Law of the Mean. Increasing and Decreasing Functions

Relative Maximum and Minimum

A function f is said to have a relative maximum at x_{0} if $f\left(x_{0}\right) \geq f(x)$ for all x in some open interval containing x_{0} (and for which $f(x)$ is defined). In other words, the value of f at x_{0} is greater than or equal to all values of f at nearby points. Similarly, f is said to have a relative minimum at x_{0} if $f\left(x_{0}\right) \leq f(x)$ for all x in some open interval containing x_{0} (and for which $f(x)$ is defined). In other words, the value of f at x_{0} is less than or equal to all values of f at nearby points. By a relative extremum of f we mean either a relative maximum or a relative minimum of f.

Theorem 13.1: If f has a relative extremum at a point x_{0} at which $f^{\prime}\left(x_{0}\right)$ is defined, then $f^{\prime}\left(x_{0}\right)=0$.
Thus, if f is differentiable at a point at which it has a relative extremum, then the graph of f has a horizontal tangent line at that point. In Fig. 13-1, there are horizontal tangent lines at the points A and B where f attains a relative maximum value and a relative minimum value, respectively. See Problem 5 for a proof of Theorem 13.1.

Fig. 13-1

Theorem 13.2 (Rolle's Theorem): Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Assume that $f(a)=f(b)=0$. Then $f^{\prime}\left(x_{0}\right)=0$ for at least one point x_{0} in (a, b).

This means that, if the graph of a continuous function intersects the x axis at $x=a$ and $x=b$, and the function is differentiable between a and b, then there is at least one point on the graph between a and b where the tangent line is horizontal. See Fig. 13-2, where there is one such point. For a proof of Rolle's Theorem, see Problem 6.

Fig. 13-2
Corollary 13.3 (Generalized Rolle's Theorem): Let g be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Assume that $g(a)=g(b)$. Then $g^{\prime}\left(x_{0}\right)=0$ for at least one point x_{0} in (a, b).

See Fig. 13-3 for an example in which there is exactly one such point. Note that Corollary 13.3 follows from Rolle's Theorem if we let $f(x)=g(x)-g(a)$.

Fig. 13-3
Theorem 13.4 (Law of the Mean) ${ }^{\dagger}$: Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Then there is at least one point x_{0} in (a, b) for which

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}\left(x_{0}\right)
$$

See Fig. 13-4. For a proof, see Problem 7. Geometrically speaking, the conclusion says that there is some point inside the interval where the slope $f^{\prime}\left(x_{0}\right)$ of the tangent line is equal to the slope $(f(b)-f(a)) /(b-a)$ of the line $P_{1} P_{2}$ connecting the points $(a, f(a))$ and $(b, f(b))$ of the graph. At such a point, the tangent line is parallel to $P_{1} P_{2}$, since their slopes are equal.

Fig. 13-4

[^0]Theorem 13.5 (Extended Law of the Mean): Assume that $f(x)$ and $g(x)$ are continuous on $[a, b]$, and differentiable on (a, b). Assume also that $g^{\prime}(x) \neq 0$ for all x in (a, b). Then there exists at least one point x_{0} in (a, b) for which

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}
$$

For a proof, see Problem 13. Note that the Law of the Mean is the special case when $g(x)=x$.
Theorem 13.6 (Higher-Order Law of the Mean): If f and its first $n-1$ derivatives are continuous on $[a, b]$ and $f^{(n)}(x)$ exists on (a, b), then there is at least one x_{0} in (a, b) such that

$$
\begin{align*}
f(b)=f(a) & +\frac{f^{\prime}(a)}{1!}(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots \\
& +\frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1}+\frac{f^{(n)}\left(x_{0}\right)}{n!}(b-a)^{n} \tag{1}
\end{align*}
$$

(For a proof, see Problem 14.)
When b is replaced by x, formula (1) becomes

$$
\begin{align*}
f(x)=f(a) & +\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots \\
& +\frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}+\frac{f^{(n)}\left(x_{0}\right)}{n!}(x-a)^{n} \tag{2}
\end{align*}
$$

for some x_{0} between a and x.
In the special case when $a=0$, formula (2) becomes

$$
\begin{align*}
f(x)=f(0) & +\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots \\
& +\frac{f^{(n-1)}(0)}{(n-1)!} x^{n-1}+\frac{f^{(n)}\left(x_{0}\right)}{n!} x^{n} \tag{3}
\end{align*}
$$

for some x_{0} between 0 and x.

Increasing and Decreasing Functions

A function f is said to be increasing on an interval if $u<v$ implies $f(u)<f(v)$ for all u and v in the interval. Similarly, f is said to be decreasing on an interval if $u<v$ implies $f(u)>f(v)$ for all u and v in the interval.

Theorem 13.7: (a) If f^{\prime} is positive on an interval, then f is increasing on that interval. (b) If f^{\prime} is negative on an interval, then f is decreasing on that interval.

For a proof, see Problem 9.

SOLVED PROBLEMS

1. Find the value of x_{0} prescribed in Rolle's Theorem for $f(x)=x^{3}-12 x$ on the interval $0 \leq x \leq 2 \sqrt{3}$. Note that $f(0)=f(2 \sqrt{3})=0$. If $f^{\prime}(x)=3 x^{2}-12=0$, then $x= \pm 2$. Then $x_{0}=2$ is the prescribed value.
2. Does Rolle's Theorem apply to the functions (a) $f(x)=\frac{x^{2}-4 x}{x-2}$, and (b) $f(x)=\frac{x^{2}-4 x}{x+2}$ on the interval (0,4)?
(a) $f(x)=0$ when $x=0$ or $x=4$. Since f has a discontinuity at $x=2$, a point on $[0,4]$, the theorem does not apply.
(b) $f(x)=0$ when $x=0$ or $x=4$. f has a discontinuity at $x=-2$, a point not on [0, 4]. In addition, $f^{\prime}(x)=\left(x^{2}+4 x-8\right) /(x+2)^{2}$ exists everywhere except at $x=-2$. So, the theorem applies and $x_{0}=2(\sqrt{3}-1)$, the positive root of $x^{2}+4 x-8=0$.
3. Find the value of x_{0} prescribed by the law of the mean when $f(x)=3 x^{2}+4 x-3$ and $a=1, b=3$.

$$
f(a)=f(1)=4, f(b)=f(3)=36, f^{\prime}\left(x_{0}\right)=6 x_{0}+4, \text { and } b-a=2 . \text { So, } 6 x_{0}+4=\frac{36-4}{2}=16 . \text { Then } x_{0}=2 .
$$

4. Find a value x_{0} prescribed by the extended law of the mean when $f(x)=3 x+2$ and $g(x)=x^{2}+1$, on $[1,4]$.

We have to find x_{0} so that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f(4)-f(1)}{g(4)-g(1)}=\frac{14-5}{17-2}=\frac{3}{5}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}=\frac{3}{2 x_{0}}
$$

Then $x_{0}=\frac{5}{2}$.
5. Prove Theorem 13.1: If f has a relative extremum at a point x_{0} at which $f^{\prime}\left(x_{0}\right)$ is defined, then $f^{\prime}\left(x_{0}\right)=0$.

Consider the case of a relative maximum. Since f has a relative maximum at x_{0}, then, for sufficiently small $|\Delta x|, f\left(x_{0}+\Delta x\right)<f\left(x_{0}\right)$, and so $f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)<0$. Thus, when $\Delta x<0, \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}>0$.
So,

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0^{-}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \geq 0
\end{aligned}
$$

When $\Delta x>0, \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}<0$. Hence,

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0^{+}} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x} \leq 0
\end{aligned}
$$

Since $f^{\prime}\left(x_{0}\right) \geq 0$ and $f^{\prime}\left(x_{0}\right) \leq 0$, it follows that $f^{\prime}\left(x_{0}\right)=0$.
6. Prove Rolle's Theorem (Theorem 13.2): If f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b), and if $f(a)=f(b)=0$, then $f^{\prime}\left(x_{0}\right)=0$ for some point x_{0} in (a, b).

If $f(x)=0$ throughout $[a, b]$, then $f^{\prime}(x)=0$ for all x in (a, b). On the other hand, if $f(x)$ is positive (negative) somewhere in (a, b), then, by the Extreme Value Theorem (Theorem 8.7), f has a maximum (minimum) value at some point x_{0} on $[a, b]$. That maximum (minimum) value must be positive (negative), and, therefore, x_{0} lies on (a, b), since $f(a)=f(b)=0$. Hence, f has a relative maximum (minimum) at x_{0}. By Theorem 13.1, $f^{\prime}\left(x_{0}\right)=0$.
7. Prove the Law of the Mean (Theorem 13.4): Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). Then there is at least one point x_{0} in (a, b) for which $(f(b)-f(a)) /(b-a)=f^{\prime}\left(x_{0}\right)$.

Let $F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)$.
Then $F(a)=0=F(b)$. So, Rolle's Theorem applies to F on $[a, b]$. Hence, for some x_{0} in $(a, b), F^{\prime}\left(x_{0}\right)=0$.
But $F^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}$. Thus, $f^{\prime}\left(x_{0}\right)-\frac{f(b)-f(a)}{b-a}=0$.
8. Show that, if g is increasing on an interval, then $-g$ is decreasing on that interval.

Assume $u<v$. Then $g(u)<g(v)$. Hence, $-g(u)>-g(v)$.
9. Prove Theorem 13.7: (a) If f^{\prime} is positive on an interval, then f is increasing on that interval, (b) If f^{\prime} is negative on an interval, then f is decreasing on that interval.
(a) Let a and b be any two points on the interval with $a<b$. By the Law of the Mean, $(f(b)-f(a)) /(b-a)=$ $f^{\prime}\left(x_{0}\right)$ for some point x_{0} in (a, b). Since x_{0} is in the interval, $f^{\prime}\left(x_{0}\right)>0$. Thus, $(f(b)-f(a)) /(b-a)>0$. But, $a<b$ and, therefore, $b-a>0$. Hence, $f(b)-f(a)>0$. So, $f(a)<f(b)$.
(b) Let $g=-f$. So, g^{\prime} is positive on the interval. By part (a), g is increasing on the interval. So, f is decreasing on the interval.
10. Show that $f(x)=x^{5}+20 x-6$ is an increasing function for all values of x.
$f^{\prime}(x)=5 x^{4}+20>0$ for all x. Hence, by Theorem 13.7(a), f is increasing everywhere.
11. Show that $f(x)=1-x^{3}-x^{7}$ is a decreasing function for all values of x.

$$
f^{\prime}(x)=-3 x^{2}-7 x^{6}<0 \text { for all } x \neq 0 \text {. Hence, by Theorem 13.7(b), } f \text { is decreasing on any interval not }
$$ containing 0 . Note that, if $x<0, f(x)>1=f(0)$, and, if $x>0, f(0)=1>f(x)$. So, f is decreasing for all real numbers.

12. Show that $f(x)=4 x^{3}+x-3=0$ has exactly one real solution.
$f(0)=-3$ and $f(1)=2$. So, the intermediate value theorem tells us that $f(x)=0$ has a solution in $(0,1)$. Since $f^{\prime}(x)=12 x^{2}+1>0, f$ is an increasing function. Therefore, there cannot be two values of x for which $f(x)=0$.
13. Prove the Extended Law of the Mean (Theorem 13.5): If $f(x)$ and $g(x)$ are continuous on $[a, b]$, and differentiable on (a, b), and $g^{\prime}(x) \neq 0$ for all x in (a, b), then there exists at least one point x_{0} in (a, b) for which $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}$.

Suppose that $g(b)=g(a)$. Then, by the generalized Rolle's Theorem, $g^{\prime}(x)=0$ for some x in (a, b), contradicting our hypothesis. Hence, $g(b) \neq g(a)$.

Let $F(x)=f(x)-f(b)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(b))$.

Then

$$
F(a)=0=F(b) \quad \text { and } \quad F^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(x)
$$

By Rolle's Theorem, there exists x_{0} in (a, b) for which $f^{\prime}\left(x_{0}\right)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}\left(x_{0}\right)=0$.
14. Prove the Higher-Order Law of the Mean (Theorem 13.6): If f and its first $n-1$ derivatives are continuous on $[a, b]$ and $f^{(n)}(x)$ exists on (a, b), then there is at least one x_{0} in (a, b) such that

$$
\begin{equation*}
f(b)=f(a)+\frac{f^{\prime}(a)}{1!}(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{(n-1)}+\frac{f^{(n)}\left(x_{0}\right)}{n!}(b-a)^{n} \tag{1}
\end{equation*}
$$

Let a constant K be defined by

$$
\begin{equation*}
f(b)=f(a)+\frac{f^{\prime}(a)}{1!}(b-a)+\frac{f^{\prime \prime}(a)}{2!}(b-a)^{2}+\cdots+\frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{(n-1)}+K(b-a)^{n} \tag{2}
\end{equation*}
$$

and consider

$$
F(x)=f(x)-f(b)+\frac{f^{\prime}(x)}{1!}(b-x)+\frac{f^{\prime \prime}(x)}{2!}(b-x)^{2}+\cdots+\frac{f^{(n-1)}(x)}{(n-1)!}(b-x)^{n-1}+K(b-x)^{n}
$$

Now $F(a)=0$ by (2), and $F(b)=0$. By Rolle's Theorem, there exists x_{0} in (a, b) such that

$$
\begin{aligned}
F^{\prime}\left(x_{0}\right)= & f^{\prime}\left(x_{0}\right)+\left[f^{\prime \prime}\left(x_{0}\right)\left(b-x_{0}\right)-f^{\prime}\left(x_{0}\right)\right]+\left[\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{2!}\left(b-x_{0}\right)^{2}-f^{\prime \prime}\left(x_{0}\right)\left(b-x_{0}\right)\right] \\
& +\cdots+\left[\frac{f^{(n)}\left(x_{0}\right)}{(n-1)!}\left(b-x_{0}\right)^{n-1}-\frac{f^{(n-1)}\left(x_{0}\right)}{(n-2)!}\left(b-x_{0}\right)^{n-2}\right]-K n\left(b-x_{0}\right)^{n-1} \\
= & \frac{f^{(n)}\left(x_{0}\right)}{(n-1)!}\left(b-x_{0}\right)^{n-1}-K n\left(b-x_{0}\right)^{n-1}=0
\end{aligned}
$$

Then $K=\frac{f^{(n)}\left(x_{0}\right)}{n!}$, and (2) becomes (1).
15. If $f^{\prime}(x)=0$ for all x on (a, b), then f is constant on (a, b).

Let u and v be any two points in (a, b) with $u<v$. By the Law of the Mean, there exists x_{0} in (u, v) for which $\frac{f(v)-f(u)}{v-u}=f^{\prime}\left(x_{0}\right)$. By hypothesis, $f^{\prime}\left(x_{0}\right)=0$. Hence, $f(v)-f(u)=0$, and, therefore, $f(v)=f(u)$.

SUPPLEMENTARY PROBLEMS

16. If $f(x)=x^{2}-4 x+3$ on [1,3], find a value prescribed by Rolle's Theorem.

Ans. $\quad x_{0}=2$
17. Find a value prescribed by the Law of the Mean, given:
(a) $y=x^{3}$ on $[0,6]$
Ans. $\quad x_{0}=2 \sqrt{3}$
(b) $y=a x^{2}+b x+c$ on $\left[x_{1}, x_{2}\right]$
Ans. $\quad x_{0}=\frac{1}{2}\left(x_{1}+x_{2}\right)$
18. If $f^{\prime}(x)=g^{\prime}(x)$ for all x in (a, b), prove that there exists a constant K such that $f(x)=g(x)+K$ for all x in (a, b). (Hint: $D_{x}(f(x)-g(x))=0$ in (a, b). By Problem 15, there is a constant K such that $f(x)-g(x)=K$ in (a, b).)
19. Find a value x_{0} precribed by the extended law of the mean when $f(x)=x^{2}+2 x-3, g(x)=x^{2}-4 x+6$ on the interval $[0,1]$.

Ans. $\quad \frac{1}{2}$
20. Show that $x^{3}+p x+q=0$ has: (a) one real root if $p>0$, and (b) three real roots if $4 p^{3}+27 q^{2}<0$.
21. Show that $f(x)=\frac{a x+b}{c x+d}$ has neither a relative maximum nor a relative minimum. (Hint: Use Theorem 13.1.)
22. Show that $f(x)=5 x^{3}+11 x-20=0$ has exactly one real solution.
23. (a) Where are the following functions (i)-(vii) increasing and where are they decreasing? Sketch the graphs.
(b) (GC) Check your answers to (a) by means of a graphing calculator.
(i) $f(x)=3 x+5$
(ii) $f(x)=-7 x+20$
(iii) $f(x)=x^{2}+6 x-11$

Ans. Increasing everywhere
Ans. Decreasing everywhere
Ans. Decreasing on $(-\infty,-3)$, increasing on $(-3,+\infty)$
(iv) $f(x)=5+8 x-x^{2}$
Ans. Increasing on $(-\infty, 4)$, decreasing on $(4,+\infty)$
(v) $f(x)=\sqrt{4-x^{2}}$
(vi) $f(x)=|x-2|+3$
(vii) $f(x)=\frac{x}{x^{2}-4}$
Ans. Increasing on $(-2,0)$, decreasing on $(0,2)$
Ans. Decreasing on $(-\infty, 2)$, increasing on $(2,+\infty)$
Ans. Decreasing on $(-\infty,-2),(-2,2),(2,+\infty)$; never increasing
24. (GC) Use a graphing calculator to estimate the intervals on which $f(x)=x^{5}+2 x^{3}-6 x+1$ is increasing, and the intervals on which it is decreasing.
25. For the following functions, determine whether Rolle's Theorem is applicable. If it is, find the prescribed values.
(a) $f(x)=x^{3 / 4}-2$ on $[-3,3] \quad$ Ans. No. Not differentiable at $x=0$.
(b) $f(x)=\left|x^{2}-4\right|$ on $[0,8]$

Ans. No. Not differentiable at $x=2$.
(c) $f(x)=\left|x^{2}-4\right|$ on $[0,1]$

Ans. No. $f(0) \neq f(1)$
(d) $f(x)=\frac{x^{2}-3 x-4}{x-5}$ on $[-1,4]$

Ans. Yes. $x_{0}=5-\sqrt{6}$

[^0]: ${ }^{\dagger}$ The Law of the Mean is also called the Mean-Value Theorem for Derivatives.

