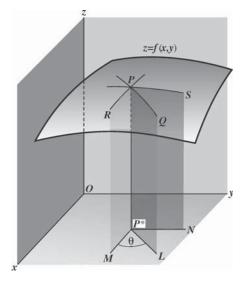
CHAPTER 52

Directional Derivatives. Maximum and Minimum Values

Directional Derivatives

Let P(x, y, z) be a point on a surface z = f(x, y). Through *P*, pass planes parallel to the *xz* and *yz* planes, cutting the surface in the arcs *PR* and *PS*, and cutting the *xy* plane in the lines *P*M* and *P*N*, as shown in Fig. 52-1. Note that *P** is the foot of the perpendicular from *P* to the *xy* plane. The partial derivatives $\partial z / \partial x$ and $\partial z / \partial y$, evaluated at *P*(x, y)*, give, respectively, the rates of change of z = P*P when *y* is held fixed and when *x* is held fixed. In other words, they give the rates of change of *z* in directions parallel to the *x* and *y* axes. These rates of change are the slopes of the tangent lines of the curves *PR* and *PS* at *P*.



Consider next a plane through *P* perpendicular to the *xy* plane and making an angle θ with the *x* axis. Let it cut the surface in the curve *PQ* and the *xy* plane in the line *P***L*. The *directional derivative* of *f*(*x*, *y*) at *P** in the direction θ is given by

$$\frac{dz}{ds} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta$$
(52.1)

The direction θ is the direction of the vector $(\cos \theta)\mathbf{i} + (\sin \theta)\mathbf{j}$.

The directional derivative gives the rate of change of z = P*P in the direction of P*L; it is equal to the slope of the tangent line of the curve PQ at P. (See Problem 1.)

The directional derivative at a point P^* is a function of θ . We shall see that there is a direction, determined by a vector called the *gradient* of f at P^* (see Chapter 53), for which the directional derivative at P^* has a maximum value. That maximum value is the slope of the steepest tangent line that can be drawn to the surface at P.

For a function w = F(x, y, z), the directional derivative at P(x, y, z) in the direction determined by the angles α , β , γ is given by

$$\frac{dF}{ds} = \frac{\partial F}{\partial x} \cos \alpha + \frac{\partial F}{\partial y} \cos \beta + \frac{\partial F}{\partial z} \cos \gamma$$

By the direction determined by α , β , and γ , we mean the direction of the vector $(\cos \alpha)\mathbf{i} + (\cos \beta)\mathbf{j} + (\cos \gamma)\mathbf{k}$.

Relative Maximum and Minimum Values

Assume that z = f(x, y) has a relative maximum (or minimum) value at $P_0(x_0, y_0, z_0)$. Any plane through P_0 perpendicular to the *xy* plane will cut the surface in a curve having a relative maximum (or minimum) point at P_0 . Thus, the directional derivative $\frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta$ of z = f(x, y) must equal zero at P_0 . In particular, when $\theta = 0$, sin $\theta = 0$ and cos $\theta = 1$, so that $\frac{\partial f}{\partial x} = 0$. When $\theta = \frac{\pi}{2}$, sin $\theta = 1$ and cos $\theta = 0$, so that $\frac{\partial f}{\partial y} = 0$. Hence, we obtain the following theorem.

Theorem 52.1: If z = f(x, y) has a relative extremum at $P_0(x_0, y_0, z_0)$ and $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (x_0, y_0) , then $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ at (x_0, y_0) .

We shall cite without proof the following sufficient conditions for the existence of a relative maximum or minimum.

Theorem 52.2: Let z = f(x, y) have first and second partial derivatives in an open set including a point (x_0, y_0) at which $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$. Define $\Delta = \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right)$. Assume $\Delta < 0$ at (x_0, y_0) . Then:

$$= f(x, y) \text{ has} \begin{cases} \text{a relative minimum at } (x_0, y_0) & \text{if } \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} > 0 \\ \text{a relative maximum at } (x_0, y_0) & \text{if } \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} < 0 \end{cases}$$

If $\Delta > 0$, there is neither a relative maximum nor a relative minimum at (x_0, y_0) . If $\Delta = 0$, we have no information.

Absolute Maximum and Minimum Values

Ζ.

Let *A* be a set of points in the *xy* plane. We say that *A* is *bounded* if *A* is included in some disk. By the *complement* of *A* in the *xy* plane, we mean the set of all points in the *xy* plane that are not in *A*. *A* is said to be *closed* if the complement of *A* is an open set.

Example 1: The following are instances of closed and bounded sets.

- (a) Any closed disk D, that is, the set of all points whose distance from a fixed point is less than or equal to some fixed positive number r. (Note that the complement of D is open because any point not in D can be surrounded by an open disk having no points in D.)
- (b) The inside and boundary of any rectangle. More generally, the inside and boundary of any "simple closed curve," that is, a curve that does not interset itself except at its initial and terminal point.

Theorem 52.3: Let f(x, y) be a function that is continuous on a closed, bounded set *A*. Then *f* has an absolute maximum and an absolute minimum value in *A*.

The reader is referred to more advanced texts for a proof of Theorem 52.3. For three or more variables, an analogous result can be derived.

SOLVED PROBLEMS

1. Derive formula (52.1).

In Fig. 52-1, let $P^{**}(x + \Delta x, y + \Delta y)$ be a second point on P^*L and denote by Δs the distance P^*P^{**} . Assuming that z = f(x, y) possesses continuous first partial derivatives, we have, by Theorem 49.1,

$$\Delta z = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y + \boldsymbol{\epsilon}_1 \Delta x + \boldsymbol{\epsilon}_2 \Delta y$$

where ϵ_1 and $\epsilon_2 \rightarrow 0$ as Δx and $\Delta y \rightarrow 0$. The average rate of change between points P^* and P^{**} is

$$\frac{\Delta z}{\Delta s} = \frac{\partial z}{\partial x} \frac{\Delta x}{\Delta s} + \frac{\partial z}{\partial y} \frac{\Delta y}{\Delta s} + \mathbf{\epsilon}_1 \frac{\Delta x}{\Delta s} + \mathbf{\epsilon}_2 \frac{\Delta y}{\Delta s}$$
$$= \frac{\partial z}{\partial x} \cos\theta + \frac{\partial z}{\partial y} \sin\theta + \mathbf{\epsilon}_1 \cos\theta + \mathbf{\epsilon}_2 \sin\theta$$

where θ is the angle that the line P^*P^{**} makes with the *x* axis. Now let $P^{**} \rightarrow P^*$ along P^*L . The directional derivative at P^* , that is, the instantaneous rate of change of *z*, is then

$$\frac{dz}{ds} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta$$

2. Find the directional derivative of $z = x^2 - 6y^2$ at $P^*(7, 2)$ in the direction: (a) $\theta = 45^\circ$; (b) $\theta = 135^\circ$. The directional derivative at any point $P^*(x, y)$ in the direction θ is

$$\frac{dz}{ds} = \frac{\partial z}{\partial x}\cos\theta + \frac{\partial z}{\partial y}\sin\theta = 2x\cos\theta - 12y\sin\theta$$

(a) At $P^*(7, 2)$ in the direction $\theta = 45^\circ$,

$$\frac{dz}{ds} = 2(7)(\frac{1}{2}\sqrt{2}) - 12(2)(\frac{1}{2}\sqrt{2}) = -5\sqrt{2}$$

(b) At $P^*(7, 2)$ in the direction $\theta = 135^\circ$,

$$\frac{dz}{ds} = 2(7)(-\frac{1}{2}\sqrt{2}) - 12(2)(\frac{1}{2}\sqrt{2}) = -19\sqrt{2}$$

- 3. Find the directional derivative of $z = ye^x$ at $P^*(0, 3)$ in the direction (a) $\theta = 30^\circ$; (b) $\theta = 120^\circ$. Here, $dz/ds = ye^x \cos \theta + e^x \sin \theta$.
 - (a) At (0, 3) in the direction $\theta = 30^\circ$, $dz/ds = 3(1)(\frac{1}{2}\sqrt{3}) + \frac{1}{2} = \frac{1}{2}(3\sqrt{3} + 1)$.
 - (b) At (0, 3) in the direction $\theta = 120^\circ$, $dz/ds = 3(1)(-\frac{1}{2}) + \frac{1}{2}\sqrt{3} = \frac{1}{2}(-3 + \sqrt{3})$.
- 4. The temperature *T* of a heated circular plate at any of its points (*x*, *y*) is given by $T = \frac{64}{x^2 + y^2 + 2}$, the origin being at the center of the plate. At the point (1, 2), find the rate of change of *T* in the direction $\theta = \pi/3$.

We have

$$\frac{dT}{ds} = -\frac{64(2x)}{(x^2 + y^2 + 2)^2} \cos\theta - \frac{64(2y)}{(x^2 + y^2 + 2)^2} \sin\theta$$

At (1, 2) in the direction
$$\theta = \frac{\pi}{3}$$
, $\frac{dT}{ds} = -\frac{128}{49} \frac{1}{2} - \frac{256}{49} \frac{\sqrt{3}}{2} = -\frac{64}{49}(1 + 2\sqrt{3}).$

The electrical potential V at any point (x, y) is given by $V = \ln \sqrt{x^2 + y^2}$. Find the rate of change of V at the point 5. (3, 4) in the direction toward the point (2, 6).

Here,

$$\frac{dV}{ds} = \frac{x}{x^2 + y^2}\cos\theta + \frac{y}{x^2 + y^2}\sin\theta$$

Since θ is a second-quadrant angle and $\tan \theta = (6-4)/(2-3) = -2$, $\cos \theta = -1/\sqrt{5}$ and $\sin \theta = 2/\sqrt{5}$.

Hence, at (3, 4) in the indicated direction, $\frac{dV}{ds} = \frac{3}{25} \left(-\frac{1}{\sqrt{5}} \right) + \frac{4}{25} \frac{2}{\sqrt{5}} = \frac{\sqrt{5}}{25}$.

Find the maximum directional derivative for the surface and point of Problem 2. 6. At $P^*(7, 2)$ in the direction θ , $dz/ds = 14 \cos \theta - 24 \sin \theta$.

To find the value of θ for which $\frac{dz}{ds}$ is a maximum, set $\frac{d}{d\theta} \left(\frac{dz}{ds} \right) = -14 \sin \theta - 24 \cos \theta = 0$. Then $\tan \theta = -\frac{24}{14} = -\frac{12}{7}$ and θ is either a second- or fourth-quadrant angle. For the second-quadrant angle, sin $\theta = \frac{12}{\sqrt{193}}$ and $\cos = -\frac{7}{\sqrt{193}}$. For the fourth-quadrant angle, sin $\theta = -12/\sqrt{193}$ and cos $\theta = 7/\sqrt{193}$.

Since $\frac{d^2}{d\theta^2} \left(\frac{dz}{ds}\right) = \frac{d}{d\theta} \left(-14 \sin \theta - 24 \cos \theta\right) = -14 \cos \theta + 24 \sin \theta$ is negative for the fourth-quadrant angle, the maximum directional derivative is $\frac{dz}{dz} = 14 \left(\frac{7}{\sqrt{193}}\right) - 24 \left(-\frac{12}{\sqrt{193}}\right) = 2\sqrt{193}$, and the direction is $\theta = 300^{\circ}15'$.

7. Find the maximum directional derivative for the function and point of Problem 3.

At $P^*(0, 3)$ in the direction θ , $dz/ds = 3 \cos \theta + \sin \theta$.

At $P^{\circ}(0, 5)$ in the direction θ , $dz/ds = 3 \cos \theta + \sin \theta$. To find the value of θ for which $\frac{dz}{ds}$ is a maximum, set $\frac{d}{d\theta} \left(\frac{dz}{ds} \right) = -3 \sin \theta + \cos \theta = 0$. Then $\tan \theta = \frac{1}{3}$ and θ is either a first- or third-quadrant angle. Since $\frac{d^2}{d\theta^2} \left(\frac{dz}{ds} \right) = \frac{d}{d\theta}$ (-3 sin θ + cos θ) = -3 cos θ - sin θ is negative for the first-quadrant angle, the maximum directional derivative is $\frac{dz}{ds} = 3\frac{3}{\sqrt{10}} + \frac{1}{\sqrt{10}} = \sqrt{10}$, and the direction is $\theta = 18^{\circ}26'$.

In Problem 5, show that V changes most rapidly along the set of radial lines through the origin. 8.

At any point (x_1, y_1) in the direction θ , $\frac{dV}{ds} = \frac{x_1}{x_1^2 + y_1^2} \cos\theta + \frac{y_1}{x_1^2 + y_1^2} \sin\theta$. Now V changes most rapidly when $\frac{d}{d\theta} \left(\frac{dV}{ds}\right) = -\frac{x_1}{x_1^2 + y_1^2} \sin\theta + \frac{y_1}{x_1^2 + y_1^2} \cos\theta = 0$, and then $\tan \theta = \frac{y_1 / (x_1^2 + y_1^2)}{x_1 / (x_1^2 + y_1^2)} = \frac{y_1}{x_1}$. Thus, θ is the angle of inclination of the line joining the origin and the point (x_1, y_1)

Find the directional derivative of $F(x, y, z) = xy + 2xz - y^2 + z^2$ at the point (1, -2, 1) along the curve x = t, 9. y = t - 3, $z = t^2$ in the direction of increasing z.

A set of direction numbers of the tangent to the curve at (1, -2, 1) is [1, 1, 2]; the direction cosines are $[1/\sqrt{6}, 1]$ $1/\sqrt{6}$, $2/\sqrt{6}$]. The directional derivative is

$$\frac{\partial F}{\partial x}\cos\alpha + \frac{\partial F}{\partial y}\cos\beta + \frac{\partial F}{\partial z}\cos\gamma = 0\frac{1}{\sqrt{6}} + 5\frac{1}{\sqrt{6}} + 4\frac{2}{\sqrt{6}} = \frac{13\sqrt{6}}{6}$$

10. Examine $f(x, y) = x^2 + y^2 - 4x + 6y + 25$ for maximum and minimum values.

The conditions
$$\frac{\partial f}{\partial x} = 2x - 4 = 0$$
 and $\frac{\partial f}{\partial y} = 2y + 6 = 0$ are satisfied when $x = 2, y = -3$. Since $f(x, y) = (x^2 - 4x + 4) + (y^2 + 6y + 9) + 25 - 4 - 9 = (x - 2)^2 + (y + 3)^2 + 12$

it is evident that f(2, -3) = 12 is the absolute minimum value of the function. Geometrically, (2, -3, 12) is the lowest point on the surface $z = x^2 + y^2 - 4x + 6y + 25$. Clearly, f(x, y) has no absolute maximum value.

11. Examine $f(x,y) = x^3 + y^3 + 3xy$ for maximum and minimum values. We shall use Theorem 52.2. The conditions $\frac{\partial f}{\partial x} = 3(x^2 + y) = 0$ and $\frac{\partial f}{\partial y} = 3(y^2 + x) = 0$ are satisfied when x = 0, y = 0 and when x = -1, y = -1.

At (0, 0),
$$\frac{\partial^2 f}{\partial x^2} = 6x = 0$$
, $\frac{\partial^2 f}{\partial x \partial y} = 3$, and $\frac{\partial^2 f}{\partial y^2} = 6y = 0$. Then
 $\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) = 9 > 0$

and (0, 0) yields neither a relative maximum nor minimum.

At
$$(-1, -1)$$
, $\frac{\partial^2 f}{\partial x^2} = -6$, $\frac{\partial^2 f}{\partial x \partial y} = 3$, and $\frac{\partial^2 f}{\partial y^2} = -6$. Then
 $\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2 - \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) = -27 < 0$ and $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} < 0$

Hence, f(-1, -1) = 1 is a relative maximum value of the function.

Clearly, there are no absolute maximum or minimum values. (When y = 0, $f(x, y) = x^3$ can be made arbitrarily large or small.)

12. Divide 120 into three nonnegative parts such that the sum of their products taken two at a time is a maximum. Let x, y, and 120 - (x + y) be the three parts. The function to be maximized is S = xy + (x + y)(120 - x - y). Since $0 \le x + y \le 120$, the domain of the function consists of the solid triangle shown in Fig. 52-2. Theorem 52.3 guarantees an absolute maximum.

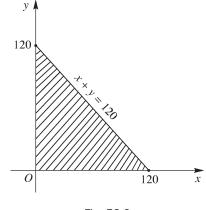


Fig. 52-2

Now,

$$\frac{dS}{dx} = y + (120 - x - y) - (x + y) = 120 - 2x - y$$

and

$$\frac{\partial S}{\partial y} = x + (120 - x - y) - (x + y) = 120 - x - 2y$$

Setting $\partial S/\partial x = \partial S/\partial y = 0$ yields 2x + y = 120 and x + 2y = 120.

Simultaneous solution gives x = 40, y = 40, and 120 - (x + 4) = 40 as the three parts, and $S = 3(40^2) = 4800$. So, if the absolute maximum occurs in the interior of the triangle, Theorem 52.1 tells us we have found it. It is still necessary to check the boundary of the triangle. When y = 0, S = x(120 - x). Then dS/dx = 120 - 2x, and the critical number is x = 60. The corresponding maximum value of S is 60(60) = 3600, which is < 4800. A similar result holds when x = 0. Finally, on the hypotenuse, where y = 120 - x, S = x(120 - x) and we again obtain a maximum of 3600. Thus, the absolute maximum is 4800, and x = y = z = 40.

13. Find the point in the plane 2x - y + 2z = 16 nearest the origin.

Let (x, y, z) be the required point; then the square of its distance from the origin is $D = x^2 + y^2 + z^2$. Since also 2x - y + 2z = 16, we have y = 2x + 2z - 16 and $D = x^2 + (2x + 2z - 16)^2 + z^2$.

Then the conditions $\partial D/\partial x = 2x + 4(2x + 2z - 16) = 0$ and $\partial D/\partial z = 4(2x + 2z - 16) + 2z = 0$ are equivalent to 5x + 4z = 32 and 4x + 5z = 32, and $x = z = \frac{32}{9}$. Since it is known that a point for which *D* is a minimum exists, $(\frac{32}{9}, -\frac{16}{9}, \frac{32}{9})$ is that point.

14. Show that a rectangular parallelepiped of maximum volume V with constant surface area S is a cube.

Let the dimensions be x, y, and z. Then V = xyz and S = 2(xy + yz + zx).

The second relation may be solved for z and substituted in the first, to express V as a function of x and y. We prefer to avoid this step by simply treating z as a function of x and y. Then

$$\frac{\partial V}{\partial x} = yz + xy \frac{\partial z}{\partial x}, \qquad \qquad \frac{\partial V}{\partial y} = xz + xy \frac{\partial z}{\partial y}$$
$$\frac{\partial S}{\partial x} = 0 = 2\left(y + z + x \frac{\partial z}{\partial y} + y \frac{\partial z}{\partial x}\right), \qquad \frac{\partial S}{\partial y} = 0 = 2\left(x + z + x \frac{\partial z}{\partial y} + y \frac{\partial z}{\partial y}\right)$$

From the latter two equations, $\frac{\partial z}{\partial x} = -\frac{y+z}{x+y}$ and $\frac{\partial z}{\partial y} = -\frac{x+z}{x+y}$. Substituting in the first two yields the conditions $\frac{\partial V}{\partial x} = yz - \frac{xy(y+z)}{x+y} = 0$ and $\frac{\partial V}{\partial y} = xz - \frac{xy(x+z)}{x+y} = 0$, which reduce to $y^2(z-x) = 0$ and $x^2(z-y) = 0$. Thus x = y = z, as required.

15. Find the volume V of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Let P(x, y, z) be the vertex in the first octant. Then V = 8xyz. Consider z to be defined as a function of the independent variables x and y by the equation of the ellipsoid. The necessary conditions for a maximum are

$$\frac{\partial V}{\partial x} = 8\left(yz + xy\frac{\partial z}{\partial x}\right) = 0 \quad \text{and} \quad \frac{\partial V}{\partial y} = 8\left(xz + xy\frac{\partial z}{\partial y}\right) = 0 \tag{1}$$

From the equation of the ellipsoid, obtain $\frac{2x}{a^2} + \frac{2z}{c^2}\frac{\partial z}{\partial x} = 0$ and $\frac{2y}{b^2} + \frac{2z}{c^2}\frac{\partial z}{\partial y} = 0$. Eliminate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ between these relations and (1) to obtain

$$\frac{\partial V}{\partial x} = 8\left(yz - \frac{c^2 x^2 y}{a^2 z}\right) = 0$$
 and $\frac{\partial V}{\partial y} = 8\left(xz - \frac{c^2 x y^2}{b^2 z}\right) = 0$

and, finally,

$$\frac{x^2}{a^2} = \frac{z^2}{c^2} = \frac{y^2}{b^2}$$
(2)

Combine (2) with the equation of the ellipsoid to get $x = a\sqrt{3}/3$, $y = b\sqrt{3}/3$, and $z = c\sqrt{3}/3$. Then $V = 8xyz = (8\sqrt{3}/9)abc$ cubic units.

SUPPLEMENTARY PROBLEMS

- 16. Find the directional derivatives of the given function at the given point in the indicated direction.
 - (a) $z = x^2 + xy + y^2$, (3, 1), $\theta = \frac{\pi}{3}$.
 - (b) $z = x^3 3xy + y^3$, (2, 1), $\theta = \tan^{-1}(\frac{2}{3})$.
 - (c) $z = y + x \cos xy$, (0, 0), $\theta = \frac{\pi}{3}$.
 - (d) $z = 2x^2 + 3xy y^2$, (1, -1), toward (2, 1).

Ans. (a) $\frac{1}{2}(7+5\sqrt{3})$; (b) $21\sqrt{13}/13$; (c) $\frac{1}{2}(1+\sqrt{3})$; (d) $11\sqrt{5}/5$

17. Find the maximum directional derivative for each of the functions of Problem 16 at the given point.

Ans. (a) $\sqrt{74}$; (b) $3\sqrt{10}$; (c) $\sqrt{2}$; (d) $\sqrt{26}$

- 18. Show that the maximal directional derivative of $V = \ln \sqrt{x^2 + y^2}$ of Problem 8 is constant along any circle $x^2 + y^2 = r^2$.
- 19. On a hill represented by $z = 8 4x^2 2y^2$, find (a) the direction of the steepest grade at (1, 1, 2) and (b) the direction of the contour line (the direction for which z = constant). Note that the directions are mutually perpendicular.

Ans. (a) $\tan^{-1}(\frac{1}{2})$, third quadrant; (b) $\tan^{-1}(-2)$

- **20.** Show that the sum of the squares of the directional derivatives of z = f(x, y) at any of its points is constant for any two mutually perpendicular directions and is equal to the square of the maximum directional derivative.
- **21.** Given z = f(x, y) and w = g(x, y) such that $\frac{\partial z}{\partial x} = \frac{\partial w}{\partial y}$ and $\frac{\partial z}{\partial y} = -\frac{\partial w}{\partial x}$. If θ_1 and θ_2 are two mutually perpendicular directions, show that at any point P(x, y), $\frac{\partial z}{\partial s_1} = \frac{\partial w}{\partial s_2}$ and $\frac{\partial z}{\partial s_2} = -\frac{\partial w}{\partial s_1}$.
- 22. Find the directional derivative of the given function at the given point in the indicated direction:
 - (a) xy^2z , (2, 1, 3), [1, -2, 2]. (b) $x^2 + y^2 + z^2$, (1, 1, 1), toward (2, 3, 4). (c) $x^2 + y^2 - 2xz$, (1, 3, 2), along $x^2 + y^2 - 2xz = 6$, $3x^2 - y^2 + 3z = 0$ in the direction of increasing *z*. *Ans.* (a) $-\frac{17}{3}$; (b) $6\sqrt{14}/7$; (c) 0
- 23. Examine each of the following functions for relative maximum and minimum values.

(a)	$z = 2x + 4y - x^2 - y^2 - 3$	Ans.	maximum = 2 when $x = 1$, $y = 2$
(b)	$z = x^3 + y^3 - 3xy$	Ans.	minimum = -1 when $x = 1$, $y = 1$
(c)	$z = x^2 + 2xy + 2y^2$	Ans.	minimum = 0 when $x = 0$, $y = 0$
(d)	z = (x - y)(1 - xy)	Ans.	neither maximum nor minimum
(e)	$z = 2x^2 + y^2 + 6xy + 10x - 6y + 5$	Ans.	neither maximum nor minimum
(f)	$z = 3x - 3y - 2x^3 - xy^2 + 2x^2y + y^3$	Ans.	minimum = $-\sqrt{6}$ when $x = -\sqrt{6}/6$, $y = \sqrt{6}/3$;
			maximum $\sqrt{6}$ when $x = \sqrt{6}/6$, $y = -\sqrt{6}/3$
(g)	z = xy(2x + 4y + 1)	Ans.	maximum $\frac{1}{216}$ when $x = -\frac{1}{6}$, $y = -\frac{1}{12}$

24. Find positive numbers x, y, z such that

(a) $x + y + z = 18$ and xyz is a maximum	(b) $xyz = 27$ and $x + y + z$ is a minimum
(c) $x + y + z = 20$ and xyz^2 is a maximum	(d) $x + y + z = 12$ and xy^2z^3 is a maximum
Ans. (a) $x = y = z = 6$; (b) $x = y = z = 3$; (c) $x = 3$; (c)	y = 5, z = 10; (d) $x = 2, y = 4, z = 6$

- **25.** Find the minimum value of the square of the distance from the origin to the plane Ax + By + Cz + D = 0. Ans $D^2/(A^2 + B^2 + C^2)$
- 26. (a) The surface area of a rectangular box without a top is to be 108 ft². Find the greatest possible volume.
 (b) The volume of a rectangular box without a top is to be 500 ft³. Find the minimum surface area.
 Ans. (a) 108 ft³; (b) 300 ft²
- **27.** Find the point on z = xy 1 nearest the origin.

Ans. (0, 0, -1)

28. Find the equation of the plane through (1, 1, 2) that cuts off the least volume in the first octant.

Ans. 2x + 2y + z = 6

29. Determine the values of p and q so that the sum S of the squares of the vertical distances of the points (0, 2), (1, 3), and (2, 5) from the line y = px + q is a minimum. (*Hint:* $S = (q - 2)^2 + (p + q - 3)^2 + (2p + q - 5)^2$.)

Ans. $p = \frac{3}{2}; q = \frac{11}{6}$