say that f is continuous, we mean that f is continuous at every real number.

The original intuitive idea behind the notion of continuity was that the graph of a continuous function was 
supposed to be “continuous” in the intuitive sense that one could draw the graph without taking the pencil off 
the paper. Thus, the graph would not contain any “holes” or “jumps.” However, it turns out that our precise 
definition of continuity goes well beyond that original intuitive notion; there are very complicated continuous 
functions that could certainly not be drawn on a piece of paper.

Theorem 8.3: Every polynomial function

f x a x a x a x an
n

n
n( ) = + + ⋅⋅ ⋅ + +−

−
1

1
1 0

is continuous.

This is a consequence of Theorems 8.1 (a–e) and 8.2.

EXAMPLE 8.5: As an instance of Theorem 8.3, consider the function x2 − 2x + 3. Note that, by Theorem 8.2, the identity 
function x is continuous and, therefore, by Theorem 8.1(e), x2 is continuous, and, by Theorem 8.1(b), −2x is continuous. By 
Theorem 8.1(a), the constant function 3 is continuous. Finally, by Theorem 8.1(c), x2 − 2x + 3 is continuous.

Theorem 8.4: Every rational function H x
f x
g x

( )
( )
( ) ,=  where f (x) and g(x) are polynomial functions, is continuous on 

the set of all points at which g(x) ≠ 0.

This follows from Theorems 8.1(f ) and 8.3. As examples, the function H x x
x

( ) = −2 1
 is continuous at all 

points except 1 and −1, and the function G x
x
x

( ) = −
+
7
12  is continuous at all points (since x2 + 1 is never 0).

We shall use a special notion of continuity with respect to a closed interval [a, b]. First of all, we say that 

a function f is continuous on the right at a if f (a) is defined and lim ( )
x a

f x
→ +

 exists, and lim ( ) ( )
x a

f x f a
→ +

= . We say 

that f is continuous on the left at b if f (b) is defined and lim ( )
x b

f x
→ −

 exists, and lim ( ) ( )
x b

f x f b
→ −

= .

Definition: f is continuous on [a, b] if f is continuous at each point on the open interval (a, b), f is continuous on the 
right at a, and f is continuous on the left at b.

Note that whether f is continuous on [a, b] does not depend on the values of f, if any, outside of [a, b]. Note 
also that every continuous function (that is, a function continuous at all real numbers) must be continuous on 
any closed interval. In particular, every polynomial function is continuous on any closed interval.
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We want to discuss certain deep properties of continuous functions that we shall use but whose proofs are 
beyond the scope of this book.

Theorem 8.5 (Intermediate Value Theorem): If f is continuous on [a, b] and f (a) ≠ f (b), then, for any number c 
between f (a) and f (b), there is at least one number x0 in the open interval (a, b) for which f (x0) = c.

Figure 8-4(a) is an illustration of Theorem 8.5. Fig. 8-5 shows that continuity throughout the interval 
is essential for the validity of the theorem. The following result is a special case of the Intermediate Value 
Theorem.

Fig. 8-4

Fig. 8-5

Corollary 8.6: If f is continuous on [a, b] and f (a) and f (b) have opposite signs, then the equation f (x) = 0 has at least 
one root in the open interval (a, b), and, therefore, the graph of f crosses the x-axis at least once between a and b. (See 
Fig. 8-4(b).)

Theorem 8.7 (Extreme Value Theorem): If f is continuous on [a, b], then f takes on a least value m and a greatest 
value M on the interval.

As an illustration of the Extreme Value Theorem, look at Fig. 8-6(a), where the minimum value m occurs 
at x = c and the maximum value M occurs at x = d. In this case, both c and d lie inside the interval. On 
the other hand, in Fig. 8-6(b), the minimum value m occurs at the endpoint x = a and the maximum value 
M occurs inside the interval. To see that continuity is necessary for the Extreme Value Theorem to be true, 
consider the function whose graph is indicated in Fig. 8-6(c). There is a discontinuity at c inside the interval; 
the function has a minimum value at the left endpoint x = a but the function has no maximum value.
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Fig. 8-6

Another useful property of continuous functions is given by the following result.

Theorem 8.8: If f is continuous at c and f (c) > 0, then there is a positive number d such that, whenever 
c − d < x < c + d, then f (x) > 0.

This theorem is illustrated in Fig. 8-7. For a proof, see Problem 3.

Fig. 8-7

SOLVED PROBLEMS

1. Find the discontinuities of the following functions. Determine whether they are removable. If not removable, 
determine whether they are jump discontinuities. (GC) Check your answers by showing the graph of the function 
on a graphing calculator.

(a) f x
x

( ) = 2 . Nonremovable discontinuity at x = 0.
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(b) f x x
x x

( ) ( )( )= −
+ −

1
3 2 . Nonremovable discontinuities at x = −3 and x = 2.

(c) f x x x
x

( ) ( )( )
( )

= + −
−

2 1
3 2 . Nonremovable discontinuity at x = 3.

(d) f x x
x

( ) = −
−

3

2
27
9

.  Has a removable discontinuity at x = 3. (Note that x3 − 27 = (x − 3)(x2 
+ 3x + 9).) Also has a nonremovable discontinuity at x = −3.

(e) f x x
x

( ) = −
− +
4

3 5

2

2
.  Has a removable discontinuity at x = ±2. Note that 

4
3 5

3 5
3 5

3 5
2

2

2

2
2−

− +
+ +
+ +

= + +x
x

x
x

x .

(f ) f x x x
x

( )
( )

= + −
−

2

2
2

1
. Has a nonremovable discontinuity at x = 1.

(g) f (x) = [x] = the greatest integer ≤ x. Has a jump discontinuity at every integer.
(h) f (x) = x − [x]. Has a nonremovable discontinuity at every integer.
(i) f (x) = 3x3 − 7x2 + 4x − 2. A polynomial has no discontinuities.

( j) f x
x
x

( ) =
=
≠{0 0

2 0
if
if

 Removable discontinuity at x = 0.

(k) f x
x x
x x

x x
( )

.

.
=

≤
< <

− ≥

⎧
⎨
⎪

⎩⎪

if
if
if

0
0 1

2 1

2  No discontinuities.

2. Show that the existence of lim
( ) ( )

h

f a h f a
h→

+ −
0

 implies that f is continuous at x = a.

lim( ( ) ( )) lim
( ) ( )

h h
f a h f a

f a h f a
h

h
→ →

+ − = + − ⋅⎛
⎝

⎞
0 0 ⎠⎠ =

+ − ⋅ = + −
→ → →

lim
( ) ( )

lim lim
( )

h h h

f a h f a
h

h
f a h

0 0 0

ff a
h

( ) ⋅ =0 0

But

lim ( ( ) ( )) lim ( ) lim ( )
h h h

f a h f a f a h f a
→ → →

+ − = + −
0 0 0

== + −
→

lim ( ) ( )
h

f a h f a
0

Hence, lim ( ) ( ).
h

f a h f a
→

+ =
0

 Note that lim ( ) lim ( ).
h x a

f a h f x
→ →

+ =
0

 So, lim ( ) ( ).
x a

f x f a
→

=

3. Prove Theorem 8.8.
By the continuity of f at c, lim ( ) ( )

x c
f x f c

→
= . If we let ∈∈= >f c( ) ,/2 0  then there exists a positive d such that 0 < 

|x − c| < d implies that |f (x) − f (c)| < f (c)/2. The latter inequality also holds when x = c. Thus, |x − c| < d implies 
|f (x) − f (c)| < f (c)/2. The latter implies −f (c)/2 < f (x) − f (c) < f (c)/2. Adding f (c) to the left-hand inequality, we 
obtain f (c)/2 < f (x).

SUPPLEMENTARY PROBLEMS

4. Determine the discontinuities of the following functions and state why the function fails to be continuous at those 
points. (GC) Check your answers by graphing the function on a graphing calculator.

(a) f x x x
x

( ) = − −
+

2 3 10
2  (b) f x

x x
x x

( ) =
+ ≥
+ <{ 3 2

1 22

if
if

(c) f (x) = |x| − x (d) f x
x x

x x
x x

( ) =
− <
− < <
− ≤

⎧
⎨
⎪

⎩⎪

4 3
2 0 3
1 0

if
if
if 

(e) f x x
x

( ) = −
−

4

2
1
1

 (f ) f x x x x
x x

( ) = + − +
+ −

3 2

2
17 15

2 15
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(g) f (x) = x3 − 7x (h) f x x
x x

( ) = −
− +

2

2
4

5 6

(i) f x x x
x x

( ) = + +
+ +

2

2
3 2
4 3

 ( j) f x x
x

( ) = −
−

2
42

(k) f x x
x

( ) = −
+ −

1
3 22

Ans. (a)  Removable discontinuity at x = −2. (Note that x2 − 3x − 10 = (x + 2)(x − 5).) 
(b, c, g)   None.
(d) Jump discontinuity at x = 0.
(e) Removable discontinuities at x = ± 1.
(f)  Removable discontinuities at x = 3, x = −5. (Note that x2 + 2x − 5 = (x + 5)(x − 3) and x3 + x2 − 17x + 

15 = (x + 5)(x − 3)(x − 1).)
(h) Removable discontinuity at x = 2 and nonremovable discontinuity at x = 3.
(i) Removable discontinuity at x = −1 and nonremovable discontinuity at x = −3.
(j) Removable discontinuity at x = 2 and nonremovable discontinuity at x = −2.
(k) Removable discontinuity at x = 1 and nonremovable discontinuity at x = −1.

5. Show that f (x) = |x| is continuous.

6. If Fig. 8-5(a) is the graph of f x x x
x

( ) ,= − −
−

2 4 21
7  show that there is a removable discontinuity at x = 7 and that 

c = 10 there.

7. Prove: If f is continuous on the interval [a, b] and c is a number in (a, b) such that f (c) < 0, then there exists a 
positive number d such that, whenever c − d < x < c + d, then f (x) < 0.

(Hint: Apply Theorem 8.8 to −f.)

8. Sketch the graphs of the following functions and determine whether they are continuous on the closed interval
[0, 1]:

(a) f x
x

x
x

( ) =
− <

≤ ≤
>

⎧
⎨
⎪

⎩⎪

1 0
0 0 1
1 1

if
if
if

 (b) f x x
x

x
( ) = >

≤

⎧
⎨
⎪

⎩⎪

1 0

1 0

if

if

(c) f x
x x
x x

( ) = − ≤
>

⎧
⎨
⎩

2

2

0
0

if
if

 (d) f (x) = 1 if 0 < x ≤ 1

(e) f x
x x

x
x x

( ) =
≤
< <
≥

⎧
⎨
⎪

⎩⎪

if
if
if

0
0 0 1

1

Ans. (a) Yes. (b) No. Not continuous on the right at 0. (c) Yes. (d) No. Not defined at 0. (e) Νο. Νοt continuous 
on the left at 1.
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