

The Derivative

Delta Notation

Let f be a function. As usual, we let x stand for any argument of f, and we let y be the corresponding value of f. Thus, y = f(x). Consider any number x_0 in the domain of f. Let Δx (read "delta x") represent a small change in the value of x, from x_0 to $x_0 + \Delta x$, and then let Δy (read "delta y") denote the corresponding change in the value of y. So, $\Delta y = f(x_0 + \Delta x) - f(x_0)$. Then the ratio

 $\frac{\Delta y}{\Delta x} = \frac{\text{change in } y}{\text{change in } x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$

is called the *average rate of change* of the function f on the interval between x_0 and $x_0 + \Delta x$.

EXAMPLE 9.1: Let $y = f(x) = x^2 + 2x$. Starting at $x_0 = 1$, change x to 1.5. Then $\Delta x = 0.5$. The corresponding change in y is $\Delta y = f(1.5) - f(1) = 5.25 - 3 = 2.25$. Hence, the average rate of change of y on the interval between x = 1 and x = 1.5 is $\frac{\Delta y}{\Delta x} = \frac{2.25}{0.5} = 4.5$.

The Derivative

If y = f(x) and x_0 is in the domain of *f*, then by the *instantaneous rate of change* of *f* at x_0 we mean the limit of the average rate of change between x_0 and $x_0 + \Delta x$ as Δx approaches 0:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

provided that this limit exists. This limit is also called the *derivative* of f at x_0 .

Notation for Derivatives

Let us consider the derivative of f at an arbitrary point x in its domain:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

The value of the derivative is a function of x, and will be denoted by any of the following expressions:

$$D_x y = \frac{dy}{dx} = y' = f'(x) = \frac{d}{dx}y = \frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

The value f'(a) of the derivative of f at a particular point a is sometimes denoted by $\frac{dy}{dx}$

Differentiability

A function is said to be *differentiable* at a point x_0 if the derivative of the function exists at that point. Problem 2 of Chapter 8 shows that differentiability implies continuity. That the converse is false is shown in Problem 11.

SOLVED PROBLEMS

- 1. Given $y = f(x) = x^2 + 5x 8$, find Δy and $\Delta y/\Delta x$ as x changes (a) from $x_0 = 1$ to $x_1 = x_0 + \Delta x = 1.2$ and (b) from $x_0 = 1$ to $x_1 = 0.8$.
 - (a) $\Delta x = x_1 x_0 = 1.2 1 = 0.2$ and $\Delta y = f(x_0 + \Delta x) f(x_0) = f(1.2) f(1) = -0.56 (-2) = 1.44$. So $\frac{\Delta y}{\Delta x} = \frac{1.44}{0.2} = 7.2$.
 - (b) $\Delta x = 0.8 1 = -0.2$ and $\Delta y = f(0.8) f(1) = -3.36 (-2) = -1.36$. So $\frac{\Delta y}{\Delta x} = \frac{-1.36}{-0.2} = 6.8$.

Geometrically, $\Delta y/\Delta x$ in (a) is the slope of the secant line joining the points (1, -2) and (1.2, -0.56) of the parabola $y = x^2 + 5x - 8$, and in (b) is the slope of the secant line joining the points (0.8, -3.36) and (1, -2) of the same parabola.

If a body (that is, a material object) starts out at rest and then falls a distance of *s* feet in *t* seconds, then physical laws imply that s = 16t². Find Δs/Δt as t changes from t₀ to t₀ + Δt. Use the result to find Δs/Δt as t changes: (a) from 3 to 3.5, (b) from 3 to 3.2, and (c) from 3 to 3.1.

$$\frac{\Delta s}{\Delta t} = \frac{16(t_0 + \Delta t)^2 - 16t_0^2}{\Delta t} = \frac{32t_0\Delta t + 16(\Delta t)^2}{\Delta t} = 32t_0 + 16\,\Delta t$$

- (a) Here $t_0 = 3$, $\Delta t = 0.5$, and $\Delta s / \Delta t = 32(3) + 16(0.5) = 104$ ft/sec.
- (b) Here $t_0 = 3$, $\Delta t = 0.2$, and $\Delta s / \Delta t = 32(3) + 16(0.2) = 99.2$ ft/sec.
- (c) Here $t_0 = 3$, $\Delta t = 0.1$, and $\Delta s / \Delta t = 97.6$ ft/sec.

Since Δs is the displacement of the body from time $t = t_0$ to $t = t_0 + \Delta t$,

$$\frac{\Delta s}{\Delta t} = \frac{\text{displacement}}{\text{time}} = \text{average velocity of the body over the time interval}$$

3. Find dy/dx, given $y = x^3 - x^2 - 4$. Find also the value of dy/dx when (a) x = 4, (b) x = 0, (c) x = -1.

$$y + \Delta y = (x + \Delta x)^{3} - (x + \Delta x)^{2} - 4$$

= $x^{3} + 3x^{2}(\Delta x) + 3x(\Delta x)^{2} + (\Delta x)^{3} - x^{2} - 2x(\Delta x) - (\Delta x)^{2} - 4$
 $\Delta y = (3x^{2} - 2x)\Delta x + (3x - 1)(\Delta x)^{2} + (\Delta x)^{3}$
 $\frac{\Delta y}{\Delta x} = 3x^{2} - 2x + (3x - 1)\Delta x + (\Delta x)^{2}$
 $\frac{dy}{dx} = \lim_{\Delta x \to 0} [3x^{2} - 2x + (3x - 1)\Delta x + (\Delta x)^{2}] = 3x^{2} - 2x$

(a)
$$\frac{dy}{dx}\Big|_{x=4} = 3(4)^2 - 2(4) = 40;$$
 (b) $\frac{dy}{dx}\Big|_{x=0} = 3(0)^2 - 2(0) = 0;$ (c) $\frac{dy}{dx}\Big|_{x=-1} = 3(-1)^2 - 2(-1) = 5$

4. Find the derivative of $y = f(x) = x^2 + 3x + 5$.

$$\Delta y = f(x + \Delta x) - f(x) = [(x + \Delta x)^2 + 3(x + \Delta x) + 5)] - [x^2 + 3x + 5]$$

= $[x^2 + 2x \Delta x + (\Delta x)^2 + 3x + 3\Delta x + 5] - [x^2 + 3x + 5] = 2x \Delta x + (\Delta x)^2 + 3\Delta x$
= $(2x + \Delta x + 3)\Delta x$
 $\frac{\Delta y}{\Delta x} = 2x + \Delta x + 3$
So, $\frac{dy}{dx} = \lim_{\Delta x \to 0} (2x + \Delta x + 3) = 2x + 3.$

5. Find the derivative of $y = f(x) = \frac{1}{x-2}$ at x = 1 and x = 3. $\Delta y = f(x + \Delta x) - f(x) = \frac{1}{(x + \Delta x) - 2} - \frac{1}{x-2} = \frac{(x-2) - (x + \Delta x - 2)}{(x-2)(x + \Delta x - 2)}$

$$= \frac{-\Delta x}{(x-2)(x+\Delta x-2)}$$
$$\frac{\Delta y}{\Delta x} = \frac{-1}{(x-2)(x+\Delta x-2)}$$

So,
$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{-1}{(x-2)(x+\Delta x-2)} = \frac{-1}{(x-2)^2}.$$

At $x = 1$, $\frac{dy}{dx} = \frac{-1}{(1-2)^2} = -1$. At $x = 3$, $\frac{dy}{dx} = \frac{-1}{(3-2)^2} = -1$.

Find the derivative of
$$f(x) = \frac{2x-3}{3x+4}$$
.

$$f(x + \Delta x) = \frac{2(x + \Delta x) - 3}{3(x + \Delta x) + 4}$$

$$f(x + \Delta x) - f(x) = \frac{2x + 2\Delta x - 3}{3x + 3\Delta x + 4} - \frac{2x - 3}{3x + 4}$$

$$= \frac{(3x + 4)[(2x - 3) + 2\Delta x] - (2x - 3)[(3x + 4) + 3\Delta x]}{(3x + 4)(3x + 3\Delta x + 4)}$$

$$= \frac{(6x + 8 - 6x + 9)\Delta x}{(3x + 4)(3x + 3\Delta x + 4)} = \frac{17\Delta x}{(3x + 4)(3x + 3\Delta x + 4)}$$

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{17}{(3x + 4)(3x + 3\Delta x + 4)}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{17}{(3x + 4)(3x + 3\Delta x + 4)} = \frac{17}{(3x + 4)^2}$$

7. Find the derivative of $y = f(x) = \sqrt{2x+1}$.

6.

$$y + \Delta y = (2x + 2\Delta x + 1)^{1/2}$$

$$\Delta y = (2x + 2\Delta x + 1)^{1/2} - (2x + 1)^{1/2}$$

$$= [(2x + 2\Delta x + 1)^{1/2} - (2x + 1)^{1/2}]\frac{(2x + 2\Delta x + 1)^{1/2} + (2x + 1)^{1/2}}{(2x + 2\Delta x + 1)^{1/2} + (2x + 1)^{1/2}}$$

$$= \frac{(2x + 2\Delta x + 1) - (2x + 1)}{(2x + 2\Delta x + 1)^{1/2} + (2x + 1)^{1/2}} = \frac{2\Delta x}{(2x + 2\Delta x + 1)^{1/2} + (2x + 1)^{1/2}}$$

$$\frac{\Delta y}{\Delta x} = \frac{2}{(2x + 2\Delta x + 1)^{1/2} + (2x + 1)^{1/2}}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{2}{(2x + 2\Delta x + 1)^{1/2} + (2x + 1)^{1/2}} = \frac{1}{(2x + 1)^{1/2}}$$

8. Find the derivative of $f(x) = x^{1/3}$. Examine f'(0).

$$f(x + \Delta x) = (x + \Delta x)^{1/3}$$

$$f(x + \Delta x) - f(x) = (x + \Delta x)^{1/3} - x^{1/3}$$

$$= \frac{[(x + \Delta x)^{1/3} - x^{1/3}][(x + \Delta x)^{2/3} + x^{1/3}(x + \Delta x)^{1/3} + x^{2/3}]}{(x + \Delta x)^{2/3} + x^{1/3}(x + \Delta x)^{1/3} + x^{2/3}}$$

$$= \frac{x + \Delta x - x}{(x + \Delta x)^{2/3} + x^{1/3}(x + \Delta x)^{1/3} + x^{2/3}}$$

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{1}{(x + \Delta x)^{2/3} + x^{1/3}(x + \Delta x)^{1/3} + x^{2/3}}$$

$$f'(x) = \lim_{\Delta x \to 0} \frac{1}{(x + \Delta x)^{2/3} + x^{1/3}(x + \Delta x)^{1/3} + x^{2/3}} = \frac{1}{3x^{2/3}}$$

The derivative does not exist at x = 0 because the denominator is zero there. Note that the function *f* is continuous at x = 0.

9. Interpret dy/dx geometrically.

From Fig. 9-1 we see that $\Delta y/\Delta x$ is the slope of the secant line joining an arbitrary but fixed point P(x, y) and a nearby point $Q(x + \Delta x, y + \Delta y)$ of the curve. As $\Delta x \rightarrow 0$, *P* remains fixed while *Q* moves along the curve toward *P*, and the line *PQ* revolves about *P* toward its limiting position, the tangent line *PT* moves to the curve at *P*. Thus, dy/dx gives the slope of the tangent line at *P* to the curve y = f(x).

For example, from Problem 3, the slope of the cubic $y = x^3 - x^2 - 4$ is m = 40 at the point x = 4; it is m = 0 at the point x = 0; and it is m = 5 at the point x = -1.

10. Find ds/dt for the function of Problem 2 and interpret the result.

$$\frac{\Delta s}{\Delta t} = 32t_0 + 16\Delta t. \quad \text{Hence,} \quad \frac{ds}{dt} = \lim_{\Delta t \to 0} (32t_0 + 16\Delta t) = 32t_0$$

As $\Delta t \rightarrow 0$, $\Delta s/\Delta t$ gives the average velocity of the body for shorter and shorter time intervals Δt . Then we can consider ds/dt to be the *instantaneous velocity v* of the body at time t_0 .

For example, at t = 3, v = 32(3) = 96 ft/sec. In general, if an object is moving on a straight line, and its position on the line has coordinate *s* at time *t*, then its instantaneous velocity at time *t* is ds/dt. (See Chapter 19.)

11. Find f'(x) when f(x) = |x|.

The function is continuous for all values of x. For x < 0, f(x) = -x and

$$f'(x) = \lim_{\Delta x \to 0} \frac{-(x + \Delta x) - (-x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{-\Delta x}{\Delta x} = \lim_{\Delta x \to 0} -1 = -1$$

Similarly, for x > 0, f(x) = x and

$$f'(x) = \lim_{\Delta x \to 0} \frac{(x + \Delta x) - x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0} 1 = 1$$

At x = 0, f(x) = 0 and $\lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{|\Delta x|}{\Delta x}$. As $\Delta x \to 0^-$, $\frac{|\Delta x|}{\Delta x} = \frac{-\Delta x}{\Delta x} = -1 \to -1$. But, as $\Delta x \to 0^+$, $\frac{|\Delta x|}{\Delta x} = \frac{\Delta x}{\Delta x} = 1 \to 1$. Hence, the derivative does not exist

Since the function is continuous at 0, this shows that continuity does not imply differentiability.

12. Compute $\epsilon = \frac{\Delta y}{\Delta x} - \frac{dy}{dx}$ for the function of (a) Problem 3 and (b) Problem 5. Verify that $\epsilon \to 0$ as $\Delta x \to 0$. (a) $\epsilon = [3x^2 - 2x + (3x - 1)\Delta x + (\Delta x)^2] - (3x^2 - 2x) = (3x - 1 + \Delta x)\Delta x$

(b)
$$\epsilon = \frac{-1}{(x-2)(x+\Delta x-2)} - \frac{-1}{(x-2)^2} = \frac{-(x-2)+(x+\Delta x-2)}{(x-2)^2(x+\Delta x-2)} = \frac{1}{(x-2)^2(x+\Delta x-2)}\Delta x$$

Both obviously go to zero as $\Delta x \rightarrow 0$.

13. Interpret $\Delta y = \frac{dy}{dx} \Delta x + \epsilon \Delta x$ of Problem 12 geometrically. In Fig. 9-1, $\Delta y = RQ$ and $\frac{dy}{dx} \Delta x = PR \tan \angle TPR = RS$; thus, $\epsilon \Delta x = SQ$. For a change Δx in x from P(x, y), Δy is the corresponding change in y along the curve while $\frac{dy}{dx} \Delta x$ is the corresponding change in y along the tangent line PT. Since their difference $\epsilon \Delta x$ is a multiple of $(\Delta x)^2$, it goes to zero faster than Δx , and $\frac{dy}{dx} \Delta x$ can be used as an approximation of Δy when $|\Delta x|$ is small.

SUPPLEMENTARY PROBLEMS

14. Find Δy and $\Delta y/\Delta x$, given

- (a) y = 2x 3 and x changes from 3.3 to 3.5.
- (b) $y = x^2 + 4x$ and x changes from 0.7 to 0.85.
- (c) y = 2/x and x changes from 0.75 to 0.5.

Ans. (a) 0.4 and 2; (b) 0.8325 and 5.55; (c) $\frac{4}{3}$ and $-\frac{16}{3}$

15. Find Δy , given $y = x^2 - 3x + 5$, x = 5, and $\Delta x = -0.01$. What then is the value of y when x = 4.99?

Ans. $\Delta y = -0.0699$; y = 14.9301

16. Find the average velocity (see Problem 2), given: (a) $s = (3t^2 + 5)$ feet and t changes from 2 to 3 seconds. (b) $s = (2t^2 + 5t - 3)$ feet and t changes from 2 to 5 seconds.

Ans. (a) 15 ft/sec; (b) 19 ft/sec

17. Find the increase in the volume of a spherical balloon when its radius is increased (a) from r to $r + \Delta r$ inches; (b) from 2 to 3 inches. (Recall that volume $V = \frac{4}{3}\pi r^3$.)

Ans. (a) $\frac{4}{3}\pi[3r^2+3r\Delta r+(\Delta r)^2]\Delta r$ in³; (b) $\frac{76}{3}\pi$ in³

18. Find the derivative of each of the following:

(a) $y = 4x - 3$	(b) $y = 4 - 3x$	(c) $y = x^2 + 2x - 3$
(d) $y = 1/x^2$	(e) $y = (2x - 1)/(2x + 1)$	(f) $y = (1 + 2x)/(1 - 2x)$
(g) $y = \sqrt{x}$	(h) $y = 1/\sqrt{x}$	(i) $y = \sqrt{1+2x}$
(i) $y = 1/\sqrt{2+x}$		

Ans. (a) 4; (b) -3; (c) 2(x + 1); (d) -2/x³; (e) $\frac{4}{(2x+1)^2}$; (f) $\frac{4}{(1-2x)^2}$; (g) $\frac{1}{2\sqrt{x}}$; (h) $-\frac{1}{2x\sqrt{x}}$; (i) $\frac{1}{\sqrt{1+2x}}$; (j) $-\frac{1}{2(2+x)^{3/2}}$; (j) $\frac{1}{\sqrt{1+2x}}$; (k) $-\frac{1}{2x\sqrt{x}}$

19. Find the slope of the tangent line to the following curves at the point x = 1 (see Problem 9): (a) $y = 8 - 5x^2$; (b) $y = \frac{4}{x+1}$; (c) $\frac{2}{x+3}$.

```
Ans. (a) -10; (b) -1; (c) -\frac{1}{8}
```

- **20.** (GC) Use a graphing calculator to verify your answers in Problem 19. (Graph the curve and the tangent line that you found.)
- **21.** Find the coordinates of the vertex (that is, the turning point) of the parabola $y = x^2 4x + 1$ by making use of the fact that, at the vertex, the slope of the tangent line is zero. (See Problem 9.) (GC) Check your answer with a graphing calculator.

Ans. (2, -3)

22. Find the slope m of the tangent lines to the parabola $y = -x^2 + 5x - 6$ at its points of intersection with the x axis.

Ans. At x = 2, m = 1. At x = 3, m = -1.

23. When an object is moving on a straight line and its coordinate on that line is *s* at time *t* (where *s* is measured in feet and *t* in seconds), find the velocity at time t = 2 in the following cases:

(a) $s = t^2 + 3t$ (b) $s = t^3 - 3t^2$ (c) $s = \sqrt{t+2}$ (See Problem 10.)

Ans. (a) 7 ft/sec; (b) 0 ft/sec; (c) $\frac{1}{4}$ ft/sec

24. Show that the instantaneous rate of change of the volume V of a cube with respect to its edge x (measured in inches) is 12 in³/in when x = 2 in.