CHAPTER 50

Space Vectors

Vectors in Space

As in the plane (see Chapter 39), a vector in space is a quantity that has both magnitude and direction. Three vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} , not in the same plane and no two parallel, issuing from a common point are said to form a *right-handed system* or *triad* if \mathbf{c} has the direction in which the right-threaded screw would move when rotated through the smaller angle in the direction from \mathbf{a} to \mathbf{b} , as in Fig. 50-1. Note that, as seen from a point on \mathbf{c} , the rotation through the smaller angle from \mathbf{a} to \mathbf{b} is counterclockwise.

We choose a right-handed rectangular coordinate system in space and let **i**, **j**, and **k** be unit vectors along the positive *x*, *y* and *z* axes, respectively, as in Fig. 50-2. The coordinate axes divide space into eight parts, called *octants*. The *first octant*, for example, consists of all points (*x*, *y*, *z*) for which x > 0, y > 0, z > 0.

As in Chapter 39, any vector **a** may be written as

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

If P(x, y, z) is a point in space (Fig. 50-2), the vector **r** from the origin O to P is called the *position vector* of P and may be written as

$$\mathbf{r} = \mathbf{OP} = \mathbf{OB} + \mathbf{BP} = \mathbf{OA} + \mathbf{AB} + \mathbf{BP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
(50.1)

The algebra of vectors developed in Chapter 39 holds here with only such changes as the difference in dimensions requires. For example, if $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$. then

$$k\mathbf{a} = ka_1\mathbf{i} + ka_2\mathbf{j} + ka_3\mathbf{k}$$
 for *k* any scalar

$$\mathbf{a} = \mathbf{b}$$
 if and only if $a_1 = b_1, a_2 = b_2, and a_3 = b_3$

 $\mathbf{a} \pm \mathbf{b} = (a_1 \pm b_1)\mathbf{i} + (a_2 \pm b_2)\mathbf{j} + (a_3 \pm b_3)\mathbf{k}$

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, where θ is the smaller angle between \mathbf{a} and \mathbf{b}

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1 \text{ and } \mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$$

 $|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{a_1^2 + a_2^2 + a_3^2}$

 $\mathbf{a} \cdot \mathbf{b} = 0$ if and only if $\mathbf{a} = \mathbf{0}$, or $\mathbf{b} = \mathbf{0}$, or \mathbf{a} and \mathbf{b} are perpendicular

From (50.1), we have

$$|\mathbf{r}| = \sqrt{\mathbf{r} \cdot \mathbf{r}} = \sqrt{x^2 + y^2 + z^2}$$
 (50.2)

427

as the distance of the point P(x, y, z) from the origin. Also, if $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ are any two points (see Fig. 50-3), then

$$\mathbf{P}_{1}\mathbf{P}_{2} = \mathbf{P}_{1}\mathbf{B} + \mathbf{B}\mathbf{P}_{2} = \mathbf{P}_{1}\mathbf{A} + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{P}_{2} = (x_{2} - x_{1})\mathbf{i} + (y_{2} - y_{1})\mathbf{j} + (z_{2} - z_{1})\mathbf{k}$$

and

$$|\mathbf{P}_{1}\mathbf{P}_{2}| = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2} + (z_{2} - z_{1})^{2}}$$
(50.3)

is the familiar formula for the distance between two points. (See Problems 1–3.)

Direction Cosines of a Vector

Let $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ make angles α , β , and γ , respectively, with the positive x, y, and z axes, as in Fig. 50-4. From

 $\mathbf{i} \cdot \mathbf{a} = |\mathbf{i}||\mathbf{a}| \cos \alpha = |\mathbf{a}| \cos \alpha, \qquad \mathbf{j} \cdot \mathbf{a} = |\mathbf{a}| \cos \beta, \ \mathbf{k} \cdot \mathbf{a} = |\mathbf{a}| \cos \gamma$

we have

$$\cos \alpha = \frac{\mathbf{i} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{a_1}{|\mathbf{a}|}, \qquad \cos \beta = \frac{\mathbf{j} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{a_2}{|\mathbf{a}|}, \qquad \cos \gamma = \frac{\mathbf{k} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{a_3}{|\mathbf{a}|}$$

These are the *direction cosines* of **a**. Since

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{a_1^2 + a_2^2 + a_3^2}{|\mathbf{a}|^2} = 1$$

the vector $\mathbf{u} = \mathbf{i} \cos \alpha + \mathbf{j} \cos \beta + \mathbf{k} \cos \gamma$ is a unit vector parallel to \mathbf{a} .

Determinants

We shall assume familiarity with 2×2 and 3×3 determinants. In particular,

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \quad \text{and} \quad \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

That expansion of the 3×3 determinant is said to be "along the first row." It is equal to suitable expansions along the other rows and down the columns.

Vector Perpendicular to Two Vectors

Let

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$
 and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$

be two nonparallel vectors with common initial point P. By an easy computation, it can be shown that

$$\mathbf{c} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} + \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
(50.4)

is perpendicular to (normal to) both **a** and **b** and, hence, to the plane of these vectors.

In Problems 5 and 6, we show that

$$|\mathbf{c}| = |\mathbf{a}||\mathbf{b}|\sin\theta = \text{area of a parallelogram with nonparallel sides } \mathbf{a} \text{ and } \mathbf{b}$$
 (50.5)

If **a** and **b** are parallel, then $\mathbf{b} = k\mathbf{a}$, and (50.4) shows that $\mathbf{c} = \mathbf{0}$; that is, **c** is the zero vector. The zero vector, by definition, has magnitude 0 but no specified direction.

Vector Product of Two Vectors

Take

$$\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$$
 and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$

with initial point *P* and denote by **n** the unit vector normal to the plane of **a** and **b**, so directed that **a**, **b**, and **n** (in that order) form a right-handed triad at *P*, as in Fig. 50-5. The *vector product* or *cross product* of **a** and **b** is defined as

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \mathbf{n} \tag{50.6}$$

where θ is again the smaller angle between **a** and **b**. Thus, **a** × **b** is a vector perpendicular to both **a** and **b**. We show in Problem 6 that $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ is the area of the parallelogram having **a** and **b** as non-

 $\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}$

parallel sides.

If **a** and **b** are parallel, then $\theta = 0$ or π and $\mathbf{a} \times \mathbf{b} = \mathbf{0}$. Thus,

Fig. 50-5

In (50.6), if the order of **a** and **b** is reversed, then **n** must be replaced by $-\mathbf{n}$; hence,

$$\mathbf{b} \times \mathbf{a} = -\left(\mathbf{a} \times \mathbf{b}\right) \tag{50.8}$$

Since the coordinate axes were chosen as a right-handed system, it follows that

$$i \times j = k, \qquad j \times k = i, \qquad k \times i = j$$

$$j \times i = -k, \qquad k \times j = -i, \qquad i \times k = -j$$
(50.9)

In Problem 8, we prove for any vectors **a**, **b**, and **c**, the distributive law

$$(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c})$$
(50.10)

Multiplying (50.10) by -1 and using (50.8), we have the companion distributive law

a

$$\mathbf{c} \times (\mathbf{a} + \mathbf{b}) = (\mathbf{c} \times \mathbf{a}) + (\mathbf{c} \times \mathbf{b})$$
(50.11)

Then, also,

$$(\mathbf{a} + \mathbf{b}) \times (\mathbf{c} + \mathbf{d}) = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{d} + \mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{d}$$
(50.12)

$$\times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
(50.13)

and

(See Problems 9 and 10.)

(50.7)

Triple Scalar Product

In Fig. 50-6, let θ be the smaller angle between **b** and **c** and let ϕ be the smaller angle between **a** and **b** × **c**. Let *h* denote the height and *A* the area of the base of the parallelepiped. Then the triple scalar product is by definition

 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{a} \cdot |\mathbf{b}| |\mathbf{c}| \sin\theta \mathbf{n} = |\mathbf{a}| |\mathbf{b}| |\mathbf{c}| \sin\theta \cos\phi = (|\mathbf{a}| \cos\phi)(|\mathbf{b}| |\mathbf{c}| \sin\theta) = hA$

= volume of parallelepiped

It may be shown (see Problem 11) that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$
(50.14)

Fig. 50-6

Also
$$\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \begin{vmatrix} c_1 & c_2 & c_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

whereas
$$\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = \begin{vmatrix} b_1 & b_2 & b_3 \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = -\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$

Similarly, we have

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) \tag{50.15}$$

and

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = -\mathbf{b} \cdot (\mathbf{a} \times \mathbf{c}) = -\mathbf{c} \cdot (\mathbf{b} \times \mathbf{a}) = -\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})$$
(50.16)

From the definition of $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ as a volume, it follows that if \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar, then $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$, and conversely.

The parentheses in $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ are not necessary. For example, $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ can be interpreted only as $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ or $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$. But $\mathbf{a} \cdot \mathbf{b}$ is a scalar, so $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$ is without meaning. (See Problem 12.)

Triple Vector Product

In Problem 13, we show that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$$
(50.17)

Similarly,

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{b} \cdot \mathbf{c})\mathbf{a}$$
 (50.18)

Thus, except when **b** is perpendicular to both **a** and **c**, $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ and the use of parentheses is necessary.

The Straight Line

A line in space through a given point $P_0(x_0, y_0, z_0)$ may be defined as the locus of all points P(x, y, z) such that P_0P is parallel to a given direction $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$. Let \mathbf{r}_0 and \mathbf{r} be the position vectors of P_0 and P (Fig. 50-7). Then

$$\mathbf{r} - \mathbf{r}_0 = k\mathbf{a}$$
 where k is a scalar variable (50.19)

is the vector equation of line PP_0 . Writing (50.19) as

$$(x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k} = k(a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k})$$

then separating components to obtain

$$x - x_0 = ka_1$$
, $y - y_0 = ka_2$, $z - z_0 = ka_3$

Fig. 50-7

and eliminating k, we have

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$$
(50.20)

as the equations of the line in rectangular coordinates. Here, $[a_1, a_2, a_3]$ is a set of *direction numbers* for the line and $\left[\frac{a_1}{|\mathbf{a}|}, \frac{a_2}{|\mathbf{a}|}, \frac{a_3}{|\mathbf{a}|}\right]$ is a set of *direction cosines* of the line.

If any one of the numbers a_1 , a_2 , or a_3 is zero, the corresponding numerator in (50.20) must be zero. For example, if $a_1 = 0$ but a_2 , $a_3 \neq 0$, the equations of the line are

$$x - x_0 = 0$$
 and $\frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$

The Plane

A plane in space through a given point $P_0(x_0, y_0, z_0)$ can be defined as the locus of all lines through P_0 and perpendicular (normal) to a given line (direction) $\mathbf{a} = A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ (Fig. 50-8). Let P(x, y, z) be any other point in the plane. Then $\mathbf{r} - \mathbf{r}_0 = \mathbf{P}_0\mathbf{P}$ is perpendicular to \mathbf{a} , and the equation of the plane is

$$(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{a} = 0 \tag{50.21}$$

11g. 00 (

In rectangular coordinates, this becomes

or

$$\begin{bmatrix} (x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k} \end{bmatrix} \cdot (A\mathbf{i} + B\mathbf{j} + C\mathbf{k}) = 0 \\
A(x - x_0) + B(y - y_0) + C(z - z_0) = 0 \\
Ax + By + Cz + D = 0$$
(50.22)

where $D = -(Ax_0 + By_0 + Cz_0)$.

Conversely, let $P_0(x_0, y_0, z_0)$ be a point on the surface Ax + By + Cz + D = 0. Then also $Ax_0 + By_0 + Cz_0 + D = 0$. Subtracting the second of these equations from the first yields $A(x - x_0) + B(y - y_0) + C(z - z_0) = (A\mathbf{i} + B\mathbf{j} + C\mathbf{k}) \cdot [(x - x_0)\mathbf{i} + (y - y_0)\mathbf{j} + (z - z_0)\mathbf{k}] = 0$ and the constant vector $A\mathbf{i} + B\mathbf{j} + C\mathbf{k}$ is normal to the surface at each of its points. Thus, the surface is a plane.

SOLVED PROBLEMS

1. Find the distance of the point $P_1(1, 2, 3)$ from (a) the origin, (b) the x axis, (c) the z axis, (d) the xy plane, and (e) the point $P_2(3, -1, 5)$.

In Fig. 50-9,

- (a) $r = \mathbf{OP}_1 = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$; hence, $|\mathbf{r}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$.
- (b) $\mathbf{AP}_1 = \mathbf{AB} + \mathbf{BP}_1 = 2\mathbf{j} + 3\mathbf{k}$; hence, $|\mathbf{AP}_1| = \sqrt{4+9} = \sqrt{13}$.
- (c) $\mathbf{DP}_1 = \mathbf{DE} + \mathbf{EP}_1 = 2\mathbf{j} + \mathbf{i}$; hence, $|\mathbf{DP}_1| = \sqrt{5}$.
- (d) $\mathbf{BP}_1 = 3\mathbf{k}$, so $|\mathbf{BP}_1| = 3$.
- (e) $\mathbf{P}_1\mathbf{P}_2 = (3-1)\mathbf{i} + (-1-2)\mathbf{j} + (5-3)\mathbf{k} = 2\mathbf{i} 3\mathbf{j} + 2\mathbf{k}$; hence, $|\mathbf{P}_1\mathbf{P}_2| = \sqrt{4+9+4} = \sqrt{17}$.

2. Find the angle θ between the vectors joining *O* to $P_1(1, 2, 3)$ and $P_2(2, -3, -1)$. Let $\mathbf{r}_1 = \mathbf{OP}_1 = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{r}_2 = \mathbf{OP}_2 = 2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$. Then

$$\cos\theta = \frac{\mathbf{r}_1 \cdot \mathbf{r}_2}{|\mathbf{r}_1||\mathbf{r}_2|} = \frac{1(2) + 2(-3) + 3(-1)}{\sqrt{14}\sqrt{14}} = -\frac{1}{2}$$
 and $\theta = 120^\circ$.

3. Find the angle $\alpha = \angle BAC$ of the triangle ABC (Fig. 50-10) whose vertices are A(1, 0, 1), B(2, -1, 1), C(-2, 1, 0).

Let $\mathbf{a} = \mathbf{A}\mathbf{C} = -3\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{b} = \mathbf{A}\mathbf{B} = \mathbf{i} - \mathbf{j}$. Then

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{-3 - 1}{\sqrt{22}} \sim -0.85280$$
 and $\alpha \sim 148^{\circ}31'$.

4. Find the direction cosines of $\mathbf{a} = 3\mathbf{i} + 12\mathbf{j} + 4\mathbf{k}$.

The direction cosines are $\cos \alpha = \frac{\mathbf{i} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{3}{13}, \cos \beta = \frac{\mathbf{j} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{12}{13}, \cos \gamma = \frac{\mathbf{k} \cdot \mathbf{a}}{|\mathbf{a}|} = \frac{4}{13}.$

5. If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$ and $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$ are two vectors issuing from a point *P* and if

$$\mathbf{c} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} + \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$

show that $|\mathbf{c}| = |\mathbf{a}|\mathbf{b}| \sin \theta$, where θ is the smaller angle between \mathbf{a} and \mathbf{b} .

We have $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ and

$$\sin\theta = \sqrt{1 - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)^2} = \frac{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2) - (a_1b_1 + a_2b_2 + a_3b_3)^2}}{|\mathbf{a}||\mathbf{b}|} = \frac{|\mathbf{c}|}{|\mathbf{a}||\mathbf{b}|}$$

Hence, $|\mathbf{c}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ as required.

- 6. Find the area of the parallelogram whose nonparallel sides are **a** and **b**. From Fig. 50-11, $h = |\mathbf{b}| \sin \theta$ and the area is $h|\mathbf{a}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$.
- 7. Let \mathbf{a}_1 and \mathbf{a}_2 , respectively, be the components of \mathbf{a} parallel and perpendicular to \mathbf{b} , as in Fig. 50-12. Show that $\mathbf{a}_2 \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$ and $\mathbf{a}_1 \times \mathbf{b} = 0$.

If θ is the angle between **a** and **b**, then $|\mathbf{a}_1| = |\mathbf{a}| \cos \theta$ and $|\mathbf{a}_2| = |\mathbf{a}| \sin \theta$. Since **a**, **a**₂, and **b** are coplanar,

 $\mathbf{a}_2 \times \mathbf{b} = |\mathbf{a}_2| |\mathbf{b}| \sin \phi \mathbf{n} = |\mathbf{a}| \sin \theta |\mathbf{b}| \mathbf{n} = |\mathbf{a}| |\mathbf{b}| \sin \theta \mathbf{n} = \mathbf{a} \times \mathbf{b}$

Since \mathbf{a}_1 and \mathbf{b} are parallel, $\mathbf{a}_1 \times \mathbf{b} = \mathbf{0}$.

8. Prove: $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c})$.

In Fig. 50-13, the initial point *P* of the vectors **a**, **b**, and **c** is in the plane of the paper, while their endpoints are above this plane, The vectors \mathbf{a}_1 and \mathbf{b}_1 are, respectively, the components of **a** and **b** perpendicular to **c**. Then \mathbf{a}_1 , \mathbf{b}_1 , $\mathbf{a}_1 + \mathbf{b}_1$, $\mathbf{a}_1 \times \mathbf{c}$, $\mathbf{b}_1 \times \mathbf{c}$, and $(\mathbf{a}_1 + \mathbf{b}_1) \times \mathbf{c}$ all lie in the plane of the paper.

Fig. 50-13

In triangles PRS and PMQ,

$$\frac{RS}{PR} = \frac{|\mathbf{b}_1 \times \mathbf{c}|}{|\mathbf{a}_1 \times \mathbf{c}|} = \frac{|\mathbf{b}_1| |\mathbf{c}|}{|\mathbf{a}_1| |\mathbf{c}|} = \frac{|\mathbf{b}_1|}{|\mathbf{a}_1|} = \frac{MQ}{PM}$$

Thus, *PRS* and *PMQ* are similar. Now *PR* is perpendicular to *PM*, and *RS* is perpendicular to *MQ*; hence *PS* is perpendicular to *PQ* and $\mathbf{PS} = \mathbf{PQ} \times \mathbf{c}$. Then, since $\mathbf{PS} = \mathbf{PQ} \times \mathbf{c} = \mathbf{PR} + \mathbf{RS}$, we have

$$(\mathbf{a}_1 + \mathbf{b}_1) \times \mathbf{c} = (\mathbf{a}_1 \times \mathbf{c}) + (\mathbf{b}_1 \times \mathbf{c})$$

By Problem 7, \mathbf{a}_1 and \mathbf{b}_1 may be replaced by \mathbf{a} and \mathbf{b} , respectively, to yield the required result.

- 9. When $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, show that $\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$. We have, by the distributive law,
 - $\mathbf{a} \times \mathbf{b} = (a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) \times (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k})$ = $a_1\mathbf{i} \times (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}) + a_2\mathbf{j} \times (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}) + a_3\mathbf{k} \times (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k})$ = $(a_1b_2\mathbf{k} - a_1b_3\mathbf{j}) + (-a_2b_1\mathbf{k} + a_2b_3\mathbf{i}) + (a_3b_1\mathbf{j} - a_3b_2\mathbf{i})$ = $(a_2b_3 - a_3b_2)\mathbf{i} - (a_1b_3 - a_3b_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$ = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
- 10. Derive the law of sines of plane trigonometry.

Consider the triangle *ABC*, whose sides **a**, **b**, **c** are of magnitudes *a*, *b*, *c*, respectively, and whose interior angles are α , β , γ . We have

$$\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$$
Then
$$\mathbf{a} \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} = \mathbf{0} \quad \text{or} \quad \mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a}$$
and
$$\mathbf{b} \times (\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{c} = \mathbf{0} \quad \text{or} \quad \mathbf{b} \times \mathbf{c} = \mathbf{a} \times \mathbf{b}$$
Thus,
$$\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$$
so that
$$\mathbf{a} \mid \mathbf{b} \sin \gamma = |\mathbf{b}| |\mathbf{c}| \sin \alpha = |\mathbf{c}| |\mathbf{a}| \sin \beta$$
or
$$ab \sin \gamma = bc \sin \alpha = ca \sin \beta$$
and
$$\frac{\sin \gamma}{c} = \frac{\sin \alpha}{a} = \frac{\sin \beta}{b}$$

11. If $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$, and $\mathbf{c} = c_1\mathbf{i} + c_2\mathbf{j} + c_3\mathbf{k}$, show that

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

By (50.13),

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

= $(a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) \cdot [(b_2c_3 - b_3c_2)\mathbf{i} + (b_3c_1 - b_1c_3)\mathbf{j} + (b_1c_2 - b_2c_1)\mathbf{k}]$

$$=a_1(b_2c_3-b_3c_2)+a_2(b_3c_1-b_1c_3)+a_3(b_1c_2-b_2c_1)=\begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}$$

12. Show that $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{c}) = 0$. By (50.14), $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c} = 0$.

13. For the vectors **a**, **b**, and **c** of Problem 11, show that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$. Here

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \times \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

= $(a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \times [(b_2 c_3 - b_3 c_2) \mathbf{i} + (b_3 c_1 - b_1 c_3) \mathbf{j} + (b_1 c_2 - b_2 c_1) \mathbf{k}]$
= $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_2 c_3 - b_3 c_2 & b_3 c_1 - b_1 c_3 & b_1 c_2 - b_2 c_1 \end{vmatrix}$
= $\mathbf{i}(a_2 b_1 c_2 - a_2 b_2 c_1 - a_3 b_3 c_1 + a_3 b_1 c_3) + \mathbf{j}(a_3 b_2 c_3 - a_3 b_3 c_2 - a_1 b_1 c_2 + a_1 b_2 c_1) + \mathbf{k}(a_1 b_3 c_1 - a_1 b_1 c_3 - a_2 b_2 c_3 + a_2 b_3 c_2)$
= $\mathbf{i}b_1(a_1 c_1 + a_2 c_2 + a_3 c_3) + \mathbf{j}b_2(a_1 c_1 + a_2 c_2 + a_3 c_3) + \mathbf{k}b_3(a_1 c_1 + a_2 c_2 + a_3 c_3) - [\mathbf{i}c_1(a_1 b_1 + a_2 b_2 + a_3 b_3) + \mathbf{j}c_2(a_1 b_1 + a_2 b_2 + a_3 b_3) + \mathbf{k}c_3(a_1 b_1 + a_2 b_2 + a_3 b_3)]$
= $(b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})(\mathbf{a} \cdot \mathbf{c}) - (c_1 \mathbf{i} + c_2 \mathbf{j} + c_3 \mathbf{k})(\mathbf{a} \cdot \mathbf{b})$
= $\mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}$

14. If l_1 and l_2 are two nonintersecting lines in space, show that the shortest distance d between them is the distance from any point on l_1 to the plane through l_2 and parallel to l_1 ; that is, show that if P_1 is a point on l_1 and P_2 is a point on l_2 then, apart from sign, d is the scalar projection of $\mathbf{P}_1\mathbf{P}_2$ on a common perpendicular to l_1 and l_2 .

Let l_1 pass through $P_1(x_1, y_1, z_1)$ in the direction $\mathbf{a} = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$, and let l_2 pass through $P_2(x_2, y_2, z_2)$ in the direction $\mathbf{b} = b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$.

Then $\mathbf{P}_1\mathbf{P}_2 = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$, and the vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to both l_1 and l_2 . Thus,

$$d = \left| \frac{\mathbf{P}_{1}\mathbf{P}_{2} \cdot (\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|} \right| = \left| \frac{(\mathbf{r}_{2} - \mathbf{r}) \cdot (\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|} \right|$$

15. Write the equation of the line passing through $P_0(1, 2, 3)$ and parallel to $\mathbf{a} = 2\mathbf{i} - \mathbf{j} - 4\mathbf{k}$. Which of the points $A(3, 1, -1), B(\frac{1}{2}, \frac{9}{4}, 4), C(2, 0, 1)$ are on this line? From (50.19), the vector equation is

$$(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = k(2\mathbf{i} - \mathbf{j} - 4\mathbf{k})$$
$$(x - 1)\mathbf{i} + (y - 2)\mathbf{j} + (z - 3)\mathbf{k} = k(2\mathbf{i} - \mathbf{j} - 4\mathbf{k})$$
(1)

or

The rectangular equations are

$$\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{-4} \tag{2}$$

Using (2), it is readily found that *A* and *B* are on the line while *C* is not.

In the vector equation (1), a point P(x, y, z) on the line is found by giving k a value and comparing components. The point A is on the line because

$$(3-1)\mathbf{i} + (1-2)\mathbf{j} + (-1-3)\mathbf{k} = k(2\mathbf{i} - \mathbf{j} - 4\mathbf{k})$$

when k = 1. Similarly *B* is on the line because

$$-\frac{1}{2}\mathbf{i} + \frac{1}{4}\mathbf{j} + \mathbf{k} = k(2\mathbf{i} - \mathbf{j} - 4\mathbf{k})$$

when $k = -\frac{1}{4}$. The point *C* is not on the line because

$$\mathbf{i} - 2\mathbf{j} - 2\mathbf{k} = k(2\mathbf{i} - \mathbf{j} - 4\mathbf{k})$$

for no value of k.

or

16. Write the equation of the plane:

- (a) Passing through $P_0(1, 2, 3)$ and parallel to 3x 2y + 4z 5 = 0.
- (b) Passing through $P_0(1, 2, 3)$ and $P_1(3, -2, 1)$, and perpendicular to the plane 3x 2y + 4z 5 = 0.
- (c) Through $P_0(1, 2, 3)$, $P_1(3, -2, 1)$ and $P_2(5, 0, -4)$.

Let P(x, y, z) be a general point in the required plane.

(a) Here $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$ is normal to the given plane and to the required plane. The vector equation of the latter is $(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{a} = \mathbf{0}$ and the rectangular equation is

$$3(x-1) - 2(y-2) + 4(z-3) = 0$$

3x - 2y + 4z - 11 = 0

(b) Here $\mathbf{r}_1 - \mathbf{r}_0 = 2\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$ and $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$ are parallel to the required plane; thus, $(\mathbf{r}_1 - \mathbf{r}_0) \times \mathbf{a}$ is normal to this plane. Its vector equation is $(\mathbf{r} - \mathbf{r}_0) \cdot [(\mathbf{r}_1 - \mathbf{r}_0) \times \mathbf{a}] = 0$. The rectangular equation is

$$(\mathbf{r} - \mathbf{r}_0) \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & -2 \\ 3 & -2 & 4 \end{vmatrix} = [(x - 1)\mathbf{i} + (y - 2)\mathbf{j} + (z - 3)\mathbf{k}] \cdot [-20\mathbf{i} - 14\mathbf{j} + 8\mathbf{k}]$$

$$= -20(x-1) - 14(y-2) + 8(z-3) = 0$$

or 20x + 14y - 8z - 24 = 0.

(c) Here $\mathbf{r}_1 - \mathbf{r}_0 = 2\mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$ and $\mathbf{r}_2 - \mathbf{r}_0 = 4\mathbf{i} = 2\mathbf{j} - 7\mathbf{k}$ are parallel to the required plane, so that $(\mathbf{r}_1 - \mathbf{r}_0) \times (\mathbf{r}_2 - \mathbf{r}_0)$ is normal to it. The vector equation is $(\mathbf{r} - \mathbf{r}_0) \cdot [(\mathbf{r}_1 - \mathbf{r}_0) \times (\mathbf{r}_2 - \mathbf{r}_0)] = \mathbf{0}$ and the rectangular equation is

$$(\mathbf{r} - \mathbf{r}_0) \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & -2 \\ 4 & -2 & -7 \end{vmatrix} = [(x - 1)\mathbf{i} + (y - 2)\mathbf{j} + (z - 3)\mathbf{k}] \cdot [-24\mathbf{i} + 6\mathbf{j} + 12\mathbf{k}]$$
$$= 24(x - 1) + 6(y - 2) + 12(z - 3) = 0$$

or 4x + y + 2z - 12 = 0.

17. Find the shortest distance *d* between the point $P_0(1, 2, 3)$ and the plane \prod given by the equation 3x - 2y + 5z - 10 = 0.

A normal to the plane is $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k}$. Take $P_1(2, 3, 2)$ as a convenient point in \prod . Then, apart from sign, *d* is the scalar projection of $\mathbf{P}_0\mathbf{P}_1$ on \mathbf{a} . Hence,

$$d = \left| \frac{(\mathbf{r}_1 - \mathbf{r}_0) \cdot \mathbf{a}}{|\mathbf{a}|} \right| = \left| \frac{(\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (3\mathbf{i} - 2\mathbf{j} + 5\mathbf{k})}{\sqrt{38}} \right| = \frac{2}{19}\sqrt{38}$$

SUPPLEMENTARY PROBLEMS

18. Find the length of (a) the vector $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$; (b) the vector $\mathbf{b} = 3\mathbf{i} - 5\mathbf{j} + 9\mathbf{k}$; and (c) the vector \mathbf{c} , joining $P_1(3, 4, 5)$ to $P_2(1, -2, 3)$.

Ans. (a) $\sqrt{14}$; (b) $\sqrt{115}$; (c) $2\sqrt{11}$

- **19.** For the vectors of Problem 18:
 - (a) Show that **a** and **b** are perpendicular.
 - (b) Find the smaller angle between **a** and **c**, and that between **b** and **c**.
 - (c) Find the angles that **b** makes with the coordinate axes.

Ans. (b) 165°14', 85°10'; (c) 73°45', 117°47', 32°56'

- **20.** Prove: $\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$ and $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{i} = 0$.
- 21. Write a unit vector in the direction of **a** and a unit vector in the direction of **b** of Problem 18.

Ans. (a)
$$\frac{\sqrt{14}}{7}\mathbf{i} + \frac{3\sqrt{14}}{14}\mathbf{j} + \frac{\sqrt{14}}{14}\mathbf{k}$$
; (b) $\frac{3}{\sqrt{115}}\mathbf{i} - \frac{5}{\sqrt{115}}\mathbf{j} + \frac{9}{\sqrt{115}}\mathbf{k}$

22. Find the interior angles β and γ of the triangle of Problem 3.

Ans. $\beta = 22^{\circ}12'; \gamma = 9^{\circ}16'$

23. For the unit cube in Fig. 50-14, find (a) the angle between its diagonal and an edge, and (b) the angle between its diagonal and a diagonal of a face.

Ans. (a) 54°44'; (b) 35°16'

Fig. 50-14

24. Show that the scalar projection of **b** onto **a** is given by $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$.

25. Show that the vector \mathbf{c} of (50.4) is perpendicular to both \mathbf{a} and \mathbf{b} .

- **26.** Given $\mathbf{a} = \mathbf{i} + \mathbf{j}$, $\mathbf{b} = \mathbf{i} 2\mathbf{k}$, and $\mathbf{c} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, confirm the following equations:
 - $\begin{array}{ll} (a) & \mathbf{a} \times \mathbf{b} = -2\mathbf{i} + 2\mathbf{j} \mathbf{k} \\ (c) & \mathbf{c} \times \mathbf{a} = -4\mathbf{i} + 4\mathbf{j} \mathbf{k} \\ (e) & \mathbf{a} \cdot (\mathbf{a} \times \mathbf{b}) = 0 \\ (g) & \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = 3\mathbf{i} 3\mathbf{j} 14\mathbf{k} \end{array}$ (b) $\mathbf{b} \times \mathbf{c} = 6\mathbf{i} 8\mathbf{j} + 3\mathbf{k} \\ (d) & (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} \mathbf{b}) = 4\mathbf{i} 4\mathbf{j} + 2\mathbf{k} \\ (d) & (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} \mathbf{b}) = 4\mathbf{i} 4\mathbf{j} + 2\mathbf{k} \\ (d) & (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} \mathbf{b}) = -4\mathbf{i} 4\mathbf{j} + 2\mathbf{k} \\ (d) & (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} \mathbf{b}) = -4\mathbf{i} 4\mathbf{j} + 2\mathbf{k} \\ (d) & (\mathbf{a} \times \mathbf{b}) = -2 \\ (d) & \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = -2 \\ (d) & \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = -11\mathbf{i} 6\mathbf{j} + 10\mathbf{k} \end{aligned}$
- 27. Find the area of the triangle whose vertices are A(1, 2, 3), B(2, -1, 1), and C(-2, 1, -1). (*Hint*: $|AB \times AC|$ = twice the area.)

Ans. $5\sqrt{3}$

28. Find the volume of the parallelepiped whose edges are OA, OB, and OC, for A(1, 2, 3), B(1, 1, 2), and C(2, 1, 1).

Ans. 2

- **29.** If $\mathbf{u} = \mathbf{a} \times \mathbf{b}$, $\mathbf{v} = \mathbf{b} \times \mathbf{c}$, $\mathbf{w} = \mathbf{c} \times \mathbf{a}$, show that:
 - (a) $\mathbf{u} \cdot \mathbf{c} = \mathbf{v} \cdot \mathbf{a} = \mathbf{w} \cdot \mathbf{b}$
 - (b) $\mathbf{a} \cdot \mathbf{u} = \mathbf{b} \cdot \mathbf{u} = 0, \mathbf{b} \cdot \mathbf{v} = \mathbf{c} \cdot \mathbf{v} = 0, \mathbf{c} \cdot \mathbf{w} = \mathbf{a} \cdot \mathbf{w} = 0$
 - (c) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = [\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})]^2$
- **30.** Show that $(\mathbf{a} + \mathbf{b}) \cdot [(\mathbf{b} + \mathbf{c}) \times (\mathbf{c} + \mathbf{a})] = 2\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.
- **31.** Find the smaller angle of intersection of the planes 5x 14y + 2z 8 = 0 and 10x 11y + 2z + 15 = 0. (*Hint:* Find the angle between their normals.)

Ans. 22°25'

32. Write the vector equation of the line of intersection of the planes x + y - z - 5 = 0 and 4x - y - z + 2 = 0.

Ans. $(x-1)\mathbf{i} + (y-5)\mathbf{j} + (z-1)\mathbf{k} = k(-2\mathbf{i} - 3\mathbf{j} - 5\mathbf{k})$, where $P_0(1, 5, 1)$ is a point on the line.

33. Find the shortest distance between the line through A(2, -1, -1) and B(6, -8, 0) and the line through C(2, 1, 2) and D(0, 2, -1).

Ans. $\sqrt{6}/6$

- 34. Define a line through $P_0(x_0, y_0, z_0)$ as the locus of all points P(x, y, z) such that $\mathbf{P}_0 \mathbf{P}$ and \mathbf{OP}_0 are perpendicular. Show that its vector equation is $(\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{r}_0 = 0$.
- **35.** Find the rectangular equations of the line through $P_0(2, -3, 5)$ and
 - (a) Perpendicular to 7x 4y + 2z 8 = 0.
 - (b) Parallel to the line x y + 2z + 4 = 0, 2x + 3y + 6z 12 = 0.
 - (c) Through $P_1(3, 6, -2)$.

Ans. (a)
$$\frac{x-2}{7} = \frac{y+3}{-4} = \frac{z-5}{2}$$
; (b) $\frac{x-2}{12} = \frac{y+3}{2} = \frac{z-5}{-5}$; (c) $\frac{x-2}{1} = \frac{y+3}{9} = \frac{z-5}{-7}$

36. Find the equation of the plane:

- (a) Through $P_0(1, 2, 3)$ and parallel to $\mathbf{a} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} + 6\mathbf{j} 2\mathbf{k}$.
- (b) Through $P_0(2, -3, 2)$ and the line 6x + 4y + 3z + 5 = 0, 2x + y + z 2 = 0.
- (c) Through $P_0(2, -1, -1)$ and $P_1(1, 2, 3)$ and perpendicular to 2x + 3y 5z 6 = 0.

Ans. (a) 4x + y + 9z - 33 = 0; (b) 16x + 7y + 8z - 27 = 0; (c) 9x - y + 3z - 16 = 0

37. If $\mathbf{r}_0 = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{r}_1 = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, and $\mathbf{r}_2 = 3\mathbf{i} + 5\mathbf{j} + 7\mathbf{k}$ are three position vectors, show that $\mathbf{r}_0 \times \mathbf{r}_1 + \mathbf{r}_1 \times \mathbf{r}_2 + \mathbf{r}_2 \times \mathbf{r}_0 = \mathbf{0}$. What can be said of the terminal points of these vectors?

Ans. They are collinear.

38. If P_0 , P_1 , and P_2 are three noncollinear points and \mathbf{r}_0 , \mathbf{r}_1 , and \mathbf{r}_2 are their position vectors, what is the position of $\mathbf{r}_0 \times \mathbf{r}_1 + \mathbf{r}_1 \times \mathbf{r}_2 + \mathbf{r}_2 \times \mathbf{r}_0$ with respect to the plane $P_0 P_1 P_2$?

Ans. normal

- **39.** Prove: (a) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0}$; (b) $(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$.
- **40.** Prove: (a) The perpendiculars erected at the midpoints of the sides of a triangle meet in a point; (b) the perpendiculars dropped from the vertices to the opposite sides (produced if necessary) of a triangle meet in a point.
- **41.** Let A(1, 2, 3), B(2, -1, 5), and C(4, 1, 3) be three vertices of the parallelogram *ABCD*. Find (a) the coordinates of *D*; (b) the area of *ABCD*; and (c) the area of the orthogonal projection of *ABCD* on each of the coordinate planes.

Ans. (a) D(3, 4, 1); (b) $2\sqrt{26}$; (c) 8, 6, 2

42. Prove that the area of a parallogram in space is the square root of the sum of the squares of the areas of projections of the parallelogram on the coordinate planes.