CHAPTER 29

Applications of Integration I: Area and Arc Length

Area Between a Curve and the y Axis

We already know how to find the area of a region like that shown in Fig. 29-1, bounded below by the x axis, above by a curve $y=f(x)$, and lying between $x=a$ and $x=b$. The area is the definite integral $\int_{a}^{b} f(x) d x$.

Fig. 29-1
Now consider a region like that shown in Fig. 29-2, bounded on the left by the y axis, on the right by a curve $x=g(y)$, and lying between $y=c$ and $y=d$. Then, by an argument similar to that for the case shown in Fig. 29-1, the area of the region is the definite integral $\int_{c}^{d} g(y) d y$.

Fig. 29-2

EXAMPLE 29.1: Consider the region bounded on the right by the parabola $x=4-y^{2}$, on the left by the y axis, and above and below by $y=2$ and $y=-1$. See Fig. 29-3. Then the area of this region is $\int_{-1}^{2}\left(4-y^{2}\right) d y$. By the Fundamental Theorem of Calculus, this is

$$
\left.\left(4 y-\frac{1}{3} y^{3}\right)\right]_{-1}^{2}=\left(8-\frac{8}{3}\right)-\left(-4-\left(-\frac{1}{3}\right)\right)=12-\frac{9}{3}=12-3=9
$$

Fig. 29-3

Areas Between Curves

Assume that f and g are continuous functions such that $g(x) \leq f(x)$ for $a \leq x \leq b$. Then the curve $y=f(x)$ lies above the curve $y=g(x)$ between $x=a$ and $x=b$. The area A of the region between the two curves and lying between $x=a$ and $x=b$ is given by the formula

$$
\begin{equation*}
A=\int_{a}^{b}(f(x)-g(x)) d x \tag{29.1}
\end{equation*}
$$

To see why this formula holds, first look at the special case where $0 \leq g(x) \leq f(x)$ for $a \leq x \leq b$. (See Fig. 29-4.) Clearly, the area is the difference between two areas, the area A_{f} of the region under the curve $y=f(x)$ and above the x axis, and the area A_{g} of the region under the curve $y=g(x)$ and above the x axis. Since $A_{f}=\int_{a}^{b} f(x) d x$ and $A_{g}=\int_{a}^{b} g(x) d x$,

$$
\begin{aligned}
A & =A_{f}-A_{g}=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \\
& =\int_{a}^{b}(f(x)-g(x)) d x \quad \text { by }(23.6)
\end{aligned}
$$

Fig. 29-4

Now look at the general case (see Fig. 29-5), when one or both of the curves $y=f(x)$ and $y=g(x)$ may lie below the x axis. Let $m<0$ be the absolute minimum of g on $[a, b]$. Raise both curves by $|m|$ units. The new graphs, shown in Fig. 29-6, are on or above the x axis and enclose the same area A as the original graphs. The upper curve is the graph of $y=f(x)+|m|$ and the lower curve is the graph of $y=g(x)+|m|$. Hence, by the special case above,

$$
A=\int_{a}^{b}\left((f(x)+|m|-(g(x)+|m|)) d x=\int_{a}^{b}(f(x)-g(x)) d x\right.
$$

Fig. 29-5

Fig. 29-6

EXAMPLE 29.2: Find the area A of the region \mathscr{R} under the line $y=\frac{1}{2} x+2$, above the parabola $y=x^{2}$, and between the y axis and $x=1$. (See the shaded region in Fig. 29-7.) By (29.1),

$$
\left.A=\int_{0}^{1}\left(\left(\frac{1}{2} x+2\right)-x^{2}\right) d x=\left(\frac{1}{4} x^{2}+2 x-\frac{1}{3} x^{3}\right)\right]_{0}^{1}=\left(\frac{1}{4}+2-\frac{1}{3}\right)-(0+0-0)=\frac{3}{12}+\frac{24}{12}-\frac{4}{12}=\frac{23}{12}
$$

Fig. 29-7

Arc Length

Let f be differentiable on $[a, b]$. Consider the part of the graph of f from $(a, f(a))$ to $(b, f(b))$. Let us find a formula for the length L of this curve. Divide [a, b] into n equal subintervals, each of length Δx. To each point x_{k} in this subdivision there corresponds a point $P_{k}\left(x_{k}, f\left(x_{k}\right)\right)$ on the curve. (See Fig. 29-8.) For large n, the sum $\overline{P_{0} P_{1}}+\overline{P_{1} P_{2}}+\ldots+\overline{P_{n-1} P_{n}}=\sum_{k=1}^{n} \overline{P_{k-1} P_{k}}$ of the lengths of the line segments $P_{k-1} P_{k}$ is an approximation to the length of the curve.

Fig. 29-8
By the distance formula (2.1),

$$
\overline{P_{k-1} P_{k}}=\sqrt{\left(x_{k}-x_{k-1}\right)^{2}+\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)^{2}}
$$

Now, $x_{k}-x_{k-1}=\Delta x$ and, by the law of the mean (Theorem 13.4),

$$
f\left(x_{k}\right)-f\left(x_{k-1}\right)=\left(x_{k}-x_{k-1}\right) f^{\prime}\left(x_{k}^{*}\right)=(\Delta x) f^{\prime}\left(x_{k}^{*}\right)
$$

for some x_{k}^{*} in $\left(x_{k-1}, x_{k}\right)$. Thus,

$$
\begin{aligned}
\overline{P_{k-1} P_{k}} & =\sqrt{(\Delta x)^{2}+(\Delta x)^{2}\left(f^{\prime}\left(x_{k}^{*}\right)\right)^{2}}=\sqrt{\left(1+\left(f^{\prime}\left(x_{k}^{*}\right)\right)^{2}\right)(\Delta x)^{2}} \\
& =\sqrt{1+\left(f^{\prime}\left(x_{k}^{*}\right)\right)^{2}} \sqrt{(\Delta x)^{2}}=\sqrt{1+\left(f^{\prime}\left(x_{k}^{*}\right)\right)^{2}} \Delta x
\end{aligned}
$$

So,

$$
\sum_{k=1}^{n} \overline{P_{k-1} P_{k}}=\sum_{k=1}^{n} \sqrt{1+\left(f^{\prime}\left(x_{k}^{*}\right)\right)^{2}} \Delta x
$$

The right-hand sum is an approximating sum for the definite integral $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$. Therefore, letting $n \rightarrow+\infty$, we get the arc length formula:

$$
\begin{equation*}
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \tag{29.2}
\end{equation*}
$$

EXAMPLE 29.3: Find the arc length L of the curve $y=x^{3 / 2}$ from $x=0$ to $x=5$.
By (29.2), since $y^{\prime}=\frac{3}{2} x^{1 / 2}=\frac{3}{2} \sqrt{x}$,

$$
\begin{aligned}
L & =\int_{0}^{5} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{0}^{5} \sqrt{1+\frac{9}{4} x} d x \\
& \left.=\frac{4}{9} \int_{0}^{5}\left(1+\frac{9}{4} x\right)^{1 / 2}\left(\frac{9}{4}\right) d x=\frac{4}{9} \frac{2}{3}\left(1+\frac{9}{4} x\right)^{3 / 2}\right]_{0}^{5} \quad \text { (by Quick Formula Iand the Fundamental Theorem of Calculus) } \\
& =\frac{8}{27}\left(\left(\frac{99}{4}\right)^{3 / 2}-1^{3 / 2}\right)=\frac{8}{27}\left(\frac{343}{8}-1\right)=\frac{335}{27}
\end{aligned}
$$

SOLVED PROBLEMS

1. Find the area bounded by the parabola $x=8+2 y-y^{2}$, the y axis, and the lines $y=-1$ and $y=3$.

Note, by completing the square, that $x=-\left(y^{2}-2 y-8\right)=-\left((y-1)^{2}-9\right)=9-(y-1)^{2}=(4-y)(2+y)$. Hence, the vertex of the parabola is $(9,1)$ and the parabola cuts the y axis at $y=4$ and $y=-2$. We want the area of the shaded region in Fig. 29-9, which is given by

$$
\left.\int_{-1}^{3}\left(8+2 y-y^{2}\right) d y=\left(8 y+y^{2}-\frac{1}{3} y^{3}\right)\right]_{-1}^{3}=(24+9-9)-\left(-8+1-\frac{1}{3}\right)=\frac{92}{3}
$$

Fig. 29-9
2. Find the area of the region between the curves $y=\sin x$ and $y=\cos x$ from $x=0$ to $x=\pi / 4$.

The curves intersect at ($\pi / 4, \sqrt{2} / 2$), and $0 \leq \sin x<\cos x$ for $0 \leq x<\pi / 4$. (See Fig. 29-10.) Hence, the area is

$$
\left.\int_{0}^{\pi / 4}(\cos x-\sin x) d x=(\sin x+\cos x)\right]_{0}^{\pi / 4}=\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\right)-(0+1)=\sqrt{2}-1
$$

Fig. 29-10
3. Find the area of the region bounded by the parabolas $y=6 x-x^{2}$ and $y=x^{2}-2 x$.

By solving $6 x-x^{2}=x^{2}-2 x$, we see that the parabolas intersect when $x=0$ and $x=4$, that is, at $(0,0)$ and $(4,8)$. (See Fig. 29-11.) By completing the square, the first parabola has the equation $y=9-(x-3)^{2}$; therefore, it has its vertex at $(3,9)$ and opens downward. Likewise, the second parabola has the equation $y=(x-1)^{2}-1$; therefore, its vertex is at $(1,-1)$ and it opens upward. Note that the first parabola lies above the second parabola in the given region. By (29.1), the required area is

$$
\left.\int_{0}^{4}\left(\left(6 x-x^{2}\right)-\left(x^{2}-2 x\right)\right) d x=\int_{0}^{4}\left(8 x-2 x^{2}\right) d x=\left(4 x^{2}-\frac{2}{3} x^{3}\right)\right]_{0}^{4}=\left(64-\frac{128}{3}\right)=\frac{64}{3}
$$

Fig. 29-11
4. Find the area of the region bounded by the parabola $y^{2}=4 x$ and the line $y=2 x-4$.

Solving the equations simultaneously, we get $(2 x-4)^{2}=4 x, x^{2}-4 x+4=x, x^{2}-5 x+4=0,(x-1)(x-4)=0$. Hence, the curves intersect when $x=1$ or $x=4$, that is, at $(1,-2)$ and (4, 4). (See Fig. 29-12.) Note that neither curve is above the other throughout the region. Hence, it is better to take y as the independent variable and rewrite the curves as $x=\frac{1}{4} y^{2}$ and $x=\frac{1}{2}(y+4)$. The line is always to the right of the parabola.

The area is obtained by integrating along the y axis:

$$
\begin{aligned}
& \int_{-2}^{4}\left(\frac{1}{2}(y+4)-\frac{1}{4} y^{2}\right) d y=\frac{1}{4} \int_{-2}^{4}\left(2 y+8-y^{2}\right) d y \\
& \left.=\frac{1}{4}\left(y^{2}+8 y-\frac{1}{3} y^{3}\right)\right]_{-2}^{4}=\frac{1}{4}\left(\left(16+32-\frac{64}{3}\right)-\left(4-16+\frac{8}{3}\right)\right)=9
\end{aligned}
$$

Fig. 29-12
5. Find the area of the region between the curve $y=x^{3}-6 x^{2}+8 x$ and the x axis.

Since $x^{3}-6 x^{2}+8 x=x\left(x^{2}-6 x+8\right)=x(x-2)(x-4)$, the curve crosses the x axis at $x=0, x=2$, and $x=4$. The graph looks like the curve shown in Fig. 29-13. (By applying the quadratic formula to y^{\prime}, we find that the maximum and minimum values occur at $x=2 \pm \frac{2}{3} \sqrt{3}$.) Since the part of the region with $2 \leq x \leq 4$ lies below the x axis, we must calculate two separate integrals, one with respect to y between $x=0$ and $x=2$, and the other with respect to $-y$ between $x=2$ and $x=4$. Thus, the required area is

$$
\left.\int_{0}^{2}\left(x^{3}-6 x^{2}+8 x\right) d x-\int_{2}^{4}\left(x^{3}-6 x^{2}+8 x\right) d x=\left(\frac{1}{4} x^{4}-2 x^{3}+4 x^{2}\right)\right]_{0}^{2}-\left(\frac{1}{4} x^{4}-2 x^{3}+4 x^{2}\right]_{2}^{4}=4+4=8
$$

Fig. 29-13
Note that, if we had made the mistake of simply calculating the integral $\int_{0}^{4}\left(x^{3}-6 x^{2}+8 x\right) d x$, we would have got the incorrect answer 0 .
6. Find the area enclosed by the curve $y^{2}=x^{2}-x^{4}$.

The curve is symmetric with respect to the coordinate axes. Hence the required area is four times the portion lying in the first quadrant. (See Fig. 29-14.) In the first quadrant, $y=\sqrt{x^{2}-x^{4}}=x \sqrt{1-x^{2}}$ and the curve intersects the x axis at $x=0$ and $x=1$. So, the required area is

$$
\begin{aligned}
4 \int_{0}^{1} x \sqrt{1-x^{2}} d x & =-2 \int_{0}^{1}\left(1-x^{2}\right)^{1 / 2}(-2 x) d x \\
& \left.=-2\left(\frac{2}{3}\right)\left(1-x^{2}\right)^{3 / 2}\right]_{0}^{1} \quad(\text { by Quick Formula I) } \\
& =-\frac{4}{3}\left(0-1^{3 / 2}\right)=-\frac{4}{3}(-1)=\frac{4}{3}
\end{aligned}
$$

Fig. 29-14
7. Find the arc length of the curve $x=3 y^{3 / 2}-1$ from $y=0$ to $y=4$.

We can reverse the roles of x and y in the arc length formula (29.2): $L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$. Since $\frac{d x}{d y}=\frac{9}{2} y^{1 / 2}$,

$$
\left.L=\int_{0}^{4} \sqrt{1+\frac{81}{4} y} d y=\frac{4}{81} \int_{0}^{4}\left(1+\frac{81}{4} y\right)^{1 / 2}\left(\frac{81}{4}\right) d y=\frac{4}{81}\left(\frac{2}{3}\right)\left(1+\frac{81}{4} y\right)^{3 / 2}\right]_{0}^{4}=\frac{8}{243}\left((82)^{3 / 2}-1^{3 / 2}\right)=\frac{8}{243}(82 \sqrt{82}-1)
$$

8. Find the arc length of the curve $24 x y=x^{4}+48$ from $x=2$ to $x=4$.
$y=\frac{1}{24} x^{3}+2 x^{-1}$. Hence, $y^{\prime}=\frac{1}{8} x^{2}-2 / x^{2}$. Thus,

$$
\begin{aligned}
\left(y^{\prime}\right)^{2} & =\frac{1}{64} x^{4}-\frac{1}{2}+\frac{4}{x^{4}} \\
1+\left(y^{\prime}\right)^{2} & =\frac{1}{64} x^{4}+\frac{1}{2}+\frac{4}{x^{4}}=\left(\frac{1}{8} x^{2}+\frac{2}{x^{2}}\right)^{2}
\end{aligned}
$$

So,

$$
\begin{aligned}
L & =\int_{2}^{4} \sqrt{1+\left(y^{\prime}\right)^{2}} d x=\int_{2}^{4}\left(\frac{1}{8} x^{2}+\frac{2}{x^{2}}\right) d x=\int_{2}^{4}\left(\frac{1}{8} x^{2}+2 x^{-2}\right) d x \\
& \left.=\left(\frac{1}{24} x^{3}-2 x^{-1}\right)\right]_{2}^{4}=\left(\frac{8}{3}-\frac{1}{2}\right)-\left(\frac{1}{3}-1\right)=\frac{17}{6}
\end{aligned}
$$

9. Find the arc length of the catenary $y=\frac{a}{2}\left(e^{x / a}+e^{-x / a}\right)$ from $x=0$ to $x=a$.

$$
y^{\prime}=\frac{1}{2}\left(e^{x / a}+e^{-x / a}\right) \text { and, therefore, }
$$

$$
1+\left(y^{\prime}\right)^{2}=1+\frac{1}{4}\left(e^{2 x / a}-2+e^{-2 x / a}\right)=\frac{1}{4}\left(e^{x / a}+e^{-x / a}\right)^{2}
$$

So,

$$
\left.L=\frac{1}{2} \int_{0}^{a}\left(e^{x / a}+e^{-x / a}\right) d x=\frac{a}{2}\left(e^{x / a}-e^{-x / a}\right)\right]_{0}^{a}=\frac{a}{2}\left(e-e^{-1}\right)
$$

SUPPLEMENTARY PROBLEMS

10. Find the area of the region lying above the x axis and under the parabola $y=4 x-x^{2}$.

Ans. $\frac{32}{3}$
11. Find the area of the region bounded by the parabola $y=x^{2}-7 x+6$, the x axis, and the lines $x=2$ and $x=6$.

Ans. $\quad \frac{56}{3}$
12. Find the area of the region bounded by the given curves.
(a) $y=x^{2}, y=0, x=2, x=5$

Ans. 39
(b) $y=x^{3}, y=0, x=1, x=3$
(c) $y=4 x-x^{2}, y=0, x=1, x=3$

Ans. 20
(d) $x=1+y^{2}, x=10$

Ans. $\quad \frac{22}{3}$
(e) $x=3 \mathrm{y}^{2}-9, x=0, y=0, y=1$
(f) $x=y^{2}+4 y, x=0$
(g) $y=9-x^{2}, y=x+3$
(h) $y=2-x^{2} y=-x$
(i) $y=x^{2}-4, y=8-2 x^{2}$
(j) $y=x^{4}-4 x^{2}, y=4 x^{2}$

Ans. 36
Ans. 8
Ans. $\frac{32}{3}$
Ans. $\frac{125}{6}$
Ans. $\quad \frac{9}{2}$
Ans. 32
Ans. $\frac{512}{15} \sqrt{2}$
(k) $y=e^{x}, y=e^{-x}, x=0, x=2$

Ans. $\frac{e^{2}+1}{e^{2}-2}$
(1) $y=e^{x / a}+e^{-x / a}, y=0, x= \pm a$
(m) $x y=12, y=0, x=1, x=e^{2}$
(n) $y=\frac{1}{1+x^{2}}, y=0, x= \pm 1$
(o) $y=\tan x, x=0, x=\frac{\pi}{4}$
(p) $y=25-x^{2}, 256 x=3 y^{2}, 16 y=9 x^{2}$

Ans. $2 a\left(\frac{e-1}{e}\right)$
Ans. 24
Ans. $\frac{\pi}{2}$
Ans. $\quad \frac{1}{2} \ln 2$
Ans. $\frac{98}{3}$
13. Find the length of the indicated arc of the given curve.
(a) $y^{3}=8 x^{2}$ from $x=1$ to $x=8$
(b) $6 x y=x^{4}+3$ from $x=1$ to $x=2$

Ans. $\quad(104 \sqrt{13}-125) / 27$
(c) $27 y^{2}=4(x-2)^{3}$ from $(2,0)$ to $(11,6 \sqrt{3}$

Ans. $\quad \frac{17}{12}$
Ans. 14
(d) $y=\frac{1}{2} x^{2}-\frac{1}{4} \ln x$ from $x=1$ to $x=e$
(e) $y=\ln \cos x$ from $x=\frac{\pi}{6}$ to $x=\frac{\pi}{4}$
(f) $x^{2 / 3}+y^{2 / 3}=4$ from $x=1$ to $x=8$

Ans. $\quad \frac{1}{2} e^{2}-\frac{1}{4}$
$\begin{array}{ll}\text { Ans. } & \ln \left(\frac{1+\sqrt{2}}{\sqrt{3}}\right) \\ \text { Ans. } & 9\end{array}$
14. (GC) Estimate the arc length of $y=\sin x$ from $x=0$ to $x=\pi$ to an accuracy of four decimal places. (Use Simpson's Rule with $n=10$.)

Ans. 3.8202

