CHAPTER 50

Space Vectors

Vectors in Space

As in the plane (see Chapter 39), a vector in space is a quantity that has both magnitude and direction. Three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, not in the same plane and no two parallel, issuing from a common point are said to form a right-handed system or triad if \mathbf{c} has the direction in which the right-threaded screw would move when rotated through the smaller angle in the direction from \mathbf{a} to \mathbf{b}, as in Fig. 50-1. Note that, as seen from a point on \mathbf{c}, the rotation through the smaller angle from \mathbf{a} to \mathbf{b} is counterclockwise.

Fig. 50-1

Fig. 50-2

We choose a right-handed rectangular coordinate system in space and let \mathbf{i}, \mathbf{j}, and \mathbf{k} be unit vectors along the positive x, y and z axes, respectively, as in Fig. 50-2. The coordinate axes divide space into eight parts, called octants. The first octant, for example, consists of all points (x, y, z) for which $x>0, y>0, z>0$.

As in Chapter 39, any vector a may be written as

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

If $P(x, y, z)$ is a point in space (Fig. 50-2), the vector \mathbf{r} from the origin O to P is called the position vector of P and may be written as

$$
\begin{equation*}
\mathbf{r}=\mathbf{O P}=\mathbf{O B}+\mathbf{B P}=\mathbf{O A}+\mathbf{A B}+\mathbf{B P}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \tag{50.1}
\end{equation*}
$$

The algebra of vectors developed in Chapter 39 holds here with only such changes as the difference in dimensions requires. For example, if $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$. then
$k \mathbf{a}=k a_{1} \mathbf{i}+k a_{2} \mathbf{j}+k a_{3} \mathbf{k}$ for k any scalar
$\mathbf{a}=\mathbf{b}$ if and only if $a_{1}=b_{1}, a_{2}=b_{2}$, and $a_{3}=b_{3}$
$\mathbf{a} \pm \mathbf{b}=\left(a_{1} \pm b_{1}\right) \mathbf{i}+\left(a_{2} \pm b_{2}\right) \mathbf{j}+\left(a_{3} \pm b_{3}\right) \mathbf{k}$
$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the smaller angle between \mathbf{a} and \mathbf{b}
$\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1$ and $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0$
$|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
$\mathbf{a} \cdot \mathbf{b}=0$ if and only if $\mathbf{a}=\mathbf{0}$, or $\mathbf{b}=\mathbf{0}$, or \mathbf{a} and \mathbf{b} are perpendicular
From (50.1), we have

$$
\begin{equation*}
|\mathbf{r}|=\sqrt{\mathbf{r} \cdot \mathbf{r}}=\sqrt{x^{2}+y^{2}+z^{2}} \tag{50.2}
\end{equation*}
$$

as the distance of the point $P(x, y, z)$ from the origin. Also, if $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ are any two points (see Fig. 50-3), then

$$
\begin{gather*}
\mathbf{P}_{1} \mathbf{P}_{2}=\mathbf{P}_{1} \mathbf{B}+\mathbf{B} \mathbf{P}_{2}=\mathbf{P}_{1} \mathbf{A}+\mathbf{A B}+\mathbf{B} \mathbf{P}_{2}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k} \\
\left|\mathbf{P}_{1} \mathbf{P}_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \tag{50.3}
\end{gather*}
$$

and
is the familiar formula for the distance between two points. (See Problems 1-3.)

Fig. 50-3

Fig. 50-4

Direction Cosines of a Vector

Let $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ make angles α, β, and γ, respectively, with the positive x, y, and z axes, as in Fig. 50-4. From

$$
\mathbf{i} \cdot \mathbf{a}=|\mathbf{i}||\mathbf{a}| \cos \alpha=|\mathbf{a}| \cos \alpha, \quad \mathbf{j} \cdot \mathbf{a}=|\mathbf{a}| \cos \beta, \mathbf{k} \cdot \mathbf{a}=|\mathbf{a}| \cos \gamma
$$

we have

$$
\cos \alpha=\frac{\mathbf{i} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{a_{1}}{|\mathbf{a}|}, \quad \cos \beta=\frac{\mathbf{j} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{a_{2}}{|\mathbf{a}|}, \quad \cos \gamma=\frac{\mathbf{k} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{a_{3}}{|\mathbf{a}|}
$$

These are the direction cosines of \mathbf{a}. Since

$$
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}{|\mathbf{a}|^{2}}=1
$$

the vector $\mathbf{u}=\mathbf{i} \cos \alpha+\mathbf{j} \cos \beta+\mathbf{k} \cos \gamma$ is a unit vector parallel to \mathbf{a}.

Determinants

We shall assume familiarity with 2×2 and 3×3 determinants. In particular,

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c \quad \text { and } \quad\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{ll}
d & e \\
g & h
\end{array}\right|
$$

That expansion of the 3×3 determinant is said to be "along the first row." It is equal to suitable expansions along the other rows and down the columns.

Vector Perpendicular to Two Vectors

Let

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \text { and } \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
$$

be two nonparallel vectors with common initial point P. By an easy computation, it can be shown that

$$
\mathbf{c}=\left|\begin{array}{ll}
a_{2} & a_{3} \tag{50.4}\\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}+\left|\begin{array}{ll}
a_{3} & a_{1} \\
b_{3} & b_{1}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

is perpendicular to (normal to) both \mathbf{a} and \mathbf{b} and, hence, to the plane of these vectors.
In Problems 5 and 6, we show that

$$
\begin{equation*}
|\mathbf{c}|=|\mathbf{a}||\mathbf{b}| \sin \theta=\text { area of a parallelogram with nonparallel sides } \mathbf{a} \text { and } \mathbf{b} \tag{50.5}
\end{equation*}
$$

If \mathbf{a} and \mathbf{b} are parallel, then $\mathbf{b}=k \mathbf{a}$, and (50.4) shows that $\mathbf{c}=\mathbf{0}$; that is, \mathbf{c} is the zero vector. The zero vector, by definition, has magnitude 0 but no specified direction.

Vector Product of Two Vectors

Take

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k} \quad \text { and } \quad \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}
$$

with initial point P and denote by \mathbf{n} the unit vector normal to the plane of \mathbf{a} and \mathbf{b}, so directed that \mathbf{a}, \mathbf{b}, and n (in that order) form a right-handed triad at P, as in Fig. 50-5. The vector product or cross product of a and b is defined as

$$
\begin{equation*}
\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \mathbf{n} \tag{50.6}
\end{equation*}
$$

where θ is again the smaller angle between \mathbf{a} and \mathbf{b}. Thus, $\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}. We show in Problem 6 that $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$ is the area of the parallelogram having \mathbf{a} and \mathbf{b} as nonparallel sides.

If \mathbf{a} and \mathbf{b} are parallel, then $\theta=0$ or π and $\mathbf{a} \times \mathbf{b}=\mathbf{0}$. Thus,

$$
\begin{equation*}
\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0} \tag{50.7}
\end{equation*}
$$

Fig. 50-5

In (50.6), if the order of \mathbf{a} and \mathbf{b} is reversed, then \mathbf{n} must be replaced by $-\mathbf{n}$; hence,

$$
\begin{equation*}
\mathbf{b} \times \mathbf{a}=-(\mathbf{a} \times \mathbf{b}) \tag{50.8}
\end{equation*}
$$

Since the coordinate axes were chosen as a right-handed system, it follows that

$$
\begin{array}{lll}
\mathbf{i} \times \mathbf{j}=\mathbf{k}, & \mathbf{j} \times \mathbf{k}=\mathbf{i}, & \mathbf{k} \times \mathbf{i}=\mathbf{j} \\
\mathbf{j} \times \mathbf{i}=-\mathbf{k}, & \mathbf{k} \times \mathbf{j}=-\mathbf{i}, & \mathbf{i} \times \mathbf{k}=-\mathbf{j} \tag{50.9}
\end{array}
$$

In Problem 8, we prove for any vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, the distributive law

$$
\begin{equation*}
(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=(\mathbf{a} \times \mathbf{c})+(\mathbf{b} \times \mathbf{c}) \tag{50.10}
\end{equation*}
$$

Multiplying (50.10) by -1 and using (50.8), we have the companion distributive law

$$
\begin{equation*}
\mathbf{c} \times(\mathbf{a}+\mathbf{b})=(\mathbf{c} \times \mathbf{a})+(\mathbf{c} \times \mathbf{b}) \tag{50.11}
\end{equation*}
$$

Then, also,

$$
\begin{equation*}
(\mathbf{a}+\mathbf{b}) \times(\mathbf{c}+\mathbf{d})=\mathbf{a} \times \mathbf{c}+\mathbf{a} \times \mathbf{d}+\mathbf{b} \times \mathbf{c}+\mathbf{b} \times \mathbf{d} \tag{50.12}
\end{equation*}
$$

and

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \tag{50.13}\\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

(See Problems 9 and 10.)

Triple Scalar Product

In Fig. 50-6, let θ be the smaller angle between \mathbf{b} and \mathbf{c} and let ϕ be the smaller angle between \mathbf{a} and $\mathbf{b} \times \mathbf{c}$. Let h denote the height and A the area of the base of the parallelepiped. Then the triple scalar product is by definition

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{a} \cdot|\mathbf{b}||\mathbf{c}| \sin \theta \mathbf{n}=|\mathbf{a}||\mathbf{b}| \mathbf{c} \mid \sin \theta \cos \phi=(|\mathbf{a}| \cos \phi)(|\mathbf{b} \| \mathbf{c}| \sin \theta)=h A \\
& =\text { volume of parallelepiped }
\end{aligned}
$$

It may be shown (see Problem 11) that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{50.14}\\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
$$

Fig. 50-6

Also

$$
\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})
$$

whereas

$$
\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})=\left|\begin{array}{lll}
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=-\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=-\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})
$$

Similarly, we have

$$
\begin{equation*}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a}) \tag{50.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})=-\mathbf{c} \cdot(\mathbf{b} \times \mathbf{a})=-\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b}) \tag{50.16}
\end{equation*}
$$

From the definition of $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ as a volume, it follows that if \mathbf{a}, \mathbf{b}, and \mathbf{c} are coplanar, then $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=0$, and conversely.

The parentheses in $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ and $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ are not necessary. For example, $\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}$ can be interpreted only as $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ or $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$. But $\mathbf{a} \cdot \mathbf{b}$ is a scalar, so $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$ is without meaning. (See Problem 12.)

Triple Vector Product

In Problem 13, we show that

$$
\begin{equation*}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \tag{50.17}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \tag{50.18}
\end{equation*}
$$

Thus, except when \mathbf{b} is perpendicular to both \mathbf{a} and $\mathbf{c}, \mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ and the use of parentheses is necessary.

The Straight Line

A line in space through a given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ may be defined as the locus of all points $P(x, y, z)$ such that $P_{0} P$ is parallel to a given direction $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$. Let \mathbf{r}_{0} and \mathbf{r} be the position vectors of P_{0} and P (Fig. 50-7). Then

$$
\begin{equation*}
\mathbf{r}-\mathbf{r}_{0}=k \mathbf{a} \quad \text { where } k \text { is a scalar variable } \tag{50.19}
\end{equation*}
$$

is the vector equation of line $P P_{0}$. Writing (50.19) as

$$
\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}=k\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right)
$$

then separating components to obtain

$$
x-x_{0}=k a_{1}, \quad y-y_{0}=k a_{2}, \quad z-z_{0}=k a_{3}
$$

Fig. 50-7
and eliminating k, we have

$$
\begin{equation*}
\frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{a_{2}}=\frac{z-z_{0}}{a_{3}} \tag{50.20}
\end{equation*}
$$

as the equations of the line in rectangular coordinates. Here, $\left[a_{1}, a_{2}, a_{3}\right]$ is a set of direction numbers for the line and $\left[\frac{a_{1}}{|\mathbf{a}|}, \frac{a_{2}}{|\mathbf{a}|}, \frac{a_{3}}{|\mathbf{a}|}\right]$ is a set of direction cosines of the line.

If any one of the numbers a_{1}, a_{2}, or a_{3} is zero, the corresponding numerator in (50.20) must be zero. For example, if $a_{1}=0$ but $a_{2}, a_{3} \neq 0$, the equations of the line are

$$
x-x_{0}=0 \quad \text { and } \quad \frac{y-y_{0}}{a_{2}}=\frac{z-z_{0}}{a_{3}}
$$

The Plane

A plane in space through a given point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ can be defined as the locus of all lines through P_{0} and perpendicular (normal) to a given line (direction) $\mathbf{a}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ (Fig. 50-8). Let $P(x, y, z)$ be any other point in the plane. Then $\mathbf{r}-\mathbf{r}_{0}=\mathbf{P}_{0} \mathbf{P}$ is perpendicular to \mathbf{a}, and the equation of the plane is

$$
\begin{equation*}
\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{a}=0 \tag{50.21}
\end{equation*}
$$

Fig. 50-8

In rectangular coordinates, this becomes
or

$$
\begin{array}{r}
{\left[\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right] \cdot(A \mathbf{i}+B \mathbf{j}+C \mathbf{k})=0} \\
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 \\
A x+B y+C z+D=0 \tag{50.22}
\end{array}
$$

where $D=-\left(A x_{0}+B y_{0}+C z_{0}\right)$.
Conversely, let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on the surface $A x+B y+C z+D=0$. Then also $A x_{0}+B y_{0}+C z_{0}+D=0$. Subtracting the second of these equations from the first yields $A\left(x-x_{0}\right)+$ $B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left[\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right]=0$ and the constant vector $A \mathbf{i}+B \mathbf{j}+$ $C \mathbf{k}$ is normal to the surface at each of its points. Thus, the surface is a plane.

SOLVED PROBLEMS

1. Find the distance of the point $P_{1}(1,2,3)$ from (a) the origin, (b) the x axis, (c) the z axis, (d) the $x y$ plane, and (e) the point $P_{2}(3,-1,5)$.

In Fig. 50-9,
(a) $r=\mathbf{O P}_{1}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$; hence, $|\mathbf{r}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}$.
(b) $\mathbf{A} \mathbf{P}_{1}=\mathbf{A B}+\mathbf{B} \mathbf{P}_{1}=2 \mathbf{j}+3 \mathbf{k}$; hence, $\left|\mathbf{A} \mathbf{P}_{1}\right|=\sqrt{4+9}=\sqrt{13}$.
(c) $\mathbf{D P} \mathbf{P}_{1}=\mathbf{D E}+\mathbf{E} \mathbf{P}_{1}=2 \mathbf{j}+\mathbf{i}$; hence, $\left|\mathbf{D} P_{1}\right|=\sqrt{5}$.
(d) $\mathbf{B} \mathbf{P}_{1}=3 \mathbf{k}$, so $\left|\mathbf{B} \mathbf{P}_{1}\right|=3$.
(e) $\mathbf{P}_{1} \mathbf{P}_{2}=(3-1) \mathbf{i}+(-1-2) \mathbf{j}+(5-3) \mathbf{k}=2 \mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$; hence, $\left|\mathbf{P}_{1} \mathbf{P}_{2}\right|=\sqrt{4+9+4}=\sqrt{17}$.

Fig. 50-9
2. Find the angle θ between the vectors joining O to $P_{1}(1,2,3)$ and $P_{2}(2,-3,-1)$.

Let $\mathbf{r}_{1}=\mathbf{O P}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{r}_{2}=\mathbf{O} \mathbf{P}_{2}=2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$. Then

$$
\cos \theta=\frac{\mathbf{r}_{1} \cdot \mathbf{r}_{2}}{\left|\mathbf{r}_{1}\right|\left|\mathbf{r}_{2}\right|}=\frac{1(2)+2(-3)+3(-1)}{\sqrt{14} \sqrt{14}}=-\frac{1}{2} \quad \text { and } \quad \theta=120^{\circ} .
$$

3. Find the angle $\alpha=\angle B A C$ of the triangle $A B C$ (Fig. 50-10) whose vertices are $A(1,0,1), B(2,-1,1), C(-2,1,0)$.

Fig. 50-10
Let $\mathbf{a}=\mathbf{A C}=-3 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=\mathbf{A B}=\mathbf{i}-\mathbf{j}$. Then

$$
\cos \alpha=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{-3-1}{\sqrt{22}} \sim-0.85280 \quad \text { and } \quad \alpha \sim 148^{\circ} 31^{\prime}
$$

4. Find the direction cosines of $\mathbf{a}=3 \mathbf{i}+12 \mathbf{j}+4 \mathbf{k}$.

The direction cosines are $\cos \alpha=\frac{\mathbf{i} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{3}{13}, \cos \beta=\frac{\mathbf{j} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{12}{13}, \cos \gamma=\frac{\mathbf{k} \cdot \mathbf{a}}{|\mathbf{a}|}=\frac{4}{13}$.
5. If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ are two vectors issuing from a point P and if

$$
\mathbf{c}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k},
$$

show that $|\mathbf{c}|=|\mathbf{a}| \mathbf{b} \mid \sin \theta$, where θ is the smaller angle between \mathbf{a} and \mathbf{b}.
We have $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ and

$$
\sin \theta=\sqrt{1-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)^{2}}=\frac{\sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}}}{|\mathbf{a}||\mathbf{b}|}=\frac{|\mathbf{c}|}{|\mathbf{a}||\mathbf{b}|}
$$

Hence, $|\mathbf{c}|=|\mathbf{a}||\mathbf{b}| \sin \theta$ as required.
6. Find the area of the parallelogram whose nonparallel sides are \mathbf{a} and \mathbf{b}.

From Fig. $50-11, h=|\mathbf{b}| \sin \theta$ and the area is $h|\mathbf{a}|=|\mathbf{a}||\mathbf{b}| \sin \theta$.
7. Let \mathbf{a}_{1} and \mathbf{a}_{2}, respectively, be the components of a parallel and perpendicular to \mathbf{b}, as in Fig. 50-12. Show that $\mathbf{a}_{2} \times \mathbf{b}=\mathbf{a} \times \mathbf{b}$ and $\mathbf{a}_{1} \times \mathbf{b}=0$.

If θ is the angle between \mathbf{a} and \mathbf{b}, then $\left|\mathbf{a}_{1}\right|=|\mathbf{a}| \cos \theta$ and $\left|\mathbf{a}_{2}\right|=|\mathbf{a}| \sin \theta$. Since $\mathbf{a}, \mathbf{a}_{2}$, and \mathbf{b} are coplanar,

$$
\mathbf{a}_{2} \times \mathbf{b}=\left|\mathbf{a}_{2}\right||\mathbf{b}| \sin \phi \mathbf{n}=|\mathbf{a}| \sin \theta|\mathbf{b}| \mathbf{n}=|\mathbf{a}||\mathbf{b}| \sin \theta \mathbf{n}=\mathbf{a} \times \mathbf{b}
$$

Since \mathbf{a}_{1} and \mathbf{b} are parallel, $\mathbf{a}_{1} \times \mathbf{b}=\mathbf{0}$.
8. Prove: $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=(\mathbf{a} \times \mathbf{c})+(\mathbf{b} \times \mathbf{c})$.

In Fig. 50-13, the initial point P of the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is in the plane of the paper, while their endpoints are above this plane, The vectors \mathbf{a}_{1} and \mathbf{b}_{1} are, respectively, the components of \mathbf{a} and \mathbf{b} perpendicular to \mathbf{c}. Then \mathbf{a}_{1}, $\mathbf{b}_{1}, \mathbf{a}_{1}+\mathbf{b}_{1}, \mathbf{a}_{1} \times \mathbf{c}, \mathbf{b}_{1} \times \mathbf{c}$, and $\left(\mathbf{a}_{1}+\mathbf{b}_{1}\right) \times \mathbf{c}$ all lie in the plane of the paper.

Fig. 50-11

Fig. 50-12

Fig. 50-13

In triangles $P R S$ and $P M Q$,

$$
\frac{R S}{P R}=\frac{\left|\mathbf{b}_{1} \times \mathbf{c}\right|}{\left|\mathbf{a}_{1} \times \mathbf{c}\right|}=\frac{\left|\mathbf{b}_{1}\right||\mathbf{c}|}{\left|\mathbf{a}_{1}\right||\mathbf{c}|}=\frac{\left|\mathbf{b}_{1}\right|}{\left|\mathbf{a}_{1}\right|}=\frac{M Q}{P M}
$$

Thus, $P R S$ and $P M Q$ are similar. Now $P R$ is perpendicular to $P M$, and $R S$ is perpendicular to $M Q$; hence $P S$ is perpendicular to $P Q$ and $\mathbf{P S}=\mathbf{P Q} \times \mathbf{c}$. Then, since $\mathbf{P S}=\mathbf{P Q} \times \mathbf{c}=\mathbf{P R}+\mathbf{R S}$, we have

$$
\left(\mathbf{a}_{1}+\mathbf{b}_{1}\right) \times \mathbf{c}=\left(\mathbf{a}_{1} \times \mathbf{c}\right)+\left(\mathbf{b}_{1} \times \mathbf{c}\right)
$$

By Problem 7, \mathbf{a}_{1} and \mathbf{b}_{1} may be replaced by \mathbf{a} and \mathbf{b}, respectively, to yield the required result.
9. When $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, show that $\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|$.
We have, by the distributive law,

$$
\begin{aligned}
\mathbf{a} \times \mathbf{b} & =\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right) \\
& =a_{1} \mathbf{i} \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)+a_{2} \mathbf{j} \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)+a_{3} \mathbf{k} \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right) \\
& =\left(a_{1} b_{2} \mathbf{k}-a_{1} b_{3} \mathbf{j}\right)+\left(-a_{2} b_{1} \mathbf{k}+a_{2} b_{3} \mathbf{i}\right)+\left(a_{3} b_{1} \mathbf{j}-a_{3} b_{2} \mathbf{i}\right) \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
\end{aligned}
$$

10. Derive the law of sines of plane trigonometry.

Consider the triangle $A B C$, whose sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are of magnitudes a, b, c, respectively, and whose interior angles are α, β, γ. We have

$$
\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}
$$

Then $\quad \mathbf{a} \times(\mathbf{a}+\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}=\mathbf{0} \quad$ or $\quad \mathbf{a} \times \mathbf{b}=\mathbf{c} \times \mathbf{a}$
and $\mathbf{b} \times(\mathbf{a}+\mathbf{b}+\mathbf{c})=\mathbf{b} \times \mathbf{a}+\mathbf{b} \times \mathbf{c}=\mathbf{0} \quad$ or $\quad \mathbf{b} \times \mathbf{c}=\mathbf{a} \times \mathbf{b}$
Thus,

$$
\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{c}=\mathbf{c} \times \mathbf{a}
$$

so that
$|\mathbf{a}||\mathbf{b} \sin \gamma=|\mathbf{b}|| \mathbf{c}|\sin \alpha=|\mathbf{c}|| \mathbf{a} \mid \sin \beta$ $a b \sin \gamma=b c \sin \alpha=c a \sin \beta$
and

$$
\frac{\sin \gamma}{c}=\frac{\sin \alpha}{a}=\frac{\sin \beta}{b}
$$

11. If $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, and $\mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$, show that

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

By (50.13),

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \cdot\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& =\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \cdot\left[\left(b_{2} c_{3}-b_{3} c_{2}\right) \mathbf{i}+\left(b_{3} c_{1}-b_{1} c_{3}\right) \mathbf{j}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \mathbf{k}\right] \\
& =a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+a_{2}\left(b_{3} c_{1}-b_{1} c_{3}\right)+a_{3}\left(b_{1} c_{2}-b_{2} c_{1}\right)=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

12. Show that $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{c})=0$.

$$
\text { Вy }(50.14), \mathbf{a} \cdot(\mathbf{a} \times \mathbf{c})=(\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c}=0
$$

13. For the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} of Problem 11, show that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$.

Here

$$
\begin{aligned}
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})= & \left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
= & \left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left[\left(b_{2} c_{3}-b_{3} c_{2}\right) \mathbf{i}+\left(b_{3} c_{1}-b_{1} c_{3}\right) \mathbf{j}+\left(b_{1} c_{2}-b_{2} c_{1}\right) \mathbf{k}\right] \\
= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{2} c_{3}-b_{3} c_{2} & b_{3} c_{1}-b_{1} c_{3} & b_{1} c_{2}-b_{2} c_{1}
\end{array}\right| \\
= & \mathbf{i}\left(a_{2} b_{1} c_{2}-a_{2} b_{2} c_{1}-a_{3} b_{3} c_{1}+a_{3} b_{1} c_{3}\right)+\mathbf{j}\left(a_{3} b_{2} c_{3}-a_{3} b_{3} c_{2}-a_{1} b_{1} c_{2}+a_{1} b_{2} c_{1}\right) \\
& +\mathbf{k}\left(a_{1} b_{3} c_{1}-a_{1} b_{1} c_{3}-a_{2} b_{2} c_{3}+a_{2} b_{3} c_{2}\right) \\
= & \mathbf{i} b_{1}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)+\mathbf{j} b_{2}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)+\mathbf{k} b_{3}\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right) \\
& -\left[\mathbf{i} c_{1}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)+\mathbf{j} c_{2}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)+\mathbf{k} c_{3}\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)\right] \\
= & \left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)(\mathbf{a} \cdot \mathbf{c})-\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right)(\mathbf{a} \cdot \mathbf{b}) \\
= & \mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}
\end{aligned}
$$

14. If l_{1} and l_{2} are two nonintersecting lines in space, show that the shortest distance d between them is the distance from any point on l_{1} to the plane through l_{2} and parallel to l_{1}; that is, show that if P_{1} is a point on l_{1} and P_{2} is a point on l_{2} then, apart from sign, d is the scalar projection of $\mathbf{P}_{1} \mathbf{P}_{2}$ on a common perpendicular to l_{1} and l_{2}.

Let l_{1} pass through $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ in the direction $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$, and let l_{2} pass through $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ in the direction $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$.

Then $\mathbf{P}_{1} \mathbf{P}_{2}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k}$, and the vector $\mathbf{a} \times \mathbf{b}$ is perpendicular to both l_{1} and l_{2}. Thus,

$$
d=\left|\frac{\mathbf{P}_{1} \mathbf{P}_{2} \cdot(\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|}\right|=\left|\frac{\left(\mathbf{r}_{2}-\mathbf{r}\right) \cdot(\mathbf{a} \times \mathbf{b})}{|\mathbf{a} \times \mathbf{b}|}\right|
$$

15. Write the equation of the line passing through $P_{0}(1,2,3)$ and parallel to $\mathbf{a}=2 \mathbf{i}-\mathbf{j}-4 \mathbf{k}$. Which of the points $A(3,1,-1), B\left(\frac{1}{2}, \frac{9}{4}, 4\right), C(2,0,1)$ are on this line?

From (50.19), the vector equation is
or

$$
\begin{align*}
& (x \mathbf{i}+y \mathbf{j}+z \mathbf{k})-(\mathbf{i}+2 \mathbf{j}+3 \mathbf{k})=k(2 \mathbf{i}-\mathbf{j}-4 \mathbf{k}) \\
& (x-1) \mathbf{i}+(y-2) \mathbf{j}+(z-3) \mathbf{k}=k(2 \mathbf{i}-\mathbf{j}-4 \mathbf{k}) \tag{1}
\end{align*}
$$

The rectangular equations are

$$
\begin{equation*}
\frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-3}{-4} \tag{2}
\end{equation*}
$$

Using (2), it is readily found that A and B are on the line while C is not.
In the vector equation (1), a point $P(x, y, z)$ on the line is found by giving k a value and comparing components. The point A is on the line because

$$
(3-1) \mathbf{i}+(1-2) \mathbf{j}+(-1-3) \mathbf{k}=k(2 \mathbf{i}-\mathbf{j}-4 \mathbf{k})
$$

when $k=1$. Similarly B is on the line because

$$
-\frac{1}{2} \mathbf{i}+\frac{1}{4} \mathbf{j}+\mathbf{k}=k(2 \mathbf{i}-\mathbf{j}-4 \mathbf{k})
$$

when $k=-\frac{1}{4}$. The point C is not on the line because

$$
\mathbf{i}-2 \mathbf{j}-2 \mathbf{k}=k(2 \mathbf{i}-\mathbf{j}-4 \mathbf{k})
$$

for no value of k.
16. Write the equation of the plane:
(a) Passing through $P_{0}(1,2,3)$ and parallel to $3 x-2 y+4 z-5=0$.
(b) Passing through $P_{0}(1,2,3)$ and $P_{1}(3,-2,1)$, and perpendicular to the plane $3 x-2 y+4 z-5=0$.
(c) Through $P_{0}(1,2,3), P_{1}(3,-2,1)$ and $P_{2}(5,0,-4)$.

Let $P(x, y, z)$ be a general point in the required plane.
(a) Here $\mathrm{a}=3 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$ is normal to the given plane and to the required plane. The vector equation of the latter is $\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{a}=\mathbf{0}$ and the rectangular equation is
or

$$
\begin{gathered}
3(x-1)-2(y-2)+4(z-3)=0 \\
3 x-2 y+4 z-11=0
\end{gathered}
$$

(b) Here $\mathbf{r}_{1}-\mathbf{r}_{0}=2 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{a}=3 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$ are parallel to the required plane; thus, $\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \times \mathbf{a}$ is normal to this plane. Its vector equation is $\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot\left[\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \times \mathbf{a}\right]=0$. The rectangular equation is

$$
\begin{aligned}
\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -4 & -2 \\
3 & -2 & 4
\end{array}\right| & =[(x-1) \mathbf{i}+(y-2) \mathbf{j}+(z-3) \mathbf{k}] \cdot[-20 \mathbf{i}-14 \mathbf{j}+8 \mathbf{k}] \\
& =-20(x-1)-14(y-2)+8(z-3)=0
\end{aligned}
$$

or $\quad 20 x+14 y-8 z-24=0$.
(c) Here $\mathbf{r}_{1}-\mathbf{r}_{0}=2 \mathbf{i}-4 \mathbf{j}-2 \mathbf{k}$ and $\mathbf{r}_{2}-\mathbf{r}_{0}=4 \mathbf{i}=2 \mathbf{j}-7 \mathbf{k}$ are parallel to the required plane, so that $\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \times$ $\left(\mathbf{r}_{2}-\mathbf{r}_{0}\right)$ is normal to it. The vector equation is $\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot\left[\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \times\left(\mathbf{r}_{2}-\mathbf{r}_{0}\right)\right]=\mathbf{0}$ and the rectangular equation is

$$
\begin{aligned}
\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -4 & -2 \\
4 & -2 & -7
\end{array}\right| & =[(x-1) \mathbf{i}+(y-2) \mathbf{j}+(z-3) \mathbf{k}] \cdot[-24 \mathbf{i}+6 \mathbf{j}+12 \mathbf{k}] \\
& =24(x-1)+6(y-2)+12(z-3)=0
\end{aligned}
$$

or $\quad 4 x+y+2 z-12=0$.
17. Find the shortest distance d between the point $P_{0}(1,2,3)$ and the plane Π given by the equation $3 x-2 y+5 z-10=0$.

A normal to the plane is $\mathbf{a}=3 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$. Take $P_{1}(2,3,2)$ as a convenient point in Π. Then, apart from sign, d is the scalar projection of $\mathbf{P}_{0} \mathbf{P}_{1}$ on \mathbf{a}. Hence,

$$
d=\left|\frac{\left(\mathbf{r}_{1}-\mathbf{r}_{0}\right) \cdot \mathbf{a}}{|\mathbf{a}|}\right|=\left|\frac{(\mathbf{i}+\mathbf{j}-\mathbf{k}) \cdot(3 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k})}{\sqrt{38}}\right|=\frac{2}{19} \sqrt{38}
$$

SUPPLEMENTARY PROBLEMS

18. Find the length of (a) the vector $\mathbf{a}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$; (b) the vector $\mathbf{b}=3 \mathbf{i}-5 \mathbf{j}+9 \mathbf{k}$; and (c) the vector \mathbf{c}, joining $P_{1}(3,4,5)$ to $P_{2}(1,-2,3)$.

Ans. (a) $\sqrt{14}$; (b) $\sqrt{115}$; (c) $2 \sqrt{11}$
19. For the vectors of Problem 18:
(a) Show that \mathbf{a} and \mathbf{b} are perpendicular.
(b) Find the smaller angle between \mathbf{a} and \mathbf{c}, and that between \mathbf{b} and \mathbf{c}.
(c) Find the angles that \mathbf{b} makes with the coordinate axes.

Ans. (b) $165^{\circ} 14^{\prime}, 85^{\circ} 10^{\prime}$; (c) $73^{\circ} 45^{\prime}, 117^{\circ} 47^{\prime}, 32^{\circ} 56^{\prime}$
20. Prove: $\mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1 \quad$ and $\mathbf{i} \cdot \mathbf{j}=\mathbf{j} \cdot \mathbf{k}=\mathbf{k} \cdot \mathbf{i}=0$.
21. Write a unit vector in the direction of \mathbf{a} and a unit vector in the direction of \mathbf{b} of Problem 18 .

Ans. (a) $\frac{\sqrt{14}}{7} \mathbf{i}+\frac{3 \sqrt{14}}{14} \mathbf{j}+\frac{\sqrt{14}}{14} \mathbf{k}$; (b) $\frac{3}{\sqrt{115}} \mathbf{i}-\frac{5}{\sqrt{115}} \mathbf{j}+\frac{9}{\sqrt{115}} \mathbf{k}$
22. Find the interior angles β and γ of the triangle of Problem 3.

Ans. $\quad \beta=22^{\circ} 12^{\prime} ; \gamma=9^{\circ} 16^{\prime}$
23. For the unit cube in Fig. 50-14, find (a) the angle between its diagonal and an edge, and (b) the angle between its diagonal and a diagonal of a face.

Ans. (a) $54^{\circ} 44^{\prime} ;$ (b) $35^{\circ} 16^{\prime}$

Fig. 50-14
24. Show that the scalar projection of \mathbf{b} onto \mathbf{a} is given by $\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$.
25. Show that the vector \mathbf{c} of (50.4) is perpendicular to both \mathbf{a} and \mathbf{b}.
26. Given $\mathbf{a}=\mathbf{i}+\mathbf{j}, \mathbf{b}=\mathbf{i}-2 \mathbf{k}$, and $\mathbf{c}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$, confirm the following equations:
(a) $\mathbf{a} \times \mathbf{b}=-2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$
(b) $\mathbf{b} \times \mathbf{c}=6 \mathbf{i}-8 \mathbf{j}+3 \mathbf{k}$
(c) $\mathbf{c} \times \mathbf{a}=-4 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$
(d) $(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})=4 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$
(e) $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$
(f) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=-2$
(g) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=3 \mathbf{i}-3 \mathbf{j}-14 \mathbf{k}$
(h) $\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=-11 \mathbf{i}-6 \mathbf{j}+10 \mathbf{k}$
27. Find the area of the triangle whose vertices are $A(1,2,3), B(2,-1,1)$, and $C(-2,1,-1)$. (Hint: $|\mathbf{A B} \times \mathbf{A C}|=$ twice the area.)

Ans. $\quad 5 \sqrt{3}$
28. Find the volume of the parallelepiped whose edges are $O A, O B$, and $O C$, for $A(1,2,3), B(1,1,2)$, and $C(2,1,1)$. Ans. 2
29. If $\mathbf{u}=\mathbf{a} \times \mathbf{b}, \mathbf{v}=\mathbf{b} \times \mathbf{c}, \mathbf{w}=\mathbf{c} \times \mathbf{a}$, show that:
(a) $\mathbf{u} \cdot \mathbf{c}=\mathbf{v} \cdot \mathbf{a}=\mathbf{w} \cdot \mathbf{b}$
(b) $\mathbf{a} \cdot \mathbf{u}=\mathbf{b} \cdot \mathbf{u}=0, \mathbf{b} \cdot \mathbf{v}=\mathbf{c} \cdot \mathbf{v}=0, \mathbf{c} \cdot \mathbf{w}=\mathbf{a} \cdot \mathbf{w}=0$
(c) $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=[\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})]^{2}$
30. Show that $(\mathbf{a}+\mathbf{b}) \cdot[(\mathbf{b}+\mathbf{c}) \times(\mathbf{c}+\mathbf{a})]=2 \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$.
31. Find the smaller angle of intersection of the planes $5 x-14 y+2 z-8=0$ and $10 x-11 y+2 z+15=0$. (Hint: Find the angle between their normals.)

Ans. $\quad 22^{\circ} 25^{\prime}$
32. Write the vector equation of the line of intersection of the planes $x+y-z-5=0$ and $4 x-y-z+2=0$.

Ans. $\quad(x-1) \mathbf{i}+(y-5) \mathbf{j}+(z-1) \mathbf{k}=k(-2 \mathbf{i}-3 \mathbf{j}-5 \mathbf{k})$, where $P_{0}(1,5,1)$ is a point on the line.
33. Find the shortest distance between the line through $A(2,-1,-1)$ and $B(6,-8,0)$ and the line through $C(2,1,2)$ and $D(0,2,-1)$.

Ans. $\sqrt{6} / 6$
34. Define a line through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ as the locus of all points $P(x, y, z)$ such that $\mathbf{P}_{0} \mathbf{P}$ and $\mathbf{O} \mathbf{P}_{0}$ are perpendicular. Show that its vector equation is $\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{r}_{0}=0$.
35. Find the rectangular equations of the line through $P_{0}(2,-3,5)$ and
(a) Perpendicular to $7 x-4 y+2 z-8=0$.
(b) Parallel to the line $x-y+2 z+4=0,2 x+3 y+6 z-12=0$.
(c) Through $P_{1}(3,6,-2)$.

Ans. (a) $\frac{x-2}{7}=\frac{y+3}{-4}=\frac{z-5}{2}$; (b) $\frac{x-2}{12}=\frac{y+3}{2}=\frac{z-5}{-5}$; (c) $\frac{x-2}{1}=\frac{y+3}{9}=\frac{z-5}{-7}$
36. Find the equation of the plane:
(a) Through $P_{0}(1,2,3)$ and parallel to $\mathbf{a}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ and $\mathbf{b}=3 \mathbf{i}+6 \mathbf{j}-2 \mathbf{k}$.
(b) Through $P_{0}(2,-3,2)$ and the line $6 x+4 y+3 z+5=0,2 x+y+z-2=0$.
(c) Through $P_{0}(2,-1,-1)$ and $P_{1}(1,2,3)$ and perpendicular to $2 x+3 y-5 z-6=0$.

Ans. (a) $4 x+y+9 z-33=0$; (b) $16 x+7 y+8 z-27=0$; (c) $9 x-y+3 z-16=0$
37. If $\mathbf{r}_{0}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{r}_{1}=2 \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}$, and $\mathbf{r}_{2}=3 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k}$ are three position vectors, show that $\mathbf{r}_{0} \times \mathbf{r}_{1}+\mathbf{r}_{1} \times \mathbf{r}_{2}+\mathbf{r}_{2}$ $\times \mathbf{r}_{0}=\mathbf{0}$. What can be said of the terminal points of these vectors?

Ans. They are collinear.
38. If P_{0}, P_{1}, and P_{2} are three noncollinear points and $\mathbf{r}_{0}, \mathbf{r}_{1}$, and \mathbf{r}_{2} are their position vectors, what is the position of $\mathbf{r}_{0} \times \mathbf{r}_{1}+\mathbf{r}_{1} \times \mathbf{r}_{2}+\mathbf{r}_{2} \times \mathbf{r}_{0}$ with respect to the plane $P_{0} P_{1} P_{2}$?

Ans. normal
39. Prove: (a) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})+\mathbf{b} \times(\mathbf{c} \times \mathbf{a})+\mathbf{c} \times(\mathbf{a} \times \mathbf{b})=\mathbf{0}$; (b) $(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})$.
40. Prove: (a) The perpendiculars erected at the midpoints of the sides of a triangle meet in a point; (b) the perpendiculars dropped from the vertices to the opposite sides (produced if necessary) of a triangle meet in a point.
41. Let $A(1,2,3), B(2,-1,5)$, and $C(4,1,3)$ be three vertices of the parallelogram $A B C D$. Find (a) the coordinates of D; (b) the area of $A B C D$; and (c) the area of the orthogonal projection of $A B C D$ on each of the coordinate planes.

Ans. (a) $D(3,4,1)$; (b) $2 \sqrt{26}$; (c) $8,6,2$
42. Prove that the area of a parallogram in space is the square root of the sum of the squares of the areas of projections of the parallelogram on the coordinate planes.

