CHAPTER 11

Implicit Differentiation

Implicit Functions

An equation $f(x, y)=0$ defines y implicitly as a function of x. The domain of that implicitly defined function consists of those x for which there is a unique y such that $f(x, y)=0$.

EXAMPLE 11.1:

(a) The equation $x y+x-2 y-1=0$ can be solved for y, yielding $y=\frac{1-x}{x-2}$. This function is defined for $x \neq 2$.
(b) The equation $4 x^{2}+9 y^{2}-36=0$ does not determine a unique function y. If we solve the equation for y, we obtain $y= \pm \frac{2}{3} \sqrt{9-x^{2}}$. We shall think of the equation as implicitly defining two functions, $y=\frac{2}{3} \sqrt{9-x^{2}}$ and $y=-\frac{2}{3} \sqrt{9-x^{2}}$. Each of these functions is defined for $|x| \leq 3$. The ellipse determined by the original equation is the union of the graphs of the two functions.

If y is a function implicitly defined by an equation $f(x, y)=0$, the derivative y^{\prime} can be found in two different ways:

1. Solve the equation for y and calculate y^{\prime} directly. Except for very simple equations, this method is usually impossible or impractical.
2. Thinking of y as a function of x, differentiate both sides of the original equation $f(x, y)=0$ and solve the resulting equation for y^{\prime}. This differentiation process is known as implicit differentiation.

EXAMPLE 11.2:

(a) Find y^{\prime}, given $x y+x-2 y-1=0$. By implicit differentiation, $x y^{\prime}+y D_{x}(x)-2 y^{\prime}-D_{x}(1)=D_{x}(0)$. Thus, $x y^{\prime}+y-$ $2 y^{\prime}=0$. Solve for $y^{\prime}: y^{\prime}=\frac{1+y}{2-x}$. In this case, Example 11.1(a) shows that we can replace y by $\frac{1-x}{x-2}$ and find y^{\prime} in terms of x alone. We see that it would have been just as easy to differentiate $y=\frac{1-x}{x-2}$ by the Quotient Rule. However, in most cases, we cannot solve for y or for y^{\prime} in terms of x alone.
(b) Given $4 x^{2}+9 y^{2}-36=0$, find y^{\prime} when $x=\sqrt{5}$. By implicit differentiation, $4 D_{x}\left(x^{2}\right)+9 D_{x}\left(y^{2}\right)-D_{x}(36)=D_{x}(0)$. Thus, $4(2 x)+9\left(2 y y^{\prime}\right)=0$. (Note that $D_{x}\left(y^{2}\right)=2 y y^{\prime}$ by the Power Chain Rule.) Solving for y^{\prime}, we get $y^{\prime}=-4 x / 9 y$. When $x=\sqrt{5}, y= \pm \frac{4}{3}$. For the function y corresponding to the upper arc of the ellipse (see Example 11.1(b)), $y=-\frac{4}{3}$ and $y^{\prime}=-\sqrt{5} / 3$. For the function y corresponding to the lower arc of the ellipse, $y=-\frac{4}{3}$ and $y^{\prime}=-\sqrt{5} / 3$.

Derivatives of Higher Order

Derivatives of higher order may be obtained by implicit differentiation or by a combination of direct and implicit differentiation.

EXAMPLE 11.3: In Example 11.2(a), $y^{\prime}=\frac{1+y}{2-x}$. Then

$$
\begin{aligned}
y^{\prime \prime} & =D_{x}\left(y^{\prime}\right)=D_{x}\left(\frac{1+y}{2-x}\right)=\frac{(2-x) y^{\prime}-(1+y)(-1)}{(2-x)^{2}} \\
& =\frac{(2-x) y^{\prime}+1+y}{(2-x)^{2}}=\frac{(2-x)\left(\frac{1+y}{2-x}\right)+1+y}{(2-x)^{2}}=\frac{2+2 y}{(2-x)^{2}}
\end{aligned}
$$

EXAMPLE 11.4: Find the value of $y^{\prime \prime}$ at the point $(-1,1)$ of the curve $x^{2} y+3 y-4=0$.
We differentiate implicitly with respect to x twice. First, $x^{2} y^{\prime}+2 x y+3 y^{\prime}=0$, and then $x^{2} y^{\prime \prime}+2 x y^{\prime}+2 x y^{\prime}+2 y+$ $3 y^{\prime \prime}=0$. We could solve the first equation for $y^{\prime \prime}$ and then solve the second equation for $y^{\prime \prime}$. However, since we only wish to evaluate $y^{\prime \prime}$ at the particular point $(-1,1)$, we substitute $x=-1, y=1$ in the first equation to find $y^{\prime}=\frac{1}{2}$ and then substitute $x=-1, y=1, y^{\prime}=\frac{1}{2}$ in the second equation to get $y^{\prime \prime}-1-1+2+3 y^{\prime}=0$, from which we obtain $y^{\prime \prime}=0$. Notice that this method avoids messy algebraic calculations.

SOLVED PROBLEMS

1. Find y^{\prime}, given $x^{2} y-x y^{2}+x^{2}+y^{2}=0$.

$$
\begin{aligned}
& D_{x}\left(x^{2} y\right)-D_{x}\left(x y^{2}\right)+D_{x}\left(x^{2}\right)+D_{x}\left(y^{2}\right)=0 \\
& x^{2} y^{\prime}+y D_{x}\left(x^{2}\right)-x D_{x}\left(y^{2}\right)-y^{2} D_{x}(x)+2 x+2 y y^{\prime}=0 \\
& x^{2} y^{\prime}+2 x y-x\left(2 y y^{\prime}\right)-y^{2}+2 x+2 y y^{\prime}=0 \\
& \left(x^{2}-2 x y+2 y\right) y^{\prime}+2 x y-y^{2}+2 x=0 \\
& y^{\prime}=\frac{y^{2}-2 x y-2 x}{x^{2}-2 x y+2 y}
\end{aligned}
$$

2. If $x^{2}-x y+y^{2}=3$, find y^{\prime} and $y^{\prime \prime}$.

$$
\begin{array}{r}
D_{x}\left(x^{2}\right)-D_{x}(x y)+D_{x}\left(y^{2}\right)=0 \\
2 x-x y^{\prime}-y+2 y y^{\prime}=0
\end{array}
$$

Hence, $y^{\prime}=\frac{2 x-y}{x-2 y}$. Then,

$$
\begin{aligned}
y^{\prime \prime} & =\frac{(x-2 y) D_{x}(2 x-y)-(2 x-y) D_{x}(x-2 y)}{(x-2 y)^{2}} \\
& =\frac{(x-2 y)\left(2-y^{\prime}\right)-(2 x-y)\left(1-2 y^{\prime}\right)}{(x-2 y)^{2}} \\
& =\frac{2 x-x y^{\prime}-4 y+2 y y^{\prime}-2 x+4 x y^{\prime}+y-2 y y^{\prime}}{(x-2 y)^{2}}=\frac{3 x y^{\prime}-3 y}{(x-2 y)^{2}} \\
& =\frac{3 x\left(\frac{2 x-y}{x-2 y}\right)-3 y}{(x-2 y)^{2}}=\frac{3 x(2 x-y)-3 y(x-2 y)}{(x-2 y)^{3}}=\frac{6\left(x^{2}-x y+y^{2}\right)}{(x-2 y)^{3}} \\
& =\frac{18}{(x-2 y)^{3}}
\end{aligned}
$$

3. Given $x^{3} y+x y^{3}=2$, find y^{\prime} and $y^{\prime \prime}$ at the point $(1,1)$.

By implicit differentiation twice,

$$
x^{3} y^{\prime}+3 x^{2} y+x\left(3 y^{2} y^{\prime}\right)+y^{3}=0
$$

and

$$
x^{3} y^{\prime \prime}+3 x^{2} y^{\prime}+3 x^{2} y^{\prime}+6 x y+3 x y^{2} y^{\prime \prime}+y^{\prime}\left[6 x y y^{\prime}+3 y^{2}\right]+3 y^{2} y^{\prime}=0
$$

Substituting $x=1, y=1$ in the first equation yields $y^{\prime}=-1$. Then substituting $x=1, y=1, y^{\prime}=-1$ in the second equation yields $y^{\prime \prime}=0$.

SUPPLEMENTARY PROBLEMS

4. Find $y^{\prime \prime}$, given: (a) $x+x y+y=2$; (b) $x^{3}-3 x y+y^{3}=1$.

Ans.
(a) $y^{\prime \prime}=\frac{2(1+y)}{(1+x)^{2}}$;
(b) $y^{\prime \prime}=-\frac{4 x y}{\left(y^{2}-x\right)^{3}}$
5. Find $y^{\prime}, y^{\prime \prime}$, and $y^{\prime \prime \prime}$ at: (a) the point $(2,1)$ on $x^{2}-y^{2}-x=1$; (b) the point $(1,1)$ on $x^{3}+3 x^{2} y-6 x y^{2}+2 y^{3}=0$.

Ans. (a) $\frac{3}{2},-\frac{5}{4}, \frac{45}{8} ;$ (b) $1,0,0$
6. Find the slope of the tangent line at a point $\left(x_{0}, y_{0}\right)$ of: (a) $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$; (b) $b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$; (c) $x^{3}+y^{3}-$ $6 x^{2} y=0$.
Ans.
(a) $-\frac{b^{2} x_{0}}{a^{2} y_{0}}$;
(b) $\frac{b^{2} x_{0}}{a^{2} y_{0}}$;
(c) $\frac{4 x_{0} y_{0}-x_{0}^{2}}{y_{0}^{2}-2 x_{0}^{2}}$
7. Prove that the lines tangent to the curves $5 y-2 x+y^{3}-x^{2} y=0$ and $2 y+5 x+x^{4}-x^{3} y^{2}=0$ at the origin intersect at right angles.
8. (a) The total surface area of a closed rectangular box whose base is a square with side y and whose height is x is given by $S=2 y^{2}+4 x y$. If S is constant, find $d y / d x$ without solving for y.
(b) The total surface area of a right circular cylinder of radius r and height h is given by $S=2 \pi r^{2}+2 \pi r h$. If S is constant, find $d r / d h$.

Ans. (a) $-\frac{y}{x+y} ;$ (b) $-\frac{r}{2 r+h}$
9. For the circle $x^{2}+y^{2}=r^{2}$, show that $\left|\frac{y^{\prime \prime}}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}}\right|=\frac{1}{r}$.
10. Given $S=\pi x(x+2 y)$ and $V=\pi x^{2} y$, show that $d S / d x=2 \pi(x-y)$ when V is a constant, and $d V / d x=-\pi x(x-y)$ when S is a constant.
11. Derive the formula $D_{x}\left(x^{m}\right)=m x^{m-1}$ of Theorem $10.1(9)$ when $m=p / q$, where p and q are nonzero integers. You may assume that $x^{p / q}$ is differentiable. (Hint: Let $y=x^{p / q}$. Then $y^{q}=x^{p}$. Now use implicit differentiation.)
12. (GC) Use implicit differentation to find an equation of the tangent line to $\sqrt{x}+\sqrt{y}=4$ at $(4,4)$, and verify your answer on a graphing calculator.

Ans. $y=-x+8$

