CHAPTER 23

The Definite Integral. Area Under a Curve

Sigma Notation

The Greek capital letter Σ denotes repeated addition.

EXAMPLE 23.1:

(a) $\sum_{j=1}^{5} j=1+2+3+4+5=15$.
(b) $\sum_{i=0}^{3}(2 i+1)=1+3+5+7$.
(c) $\sum_{i=2}^{10} i^{2}=2^{2}+3^{2}+\cdots+(10)^{2}$
(d) $\sum_{j=1}^{4} \cos j \pi=\cos \pi+\cos 2 \pi+\cos 3 \pi+\cos 4 \pi$

In general, if f is a function defined on the integers, and if n and k are integers such that $n \geq k$, then:

$$
\sum_{j=k}^{n} f(j)=f(k)+f(k+1)+\cdots+f(n)
$$

Area Under a Curve

Assume that f is a function such that $f(x) \geq 0$ for all x in a closed interval [a,b]. Its graph is a curve that lies on or above the x axis. (See Fig. 23-1.) We have an intuitive idea of the area A of the region \mathscr{R} under the graph, above the x axis, and between the vertical lines $x=a$ and $x=b$. We shall specify a method for evaluating A.

Choose points $x_{1}, x_{2}, \ldots, x_{n-1}$ between a and b. Let $x_{0}=a$ and $x_{n}=b$. Thus (see Fig. 23-2),

$$
a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b
$$

The interval $[a, b]$ is divided into n subintervals $\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$. Denote the lengths of these subintervals by $\Delta_{1} x, \Delta_{2} x, \ldots, \Delta_{n} x$. Hence, if $1 \leq k \leq n$,

$$
\Delta_{k} x=x_{k}-x_{k-1}
$$

Fig. 23-1

Fig. 23-2

Draw vertical line segments $x=x_{k}$ from the x axis up to the graph. This divides the region \mathscr{R} into n strips. Letting $\Delta_{k} A$ denote the area of the k th strip, we obtain

$$
A=\sum_{k=1}^{n} \Delta_{k} A
$$

We can approximate the area $\Delta_{k} A$ in the following manner. Select any point x_{k}^{*} in the k th subinterval $\left[x_{k-1}, x_{k}\right]$. Draw the vertical line segment from the point x_{k}^{*} on the x axis up to the graph (see the dashed lines in Fig. 23-3); the length of this segment is $f\left(x_{k}^{*}\right)$. The rectangle with base $\Delta_{k} x$ and height $f\left(x_{k}^{*}\right)$ has area $f\left(x_{k}^{*}\right) \Delta_{k} x$, which is approximately the area $\Delta_{k} A$ of the k th strip. Hence, the total area A under the curve is approximately the sum

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(x_{\hat{k}}^{*}\right) \Delta_{k} x=f\left(x_{1}^{*}\right) \Delta_{1} x+f\left(x_{2}^{*}\right) \Delta_{2} x+\cdots+f\left(x_{n}^{*}\right) \Delta_{n} x \tag{23.1}
\end{equation*}
$$

Fig. 23-3

The approximation becomes better and better as we divide the interval $[a, b]$ into more and more subintervals and as we make the lengths of these subintervals smaller and smaller. If successive approximations can be made as close as one wishes to a specific number, then that number will be denoted by

$$
\int_{a}^{b} f(x) d x
$$

and will be called the definite integral of f from a to b. Such a number does not exist in all cases, but it does exist, for example, when the function f is continuous on $[a, b]$. When $\int_{a}^{b} f(x) d x$ exists, its value is equal to the area A under the curve.

In the notation $\int_{a}^{b} f(x) d x, b$ is called the upper limit and a is called the lower limit of the definite integral.

For any (not necessarily nonnegative) function f on $[a, b]$, sums of the form (23.1) can be defined, without using the notion of area. If there is a number to which these sums can be made as close as we wish, as n gets larger and larger and as the maximum of the lengths $\Delta_{k} x$ approaches 0 , then that number is denoted $\int_{a}^{b} f(x) d x$ and is called the definite integral of f on $[a, b]$. When $\int_{a}^{b} f(x) d x$ exists, we say that f is integrable on $[a, b]$.

We shall assume without proof that $\int_{a}^{b} f(x) d x$ exists for every function f that is continuous on $[a, b]$. To evaluate $\int_{a}^{b} f(x) d x$, it suffices to find the limit of a sequence of sums (23.1) for which the number n of subintervals approaches infinity and the maximum lengths of the subintervals approach 0 .

EXAMPLE 23.2: Let us show that

$$
\begin{equation*}
\int_{a}^{b} 1 d x=b-a \tag{23.2}
\end{equation*}
$$

Let $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$ be a subdivision of $[a, b]$. Then a corresponding sum (23.1) is

$$
\begin{gathered}
\left.\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{k} x=\sum_{k=1}^{n} \Delta_{k} x \quad \text { (because } f(x)=1 \text { for all } x\right) \\
=b-a
\end{gathered}
$$

Since every approximating sum is $b-a, \int_{a}^{b} 1 d x=b-a$.

[^0]An alternative argument would use the fact that the region under the graph of the constant function 1 and above the x axis, between $x=a$ and $x=b$, is a rectangle with base $b-a$ and height 1 (see Fig. 23-4). So, $\int_{a}^{b} 1 d x$, being the area of that rectangle, is $b-a$.

Fig. 23-4
EXAMPLE 23.3: Let us calculate $\int_{a}^{b} x d x$.
Let $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$ be a subdivision of $[a, b]$ into n equal subintervals. Thus, each $\Delta_{k} x=$ $(b-a) / n$. Denote $(b-a) / n$ by Δx. Then $x_{1}=a+\Delta x, x_{2}=a+2 \Delta x$, and, in general, $x_{k}=a+k \Delta x$. In the k th subinterval, $\left[x_{k-1}, x_{k}\right]$, choose x_{k}^{*} to be the right-hand endpoint x_{k}. Then the approximating sum (23.1) has the form

$$
\begin{aligned}
f\left(x_{k}\right) \Delta_{k} x= & \sum_{k=1}^{n} x_{k} \Delta_{k} x=\sum_{k=1}^{n}(a+k \Delta x) \Delta x \\
& =\sum_{k=1}^{n}\left(a \Delta x+k(\Delta x)^{2}\right)=\sum_{k=1}^{n} a \Delta x+\sum_{k=1}^{n} k(\Delta x)^{2} \\
& =n(a \Delta x)+(\Delta x)^{2} \sum_{k=1}^{n} k=n\left(a \frac{b-a}{n}\right)+\left(\frac{b-a}{n}\right)^{2}\left(\frac{n(n+1)}{2}\right) \\
& =a(b-a)+\frac{1}{2}(b-a)^{2} \frac{n+1}{n}
\end{aligned}
$$

Here we have used the fact that $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$. (See Problem 5.)
Now, as $n \rightarrow \infty,(n+1) / n=1+1 / n \rightarrow 1+0=1$. Hence, the limit of our approximating sums is

$$
a(b-a)+\frac{1}{2}(b-a)^{2}=(b-a)\left(a+\frac{b-a}{2}\right)=(b-a)\left(\frac{a+b}{2}\right)=\frac{1}{2}\left(b^{2}-a^{2}\right)
$$

Thus, $\int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right)$.
In the next chapter, we will find a method for calculating $\int_{a}^{b} f(x) d x$ that will avoid the kind of tedious computation used in this example.

Properties of the Definite Integral

$$
\begin{equation*}
\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \tag{23.3}
\end{equation*}
$$

This follows from the fact that an approximating $\operatorname{sum} \sum_{k=1}^{n} c f\left(x_{k}^{*}\right) \Delta_{k}$ 之 for $\int_{a}^{b} c f(x) d x$ is equal to c times the approximating sum $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{k} x$ for $\int_{a}^{b} f(x) d x$, and that the same relation holds for the corresponding limits.

$$
\begin{equation*}
\int_{a}^{b}-f(x) d x=-\int_{a}^{b} f(x) d x \tag{23.4}
\end{equation*}
$$

This is the special case of (23.3) when $c=-1$.

$$
\begin{equation*}
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \tag{23.5}
\end{equation*}
$$

This follows from the fact that an approximating sum $\sum_{k=1}^{n}\left(f\left(x_{k}^{*}\right)+g\left(x_{k}^{*}\right)\right) \Delta_{k} x$ for $\int_{a}^{b}(f(x)+g(x)) d x$ is equal to the $\operatorname{sum} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{k} x+\sum_{k=1}^{n} g\left(x_{k}^{*}\right) \Delta_{k} x$ of approximating sums for $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$.

$$
\begin{equation*}
\int_{a}^{b}(f(x)-g(x)) d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x \tag{23.6}
\end{equation*}
$$

Since $f(x)-\mathrm{g}(x)=f(x)+(-g(x)$, this follows from (23.5) and (23.4).
If $a<c<b$, then f is integrable on $[a, b]$ if and only if it is integrable on $[a, c]$ and $[c, b]$. Moreover, if f is integrable on $[a, b]$,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{c}^{a} f(x) d x+\int_{c}^{b} f(x) d x \tag{23.7}
\end{equation*}
$$

This is obvious when $f(x) \geq 0$ and we interpret the integrals as areas. The general result follows from looking at the corresponding approximating sums, although the case where one of the subintervals of $[a, b]$ contains c requires some extra thought.

We have defined $\int_{a}^{b} f(x) d x$ only when $a<b$. We can extend the definition to all possible cases as follows:
(i) $\int_{a}^{a} f(x) d x=0$
(ii) $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$ when $a<b$

In particular, we always have:

$$
\begin{equation*}
\int_{c}^{d} f(x) d x=-\int_{d}^{c} f(x) d x \text { for any } c \text { and } d \tag{23.8}
\end{equation*}
$$

It can readily be verified that the laws (23.2)-(23.6), the equation in (23.7), and the result of Example 23.3 all remain valid for arbitrary upper and lower limits in the integrals.

SOLVED PROBLEMS

1. Assume $f(x) \leq 0$ for all x in $[a, b]$. Let A be the area between the graph of f and the x axis, from $x=a$ to $x=b$. (See Fig. 23-5.) Show that $\int_{c}^{b} f(x) d x=-A$.

Fig. 23-5

Let B be the area between the graph of $-f$ and the x axis, from $x=a$ to $x=b$. By symmetry, $B=A$. But, $\int_{a}^{b} f(x) d x=-\int_{a}^{b}-f(x) d x$ by (23.4).

Since $\quad \int_{a}^{b}-f(x) d x=B, \quad \int_{a}^{b} f(x) d x=-B=-A$
2. Consider a function f that, between a and b, assumes both positive and negative values. For example, let its graph be as in Fig. 23-6. Then $\int_{a}^{b} f(x) d x$ is the difference between the sum of the areas above the x axis and below the graph and the sum of the areas below the x axis and above the graph. In the case of the graph shown in Fig. 23-6,

$$
\int_{a}^{b} f(x) d x=\left(A_{1}+A_{3}+A_{5}\right)-\left(A_{2}+A_{4}\right)
$$

Fig. 23-6

To see this, apply (23.7) and Problem 1:

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c_{1}} f(x) d x+\int_{c_{1}}^{c_{2}} f(x) d x+\int_{c_{2}}^{c_{3}} f(x) d x+\int_{c_{3}}^{c_{4}} f(x) d x+\int_{c_{4}}^{b} f(x) d x=A_{1}-A_{2}+A_{3}-A_{4}+A_{5}
$$

3. Assume that f and g are integrable on $[a, b]$. Prove:
(a) If $f(x) \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.
(b) If $f(x) \leq g(x)$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
(c) If $m \leq f(x) \leq M$ for all x in $[a, b]$, then $m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)$.
(a) Since every approximating sum $\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{k} x \geq 0$, it follows that

$$
\int_{a}^{b} f(x) d x \geq 0
$$

(b) $g(x)-f(x) \geq 0$ on $[a, b]$. So, by (a), $\int_{a}^{b}(g(x)-f(x)) d x \geq 0$. By (23.6), $\int_{a}^{b} g(x) d x-\int_{a}^{b} f(x) d x \geq 0$. Hence,

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

(c) By (b), $\int_{a}^{b} m d x \leq \int_{a}^{b} f(x) \leq \int_{a}^{b} M d x$. But, by (23.2) and (23.3), $\int_{a}^{b} m d x=m \int_{a}^{b} 1 d x=m(b-a)$ and $\int_{a}^{b} M d x=M \int_{a}^{b} 1 d x=M(b-a)$. Hence,

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

4. Evaluate $\int_{0}^{1} x^{2} d x$.

This is the area under the parabola $y=x^{2}$ from $x=0$ to $x=1$. Divide [0,1] into n equal subintervals. Thus, each $\Delta_{k} x=1 / n$. In the k th subinterval $\left[\frac{k-1}{n}, \frac{k}{n}\right]$, let x_{k}^{*} be the right endpoint k / n. Thus, the approximating sum (23.1) is

$$
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{k} x=\sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2}\left(\frac{1}{n}\right)=\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} .
$$

Now, $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}($ see Problem 12).
Hence,

$$
\begin{gathered}
\sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta_{k} x=\frac{1}{n^{3}} \frac{n(n+1)(2 n+1)}{6}=\frac{1}{6}\left(\frac{n+1}{n}\right)\left(\frac{2 n+1}{n}\right) \\
=\frac{1}{6}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)
\end{gathered}
$$

So, the approximating sums approach $\frac{1}{6}(1+0)(2+0)=\frac{1}{3}$ as $n \rightarrow \infty$. Therefore, $\int_{0}^{1} x^{2} d x=\frac{1}{3}$. In the next chapter, we will derive a simpler method for obtaining the same result.
5. Prove the formula $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ used in Example 23.3.

Reversing the order of the summands in

$$
\sum_{k=1}^{n} k=1+2+3+\cdots+(n-2)+(n-1)+n
$$

we get

$$
\sum_{k=1}^{n} k=n+(n-1)+(n-2)+\cdots+3+2+1 .
$$

Adding the two equations yields

$$
2 \sum_{k=1}^{n} k=(n+1)+(n+1)+(n+1)+\cdots+(n+1)+(n+1)+(n+1)=n(n+1)
$$

since the sum in each column is $n+1$. Hence, dividing by 2 , we get

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} .
$$

SUPPLEMENTARY PROBLEMS

6. Calculate: (a) $\int_{1}^{4} 3 d x$; (b) $\int_{-2}^{5} x d x$; (c) $\int_{0}^{1} 3 x^{2} d x$.

Ans.
(a) $3(4-1)=9$;
(b) $\frac{1}{2}\left(5^{2}-(-2)^{2}\right)=\frac{21}{2}$;
(c) $3\left(\frac{1}{3}\right)=1$
7. Find the area under the parabola $y=x^{2}-2 x+2$, above the x axis, and between $x=0$ and $x=1$.

Ans. $\quad \frac{1}{3}-2\left[\frac{1}{2}\left(1^{2}-0^{2}\right)\right]+2(1-0)=\frac{4}{3}$
8. Evaluate $\int_{2}^{6}(3 x+4) d x$.

Ans. $3\left(\left(\frac{1}{2}\right)\left(6^{2}-2^{2}\right)\right)+4(6-2)=64$
9. For the function f graphed in Fig. 23-7, express $\int_{0}^{3} f(x) d x$ in terms of the areas A_{1}, A_{2}, and A_{3}.

Ans. $\quad A_{1}-A_{2}+A_{3}$
10. Show that $3 \leq \int_{1}^{4} x^{3} d x \leq 192$. [Hint: Problem 3(c).]
11. Evaluate $\int_{0}^{1} \sqrt{1-x^{2} d x}$. (Hint: Find the corresponding area by geometric reasoning.)

Ans. $\pi / 4$

Fig. 23-7
12. Use mathematical induction to prove the formula $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ of Problem 4. (Verify it when $n=1$, and then show that, if it holds for n, then it holds for $n+1$.)
13. Evaluate (a) $\sum_{j=0}^{2} \cos \frac{j \pi}{6}$;
(b) $\sum_{j=0}^{2}(4 j+1)$;
(c) $\sum_{j=1}^{100} 4 j$;
(d) $\sum_{j=1}^{18} 2 j^{2}$.

Ans.
(a) $\frac{3+\sqrt{3}}{2}$;
(b) 15;
(c) 20200;
(d) 4218
14. Let the graph of f between $x=1$ and $x=6$ be as in Fig. 23-8. Evaluate $\int_{1}^{6} f(x) d x$.

Ans. $\quad 1-3+\frac{1}{2}=-\frac{3}{2}$

Fig. 23-8
15. If f is continuous on $[a, b], f(x) \geq 0$ on $[a, b]$, and $f\left(x_{0}\right)>0$ for some x_{0} in $[a, b]$, prove that $\int_{a}^{b} f(x) d x>0$. [Hint: By the continuity of $f, f(x)>\frac{1}{2} f\left(x_{0}\right)>0$ for all x in some subinterval $[c, d]$. Use (23.7) and Problem 3(a, c).]

[^0]: ${ }^{\dagger}$ The definite integral is also called the Riemann integral of f on $[a, b]$, and the sum (23.1) is called a Riemann sum for f on $[a, b]$.

