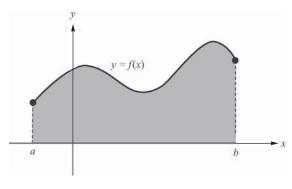
CHAPTER 29

Applications of Integration I: Area and Arc Length

Area Between a Curve and the y Axis

We already know how to find the area of a region like that shown in Fig. 29-1, bounded below by the *x* axis, above by a curve y = f(x), and lying between x = a and x = b. The area is the definite integral $\int_{-}^{b} f(x) dx$.



Now consider a region like that shown in Fig. 29-2, bounded on the left by the *y* axis, on the right by a curve x = g(y), and lying between y = c and y = d. Then, by an argument similar to that for the case shown in Fig. 29-1, the area of the region is the definite integral $\int_{c}^{d} g(y) dy$.

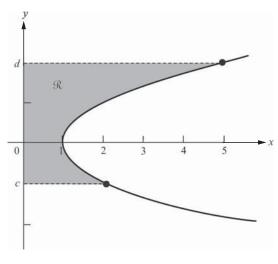
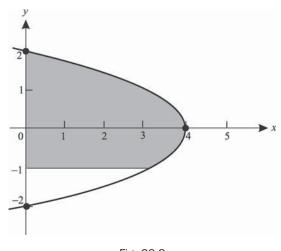


Fig. 29-2

EXAMPLE 29.1: Consider the region bounded on the right by the parabola $x = 4 - y^2$, on the left by the y axis, and above and below by y = 2 and y = -1. See Fig. 29-3. Then the area of this region is $\int_{-1}^{2} (4 - y^2) dy$. By the Fundamental Theorem of Calculus, this is



 $(4y - \frac{1}{3}y^3)]_{-1}^2 = (8 - \frac{8}{3}) - (-4 - (-\frac{1}{3})) = 12 - \frac{9}{3} = 12 - 3 = 9$

Fig. 29-3

Areas Between Curves

Assume that *f* and *g* are continuous functions such that $g(x) \le f(x)$ for $a \le x \le b$. Then the curve y = f(x) lies above the curve y = g(x) between x = a and x = b. The area *A* of the region between the two curves and lying between x = a and x = b is given by the formula

$$A = \int_{a}^{b} (f(x) - g(x)) dx$$
(29.1)

To see why this formula holds, first look at the special case where $0 \le g(x) \le f(x)$ for $a \le x \le b$. (See Fig. 29-4.) Clearly, the area is the difference between two areas, the area A_f of the region under the curve y = f(x) and above the x axis, and the area A_g of the region under the curve y = g(x) and above the x axis. Since $A_f = \int_a^b f(x) dx$ and $A_g = \int_a^b g(x) dx$,

$$A = A_f - A_g = \int_a^b f(x) dx - \int_a^b g(x) dx$$
$$= \int_a^b (f(x) - g(x)) dx \quad by (23.6)$$

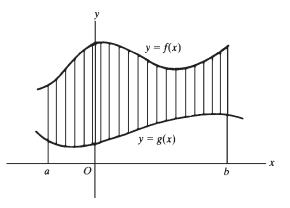
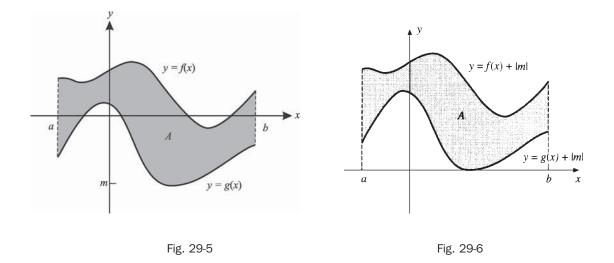


Fig. 29-4

Now look at the general case (see Fig. 29-5), when one or both of the curves y = f(x) and y = g(x) may lie below the x axis. Let m < 0 be the absolute minimum of g on [a, b]. Raise both curves by |m| units. The new graphs, shown in Fig. 29-6, are on or above the x axis and enclose the same area A as the original graphs. The upper curve is the graph of y = f(x) + |m| and the lower curve is the graph of y = g(x) + |m|. Hence, by the special case above,

$$A = \int_{a}^{b} \left((f(x) + |m| - (g(x) + |m|)) dx = \int_{a}^{b} (f(x) - g(x)) dx \right)$$



EXAMPLE 29.2: Find the area *A* of the region \Re under the line $y = \frac{1}{2}x + 2$, above the parabola $y = x^2$, and between the *y* axis and x = 1. (See the shaded region in Fig. 29-7.) By (29.1),

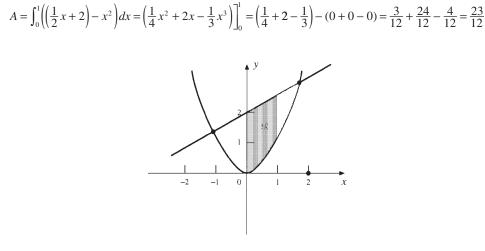


Fig. 29-7

Arc Length

Let *f* be differentiable on [*a*, *b*]. Consider the part of the graph of *f* from (*a*, *f*(*a*)) to (*b*, *f*(*b*)). Let us find a formula for the length *L* of this curve. Divide [a, b] into *n* equal subintervals, each of length Δx . To each point x_k in this subdivision there corresponds a point $P_k(x_k, f(x_k))$ on the curve. (See Fig. 29-8.) For large *n*, the sum $\overline{P_0P_1} + \overline{P_1P_2} + \ldots + \overline{P_{n-1}P_n} = \sum_{k=1}^n \overline{P_{k-1}P_k}$ of the lengths of the line segments $P_{k-1}P_k$ is an approximation to the length of the curve.

237

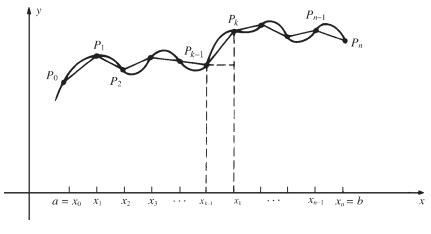


Fig. 29-8

By the distance formula (2.1),

$$\overline{P_{k-1}P_{k}} = \sqrt{(x_{k} - x_{k-1})^{2} + (f(x_{k}) - f(x_{k-1}))^{2}}$$

Now, $x_k - x_{k-1} = \Delta x$ and, by the law of the mean (Theorem 13.4),

$$f(x_k) - f(x_{k-1}) = (x_k - x_{k-1})f'(x_k^*) = (\Delta x)f'(x_k^*)$$

for some x_k^* in (x_{k-1}, x_k) . Thus,

$$\overline{P_{k-1}P_k} = \sqrt{(\Delta x)^2 + (\Delta x)^2 (f'(x_k^*))^2} = \sqrt{(1 + (f'(x_k^*))^2)(\Delta x)^2}$$
$$= \sqrt{1 + (f'(x_k^*))^2} \sqrt{(\Delta x)^2} = \sqrt{1 + (f'(x_k^*))^2} \Delta x$$
$$\sum_{k=1}^n \overline{P_{k-1}P_k} = \sum_{k=1}^n \sqrt{1 + (f'(x_k^*))^2} \Delta x$$

So,

The right-hand sum is an approximating sum for the definite integral $\int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$. Therefore, letting $n \to +\infty$, we get the *arc length formula*:

$$L = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx = \int_{a}^{b} \sqrt{1 + (y')^{2}} dx$$
(29.2)

EXAMPLE 29.3: Find the arc length *L* of the curve $y = x^{3/2}$ from x = 0 to x = 5. By (29.2), since $y' = \frac{3}{2}x^{1/2} = \frac{3}{2}\sqrt{x}$,

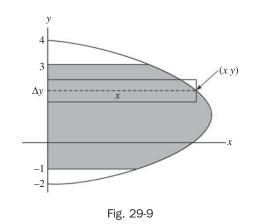
$$L = \int_{0}^{5} \sqrt{1 + (y')^{2}} \, dx = \int_{0}^{5} \sqrt{1 + \frac{9}{4}x} \, dx$$

= $\frac{4}{9} \int_{0}^{5} (1 + \frac{9}{4}x)^{1/2} \left(\frac{9}{4}\right) dx = \frac{4}{9} \frac{2}{3} (1 + \frac{9}{4}x)^{3/2} \int_{0}^{5}$ (by Quick Formula I and the Fundamental Theorem of Calculus)
= $\frac{8}{27} ((\frac{49}{4})^{3/2} - 1^{3/2}) = \frac{8}{27} (\frac{343}{8} - 1) = \frac{335}{27}$

SOLVED PROBLEMS

1. Find the area bounded by the parabola $x = 8 + 2y - y^2$, the y axis, and the lines y = -1 and y = 3. Note, by completing the square, that $x = -(y^2 - 2y - 8) = -((y - 1)^2 - 9) = 9 - (y - 1)^2 = (4 - y)(2 + y)$. Hence, the vertex of the parabola is (9, 1) and the parabola cuts the y axis at y = 4 and y = -2. We want the area of the shaded region in Fig. 29-9, which is given by

$$\int_{-1}^{3} (8+2y-y^2) \, dy = (8y+y^2-\frac{1}{3}y^3) \Big]_{-1}^{3} = (24+9-9) - (-8+1-\frac{1}{3}) = \frac{92}{3}$$



2. Find the area of the region between the curves $y = \sin x$ and $y = \cos x$ from x = 0 to $x = \pi/4$. The curves intersect at $(\pi/4, \sqrt{2}/2)$, and $0 \le \sin x < \cos x$ for $0 \le x < \pi/4$. (See Fig. 29-10.) Hence, the area is

$$\int_{0}^{\pi/4} (\cos x - \sin x) dx = (\sin x + \cos x) \Big]_{0}^{\pi/4} = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}\right) - (0+1) = \sqrt{2} - 1$$

Fig. 29-10

3. Find the area of the region bounded by the parabolas y = 6x - x² and y = x² - 2x. By solving 6x - x² = x² - 2x, we see that the parabolas intersect when x = 0 and x = 4, that is, at (0, 0) and (4, 8). (See Fig. 29-11.) By completing the square, the first parabola has the equation y = 9 - (x - 3)²; therefore, it has its vertex at (3, 9) and opens downward. Likewise, the second parabola has the equation y = (x - 1)² - 1; therefore, its vertex is at (1, -1) and it opens upward. Note that the first parabola lies above the second parabola in the given region. By (29.1), the required area is

$$\int_{0}^{4} ((6x - x^{2}) - (x^{2} - 2x)) dx = \int_{0}^{4} (8x - 2x^{2}) dx = (4x^{2} - \frac{2}{3}x^{3}) \Big]_{0}^{4} = (64 - \frac{128}{3}) = \frac{64}{3}$$

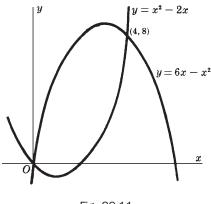
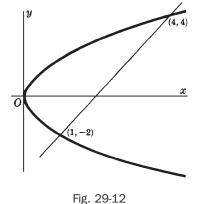


Fig. 29-11

- 4. Find the area of the region bounded by the parabola $y^2 = 4x$ and the line y = 2x 4.
 - Solving the equations simultaneously, we get $(2x 4)^2 = 4x$, $x^2 4x + 4 = x$, $x^2 5x + 4 = 0$, (x 1)(x 4) = 0. Hence, the curves intersect when x = 1 or x = 4, that is, at (1, -2) and (4, 4). (See Fig. 29-12.) Note that neither curve is above the other throughout the region. Hence, it is better to take y as the independent variable and rewrite the curves as $x = \frac{1}{4}y^2$ and $x = \frac{1}{2}(y + 4)$. The line is always to the right of the parabola.

The area is obtained by integrating along the *y* axis:

$$\int_{-2}^{4} \left(\frac{1}{2}(y+4) - \frac{1}{4}y^2\right) dy = \frac{1}{4} \int_{-2}^{4} (2y+8-y^2) dy$$
$$= \frac{1}{4} \left(y^2 + 8y - \frac{1}{3}y^3\right)\Big|_{-2}^{4} = \frac{1}{4} \left((16+32-\frac{64}{3}) - (4-16+\frac{8}{3})\right) = 9$$



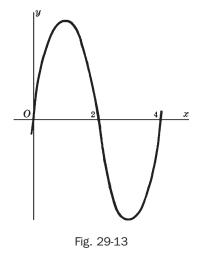
1 lg. 29-12

5. Find the area of the region between the curve $y = x^3 - 6x^2 + 8x$ and the x axis.

Since $x^3 - 6x^2 + 8x = x(x^2 - 6x + 8) = x(x - 2)(x - 4)$, the curve crosses the *x* axis at x = 0, x = 2, and x = 4. The graph looks like the curve shown in Fig. 29-13. (By applying the quadratic formula to y', we find that the maximum and minimum values occur at $x = 2 \pm \frac{2}{3}\sqrt{3}$.) Since the part of the region with $2 \le x \le 4$ lies below the *x* axis, we must calculate two separate integrals, one with respect to y between x = 0 and x = 2, and the other with respect to -y between x = 2 and x = 4. Thus, the required area is

$$\int_{0}^{2} (x^{3} - 6x^{2} + 8x) dx - \int_{2}^{4} (x^{3} - 6x^{2} + 8x) dx = (\frac{1}{4}x^{4} - 2x^{3} + 4x^{2}) \Big]_{0}^{2} - (\frac{1}{4}x^{4} - 2x^{3} + 4x^{2}) \Big]_{0}^{2} = 4 + 4 = 8$$

240

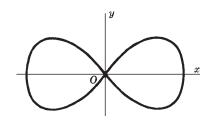


Note that, if we had made the mistake of simply calculating the integral $\int_0^4 (x^3 - 6x^2 + 8x) dx$, we would have got the incorrect answer 0.

6. Find the area enclosed by the curve $y^2 = x^2 - x^4$.

The curve is symmetric with respect to the coordinate axes. Hence the required area is four times the portion lying in the first quadrant. (See Fig. 29-14.) In the first quadrant, $y = \sqrt{x^2 - x^4} = x\sqrt{1 - x^2}$ and the curve intersects the x axis at x = 0 and x = 1. So, the required area is

$$4\int_0^1 x\sqrt{1-x^2} \, dx = -2\int_0^1 (1-x^2)^{1/2} (-2x) \, dx$$
$$= -2\left(\frac{2}{3}\right)(1-x^2)^{3/2} \int_0^1 \quad \text{(by Quick Formula I)}$$
$$= -\frac{4}{3}(0-1^{3/2}) = -\frac{4}{3}(-1) = \frac{4}{3}$$



7. Find the arc length of the curve $x = 3y^{3/2} - 1$ from y = 0 to y = 4. We can reverse the roles of x and y in the arc length formula (29.2): $L = \int_{c}^{d} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$. Since $\frac{dx}{dy} = \frac{9}{2}y^{1/2}$,

$$L = \int_0^4 \sqrt{1 + \frac{81}{4}y} \, dy = \frac{4}{81} \int_0^4 (1 + \frac{81}{4}y)^{1/2} (\frac{81}{4}) \, dy = \frac{4}{81} (\frac{2}{3})(1 + \frac{81}{4}y)^{3/2} \Big]_0^4 = \frac{8}{243} ((82)^{3/2} - 1^{3/2}) = \frac{8}{243} (82\sqrt{82} - 1)(1 + \frac{81}{4}y)^{3/2} = \frac{1}{243} (\frac{1}{2})(1 + \frac{81}{4}y)^{3/2} = \frac{1}{243} (\frac{1}{4})(1 + \frac{81}{4}y)^{3/2} = \frac{1}{243} (\frac{1}{4}$$

8. Find the arc length of the curve $24xy = x^4 + 48$ from x = 2 to x = 4. $y = \frac{1}{24}x^3 + 2x^{-1}$. Hence, $y' = \frac{1}{8}x^2 - 2/x^2$. Thus,

$$(y')^2 = \frac{1}{64}x^4 - \frac{1}{2} + \frac{4}{x^4}$$
$$1 + (y')^2 = \frac{1}{64}x^4 + \frac{1}{2} + \frac{4}{x^4} = \left(\frac{1}{8}x^2 + \frac{2}{x^2}\right)^2$$

241

So,

$$L = \int_{2}^{4} \sqrt{1 + (y')^{2}} \, dx = \int_{2}^{4} \left(\frac{1}{8} x^{2} + \frac{2}{x^{2}} \right) \, dx = \int_{2}^{4} \left(\frac{1}{8} x^{2} + 2x^{-2} \right) \, dx$$
$$= \left(\frac{1}{24} x^{3} - 2x^{-1} \right) \Big]_{2}^{4} = \left(\frac{8}{3} - \frac{1}{2} \right) - \left(\frac{1}{3} - 1 \right) = \frac{17}{6}$$

9. Find the arc length of the catenary $y = \frac{a}{2}(e^{x/a} + e^{-x/a})$ from x = 0 to x = a. $y' = \frac{1}{2}(e^{x/a} + e^{-x/a})$ and, therefore,

$$1 + (y')^{2} = 1 + \frac{1}{4}(e^{2x/a} - 2 + e^{-2x/a}) = \frac{1}{4}(e^{x/a} + e^{-x/a})^{2}$$
$$L = \frac{1}{2}\int_{0}^{a}(e^{x/a} + e^{-x/a})dx = \frac{a}{2}(e^{x/a} - e^{-x/a})\Big]_{0}^{a} = \frac{a}{2}(e - e^{-1})$$

So,

SUPPLEMENTARY PROBLEMS

10. Find the area of the region lying above the *x* axis and under the parabola $y = 4x - x^2$.

Ans. $\frac{32}{3}$

11. Find the area of the region bounded by the parabola $y = x^2 - 7x + 6$, the x axis, and the lines x = 2 and x = 6.

Ans. $\frac{56}{3}$

12. Find the area of the region bounded by the given curves.

(a)
$$y = x^2, y = 0, x = 2, x = 5$$
Ans. 39(b) $y = x^3, y = 0, x = 1, x = 3$ Ans. 20(c) $y = 4x - x^2, y = 0, x = 1, x = 3$ Ans. 20(d) $x = 1 + y^2, x = 10$ Ans. 36(e) $x = 3y^2 - 9, x = 0, y = 0, y = 1$ Ans. 8(f) $x = y^2 + 4y, x = 0$ Ans. $\frac{32}{3}$ (g) $y = 9 - x^2, y = x + 3$ Ans. $\frac{125}{6}$ (h) $y = 2 - x^2y = -x$ Ans. $\frac{9}{2}$ (i) $y = x^2 - 4, y = 8 - 2x^2$ Ans. $\frac{9}{2}$ (j) $y = x^4 - 4x^2, y = 4x^2$ Ans. $\frac{512}{15}\sqrt{2}$ (k) $y = e^x, y = e^{-x}, x = 0, x = 2$ Ans. $\frac{e^2 + 1}{e^2 - 2}$ (l) $y = e^{x/a} + e^{-x/a}, y = 0, x = \pm a$ Ans. $2a\left(\frac{e-1}{e}\right)$ (m) $xy = 12, y = 0, x = 1, x = e^2$ Ans. 24 (n) $y = \frac{1}{1 + x^2}, y = 0, x = \pm 1$ Ans. $\frac{\pi}{2}$ (o) $y = \tan x, x = 0, x = \frac{\pi}{4}$ Ans. $\frac{98}{3}$

13. Find the length of the indicated arc of the given curve.

(a)	$y^3 = 8x^2$ from $x = 1$ to $x = 8$	Ans.	$(104\sqrt{13} - 125)/27$
(b)	$6xy = x^4 + 3$ from $x = 1$ to $x = 2$	Ans.	$\frac{17}{12}$
(c)	$27y^2 = 4(x-2)^3$ from (2, 0) to (11, $6\sqrt{3}$	Ans.	14

(d) $y = \frac{1}{2}x^2 - \frac{1}{4}\ln x$ from $x = 1$ to $x = e$	Ans.	$\frac{1}{2}e^2 - \frac{1}{4}$
(e) $y = \ln \cos x$ from $x = \frac{\pi}{6}$ to $x = \frac{\pi}{4}$	Ans.	$\frac{\ln\left(\frac{1+\sqrt{2}}{\sqrt{3}}\right)}{9}$
(f) $x^{2/3} + y^{2/3} = 4$ from $x = 1$ to $x = 8$	Ans.	9

14. (GC) Estimate the arc length of $y = \sin x$ from x = 0 to $x = \pi$ to an accuracy of four decimal places. (Use Simpson's Rule with n = 10.)

Ans. 3.8202

-