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The Definite Integral. 
Area Under a Curve

Sigma Notation
The Greek capital letter Σ denotes repeated addition.

EXAMPLE 23.1:

(a) j
j=
∑ = + + + + =

1

5

1 2 3 4 5 15.

(b) ( )2 1 1 3 5 7
0

3

i
i

+ = + + +
=
∑ .

(c) i
i

2 2 2 2

2

10

2 3 10= + + ⋅⋅ ⋅ +
=
∑ ( )  

(d) cos cos cos cos cosj
j

π π π π π
=

∑ = + + +
1

4

2 3 4  

In general, if f is a function defined on the integers, and if n and k are integers such that n ≥ k, then:

 f j f k f k f n
j k

n

( ) ( ) ( ) ( )
=
∑ = + + + ⋅⋅ ⋅ +1  

Area Under a Curve
Assume that f is a function such that f (x) ≥ 0 for all x in a closed interval [a, b]. Its graph is a curve that 
lies on or above the x axis. (See Fig. 23-1.) We have an intuitive idea of the area A of the region � under 
the graph, above the x axis, and between the vertical lines x = a and x = b. We shall specify a method for 
evaluating A.

Choose points x1, x2, . . ., xn−1 between a and b. Let x0 = a and xn = b. Thus (see Fig. 23-2),

 a x x x x x bn n= < < < ⋅⋅ ⋅ < < =−0 1 2 1

The interval [a, b] is divided into n subintervals [x0, x1], [x1, x2], . . ., [xn−1, xn]. Denote the lengths of these 
subintervals by Δ1x, Δ2x, . . ., Δnx. Hence, if 1 ≤ k ≤ n,

 Δk k kx x x= − −1  

CHAPTER 23
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CHAPTER 23  The Definite Integral. Area Under a Curve 191

Fig. 23-1

Fig. 23-2

Draw vertical line segments x = xk from the x axis up to the graph. This divides the region � into n strips. 
Letting ΔkA denote the area of the kth strip, we obtain

 A Ak
k

n

=
=

∑ Δ
1

 

We can approximate the area Δk  A in the following manner. Select any point xk* in the kth subinterval 
[xk−1, xk]. Draw the vertical line segment from the point xk* on the x axis up to the graph (see the dashed lines 
in Fig. 23-3); the length of this segment is f xk( )* . The rectangle with base Δkx and height f xk( )*  has area 
f xk( )*  Δkx, which is approximately the area Δk  A of the kth strip. Hence, the total area A under the curve is 
approximately the sum

 f x x f x x f x x f xk k
k

n

n( ) ( ) ( ) ( )* * *  *Δ Δ Δ
=

∑ = + + +
1

1 1 2 2 ΔΔnx   (23.1)
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a b x

y

x1
* x2

* x3
* x4

* xn
*…

Fig. 23-3

The approximation becomes better and better as we divide the interval [a, b] into more and more subin-
tervals and as we make the lengths of these subintervals smaller and smaller. If successive approximations 
can be made as close as one wishes to a specific number, then that number will be denoted by

 f x dx
a

b
( )∫  

and will be called the definite integral of f from a to b. Such a number does not exist in all cases, but it does 

exist, for example, when the function f is continuous on [a, b]. When f x dx
a

b
( )∫  exists, its value is equal to 

the area A under the curve.†

In the notation f x dx
a

b
( )∫ , b is called the upper limit and a is called the lower limit of the definite 

integral.
For any (not necessarily nonnegative) function f on [a, b], sums of the form (23.1) can be defined, without 

using the notion of area. If there is a number to which these sums can be made as close as we wish, as n gets 

larger and larger and as the maximum of the lengths Δk x approaches 0, then that number is denoted f x dx
a

b
( )∫  

and is called the definite integral of f on [a, b]. When f x dx
a

b
( )∫  exists, we say that f is integrable on [a, b].

We shall assume without proof that f x dx
a

b
( )∫  exists for every function f that is continuous on [a, b]. To 

evaluate f x dx
a

b
( )∫ , it suffices to find the limit of a sequence of sums (23.1) for which the number n of sub-

intervals approaches infinity and the maximum lengths of the subintervals approach 0.

EXAMPLE 23.2: Let us show that

 1 dx b a
a

b

∫ = −   (23.2)

Let a x x x x x bn n= < < < < < =−0 1 2 1  be a subdivision of [a, b]. Then a corresponding sum (23.1) is

 
f x x x

b a

k k
k

n

k
k

n

( )* Δ Δ
= =

∑ ∑=

= −

1 1  (because f (x) = 1 for all x)

Since every approximating sum is b − a , 1 dx b a
a

b

∫ = − .

† The definite integral is also called the Riemann integral of f on [a, b], and the sum (23.1) is called a Riemann sum for f on [a, b].
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CHAPTER 23  The Definite Integral. Area Under a Curve 193

An alternative argument would use the fact that the region under the graph of the constant function 1 and 
above the x axis, between x = a and x = b, is a rectangle with base b − a and height 1 (see Fig. 23-4). So, 

1 dx
a

b

∫ , being the area of that rectangle, is b − a.

Fig. 23-4

EXAMPLE 23.3: Let us calculate x dx
a

b

∫ .

Let a x x x x x bn n= < < < < < =−0 1 2 1  be a subdivision of [a, b] into n equal subintervals. Thus, each Δkx = 
(b − a)/n. Denote (b − a)/n by Δx. Then x1 = a + Δx, x2 = a + 2Δx, and, in general, xk = a + k Δx. In the kth subinterval, 
[xk−1, xk], choose xk* to be the right-hand endpoint xk. Then the approximating sum (23.1) has the form

 

f x x x x a k x xk k k k
k

n

k

n

( ) ( )

(

* *Δ Δ Δ Δ
= =

∑ ∑= = +

=

1 1

aa x k x a x k x

n a

k

n

k

n

k

n

Δ Δ Δ Δ

Δ

+ = +

=

= = =
∑ ∑ ∑( ) ) ( )

(

2

1 1

2

1

xx x k n a b a
n

b a
n

n n

a

k

n

) ( ) ( )+ = −( ) + −( ) +( )
=

=
∑Δ 2

1

2 1
2

(( ) ( )b a b a n
n

− + − +1
2

12

 

Here we have used the fact that k n n

k

n

= +
=

∑ ( )1
2

1

. (See Problem 5.)

Now, as n → ∞, (n + 1)/n = 1 + l/n → 1 + 0 = 1. Hence, the limit of our approximating sums is

 a b a b a b a a b a b a a b( ) ( ) ( ) ( )− + − = − + −( ) = − +( ) =1
2

2 1

2 2 22
2 2( )b a−  

Thus, x dx b a
a

b

∫ = −1
2

2 2( ).

In the next chapter, we will find a method for calculating f x dx
a

b
( )∫  that will avoid the kind of tedious 

computation used in this example.

Properties of the Definite Integral

 c f x dx c f x dx
a

b

a

b
( ) ( )∫ ∫=   (23.3)

This follows from the fact that an approximating sum cf x xk k
k

n

( * ) Δ
=

∑
1

 for cf x dx
a

b
( )∫  is equal to c times the ap-

proximating sum f x xk

k

n

k( )*

=
∑

1

Δ  for f x dx
a

b
( )∫ , and that the same relation holds for the corresponding limits.

 − = −∫∫ f x dx f x dx
a

b

a

b
( ) ( )   (23.4)

This is the special case of (23.3) when c = −1.
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 ( ( ) ( )) ( ) ( )f x g x dx f x dx g x dx
a

b

a

b

a

b
+ = +∫ ∫ ∫   (23.5)

This follows from the fact that an approximating sum ( ( ) ( ))* *f x g x xk k k
k

n

+
=

∑ Δ
1

 for ( ( ) ( ))f x g x dx
a

b
+∫  is equal 

to the sum f x x g x xk k
k

n

k
k

n

k( ) ( )* *Δ Δ
= =

∑ ∑+
1 1

 of approximating sums for f x dx
a

b
( )∫  and g x dx

a

b
( )∫ .

 ( ( ) ( )) ( ) ( )f x g x dx f x dx g x dx
a

b

a

b

a

b
− = −∫ ∫ ∫   (23.6)

Since f (x) − g(x) = f (x) + (−g(x), this follows from (23.5) and (23.4).

If a < c < b, then f is integrable on [a, b] if and only if it is integrable on [a, c] and [c, b]. Moreover, if f 
is integrable on [a, b],

 f x dx f x dx f x dx
a

b

c

a

c

b
( ) ( ) ( )∫ ∫ ∫= +  (23.7)

This is obvious when f (x) ≥ 0 and we interpret the integrals as areas. The general result follows from looking 
at the corresponding approximating sums, although the case where one of the subintervals of [a, b] contains 
c requires some extra thought.

We have defined f x dx
a

b
( )∫ only when a < b. We can extend the definition to all possible cases as 

follows:

   (i) f x dx
a

a
( )∫ = 0  

(ii) f x dx f x dx
a

b

b

a
( ) ( )= −∫∫  when a < b

In particular, we always have:

 f x dx f x dx
d

c

c

d
( ) ( )= −∫∫  for any c and d (23.8)

It can readily be verified that the laws (23.2)–(23.6), the equation in (23.7), and the result of Example 23.3 
all remain valid for arbitrary upper and lower limits in the integrals.

SOLVED PROBLEMS

1. Assume f (x) ≤ 0 for all x in [a, b]. Let A be the area between the graph of f and the x axis, from x = a to x = b. 

(See Fig. 23-5.) Show that f x dx A
c

b
( ) = −∫ .

Fig. 23-5
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Let B be the area between the graph of −f and the x axis, from x = a to x = b. By symmetry, B = A. But, 

f x dx f x dx
a

b

a

b
( ) ( )= − −∫∫  by (23.4).

Since − =∫ f x dx B
a

b
( ) , f x dx B A

a

b
( ) = − = −∫  

2. Consider a function f that, between a and b, assumes both positive and negative values. For example, let its graph 

be as in Fig. 23-6. Then f x dx
a

b
( )∫  is the difference between the sum of the areas above the x axis and below the 

graph and the sum of the areas below the x axis and above the graph. In the case of the graph shown in Fig. 23-6,

 f x dx A A A A A
a

b
( ) ( ) ( )= + + − +∫ 1 3 5 2 4  

Fig. 23-6

To see this, apply (23.7) and Problem 1:

 f x dx f x dx f x dx f x dx f x
a

b

a

c

c

c
( ) ( ) ( ) ( ) (∫ ∫ ∫= + + +1

2

3

)) ( )dx f x dx A A A A A
c

c

c

b

c

c
+ = − + − +∫ ∫∫

3

4

41

2

1 2 3 4 5  

3. Assume that f and g are integrable on [a, b]. Prove:

(a) If f (x) ≥ 0 on [a, b], then f x dx
a

b
( ) ≥∫ 0.

(b) If f (x) ≤ g(x) on [a, b], then f x dx g x dx
a

b

a

b
( ) ( )∫ ∫≤ .

(c) If m ≤ f (x) ≤ M for all x in [a, b], then m b a f x dx M b a
a

b
( ) ( ) ( )− ≤ ≤ −∫ .

(a) Since every approximating sum f x xk k
k

n

( )* Δ ≥
=

∑ 0
1

, it follows that

 f x dx
a

b
( ) ≥∫ 0  

(b) g(x) − f (x) ≥ 0 on [a, b]. So, by (a), ( ( ) ( ))g x f x dx
a

b
− ≥∫ 0. By (23.6), g x dx f x dx

a

b

a

b
( ) ( )∫ ∫− ≥ 0. Hence,

 f x dx g x dx
a

b

a

b
( ) ( )∫ ∫≤  

(c) By (b), m dx f x M dx
a

b

a

b

a

b
≤ ≤ ∫∫∫ ( ) . But, by (23.2) and (23.3), m dx m dx m b a

a

b

a

b
= = −∫ ∫ 1 ( ) and 

M dx M dx M b a
a

b

a

b
= = −∫∫ 1 ( ). Hence,

 m b a f x dx M b a
a

b
( ) ( ) ( )− ≤ ≤ −∫  
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4. Evaluate x dx2

0

1

∫ .

This is the area under the parabola y = x2 from x = 0 to x = 1. Divide [0, 1] into n equal subintervals. Thus, 

each Δkx = 1/n. In the kth subinterval k
n

k
n

−⎡
⎣⎢

⎤
⎦⎥

1 , , let xk
* be the right endpoint k/n. Thus, the approximating sum 

(23.1) is

 f x x k
n n n

kk k
k

n

k

n

k

n

( ) .* Δ
= = =

∑ ∑ ∑= ( ) ( ) =
1

2

1
3

2

1

1 1  

Now, k n n n

k

n
2

1

1 2 1
6

=
∑ = + +( )( )  (see Problem 12).

Hence,

 

f x x
n

n n n n
n

n
k k

k

n

( ) ( )( )* Δ
=

∑ = + + = +( ) +
1

3
1 1 2 1

6
1
6

1 2 11

1
6 1 1 2 1

n

n n

( )
= +( ) +( )

 

 So, the approximating sums approach 1
6

1
31 0 2 0( )( )+ + =  as n → ∞. Therefore, x dx2

0

1
1
3∫ = . In the next chapter, we 

will derive a simpler method for obtaining the same result.

5. Prove the formula k n n

k

n

=
∑ = +

1

1
2

( )  used in Example 23.3.

Reversing the order of the summands in

 k n n n
k

n

=
∑ = + + + ⋅ ⋅ ⋅ + − + − +

1

1 2 3 2 1( ) ( )  

we get

 k n n n
k

n

=
∑ = + − + − + ⋅ ⋅ ⋅ + + +

1

1 2 3 2 1( ) ( ) . 

Adding the two equations yields

 2 1 1 1 1 1
1

k n n n n n
k

n

=
∑ = + + + + + + ⋅ ⋅ ⋅ + + + + +( ) ( ) ( ) ( ) ( ) (nn n n+ = +1 1) ( )  

since the sum in each column is n + 1. Hence, dividing by 2, we get

 k n n

k

n

=
∑ = +

1

1
2

( ) .  

SUPPLEMENTARY PROBLEMS

6. Calculate: (a)  3
1

4
dx∫ ;  (b)  x dx

−∫ 2

5
;  (c)  3 2

0

1
x dx∫ .

Ans. (a)  3(4 − 1) = 9;  (b)  1
2

2 2 21
25 2( ( ) )− − = ;  (c)  3 11

3( ) =  

7. Find the area under the parabola y = x2 − 2x + 2, above the x axis, and between x = 0 and x = 1.

Ans. 1
3

1
2

2 2 4
32 1 0 2 1 0− − + − =[ ( )] ( )  

8. Evaluate ( )3 4
2

6
x dx+∫ .

Ans. 3 6 2 4 6 2 641
2

2 2(( )( )) ( )− + − =  
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9. For the function f graphed in Fig. 23-7, express f x dx( )
0

3

∫  in terms of the areas A1, A2, and A3.

Ans. A1 − A2 + A3

10. Show that 3 1923

1

4
≤ ≤∫ x dx . [Hint: Problem 3(c).]

11. Evaluate 1 2

0

1
−∫ x dx. (Hint: Find the corresponding area by geometric reasoning.)

Ans. π/4

A1

y

A2

A3

30
x

Fig. 23-7

12. Use mathematical induction to prove the formula k n n n

k

n
2

1

1 2 1
6

=
∑ = + +( )( )  of Problem 4. (Verify it when n = 1, and 

then show that, if it holds for n, then it holds for n + 1.)

13. Evaluate (a)  cos
j

j

π
6

0

2

=
∑ ;  (b)  ( )4 1

0

2

j
j

+
=
∑ ;  (c)  4

1

100

j
j=
∑ ;  (d)  2 2

1

18

j
j=
∑ .

Ans. (a)  3 3
2

+ ;  (b)  15;  (c)  20200;  (d)  4218

14. Let the graph of f between x = 1 and x = 6 be as in Fig. 23-8. Evaluate f x dx( )
1

6

∫ .

Ans. 1 3 1
2

3
2− + = −  

Fig. 23-8

15. If f is continuous on [a, b], f (x) ≥ 0 on [a, b], and f (x0) > 0 for some x0 in [a, b], prove that f x dx
a

b
( )∫ > 0.

 [Hint: By the continuity of f, f x f x( ) ( )> >1
2 0 0 for all x in some subinterval [c, d]. Use (23.7) and Problem 3(a, c).]
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