

Implicit Differentiation

Implicit Functions

An equation f(x, y) = 0 defines y *implicitly* as a function of x. The domain of that implicitly defined function consists of those x for which there is a unique y such that f(x, y) = 0.

EXAMPLE 11.1:

- (a) The equation xy + x 2y 1 = 0 can be solved for y, yielding $y = \frac{1-x}{x-2}$. This function is defined for $x \neq 2$. (b) The equation $4x^2 + 9y^2 36 = 0$ does not determine a unique function y. If we solve the equation for y, we obtain $y = \pm \frac{2}{3}\sqrt{9-x^2}$. We shall think of the equation as implicitly defining two functions, $y = \frac{2}{3}\sqrt{9-x^2}$ and
 - $y = -\frac{2}{3}\sqrt{9-x^2}$. Each of these functions is defined for $|x| \le 3$. The ellipse determined by the original equation is the union of the graphs of the two functions.

If y is a function implicitly defined by an equation f(x, y) = 0, the derivative y' can be found in two different ways:

- 1. Solve the equation for y and calculate y' directly. Except for very simple equations, this method is usually impossible or impractical.
- Thinking of y as a function of x, differentiate both sides of the original equation f(x, y) = 0 and solve the 2. resulting equation for y'. This differentiation process is known as *implicit differentiation*.

EXAMPLE 11.2:

- (a) Find y', given xy + x 2y 1 = 0. By implicit differentiation, $xy' + y D_x(x) 2y' D_x(1) = D_x(0)$. Thus, xy' + y 2y' = 0. Solve for $y': y' = \frac{1+y}{2-x}$. In this case, Example 11.1(*a*) shows that we can replace y by $\frac{1-x}{x-2}$ and find y' in terms of x alone. We see that it would have been just as easy to differentiate $y = \frac{1-x}{x-2}$ by the Quotient Rule. However, in most cases, we cannot solve for y or for y' in terms of x alone.
- (b) Given $4x^2 + 9y^2 36 = 0$, find y' when $x = \sqrt{5}$. By implicit differentiation, $4D_y(x^2) + 9D_y(y^2) D_y(36) = D_y(0)$. Thus, 4(2x) + 9(2yy') = 0. (Note that $D_y(y^2) = 2yy'$ by the Power Chain Rule.) Solving for y', we get y' = -4x/9y. When $x = \sqrt{5}$, $y = \pm \frac{4}{3}$. For the function y corresponding to the upper arc of the ellipse (see Example 11.1(b)), $y = -\frac{4}{3}$ and $y' = -\sqrt{5}/3$. For the function y corresponding to the lower arc of the ellipse, $y = -\frac{4}{3}$ and $y' = -\sqrt{5}/3$.

Derivatives of Higher Order

Derivatives of higher order may be obtained by implicit differentiation or by a combination of direct and implicit differentiation.

EXAMPLE 11.3: In Example 11.2(*a*), $y' = \frac{1+y}{2-x}$. Then

$$y'' = D_x(y') = D_x\left(\frac{1+y}{2-x}\right) = \frac{(2-x)y' - (1+y)(-1)}{(2-x)^2}$$
$$= \frac{(2-x)y' + 1+y}{(2-x)^2} = \frac{(2-x)\left(\frac{1+y}{2-x}\right) + 1+y}{(2-x)^2} = \frac{2+2y}{(2-x)^2}$$

EXAMPLE 11.4: Find the value of y'' at the point (-1, 1) of the curve $x^2y + 3y - 4 = 0$.

We differentiate implicitly with respect to x twice. First, $x^2y' + 2xy + 3y' = 0$, and then $x^2y'' + 2xy' + 2xy' + 2y + 3y'' = 0$. We could solve the first equation for y'' and then solve the second equation for y''. However, since we only wish to evaluate y'' at the particular point (-1, 1), we substitute x = -1, y = 1 in the first equation to find $y' = \frac{1}{2}$ and then substitute x = -1, y = 1, $y' = \frac{1}{2}$ in the second equation to get y'' - 1 - 1 + 2 + 3y' = 0, from which we obtain y'' = 0. Notice that this method avoids messy algebraic calculations.

SOLVED PROBLEMS

1. Find y', given $x^2y - xy^2 + x^2 + y^2 = 0$.

$$D_x(x^2y) - D_x(xy^2) + D_x(x^2) + D_x(y^2) = 0$$

$$x^2y' + yD_x(x^2) - xD_x(y^2) - y^2D_x(x) + 2x + 2yy' = 0$$

$$x^2y' + 2xy - x(2yy') - y^2 + 2x + 2yy' = 0$$

$$(x^2 - 2xy + 2y)y' + 2xy - y^2 + 2x = 0$$

$$y' = \frac{y^2 - 2xy - 2x}{x^2 - 2xy + 2y}$$

2. If $x^2 - xy + y^2 = 3$, find y' and y''.

$$D_x(x^2) - D_x(xy) + D_x(y^2) = 0$$

2x - xy' - y + 2yy' = 0

Hence,
$$y' = \frac{2x - y}{x - 2y}$$
. Then,

$$y'' = \frac{(x - 2y)D_x(2x - y) - (2x - y)D_x(x - 2y)}{(x - 2y)^2}$$

$$= \frac{(x - 2y)(2 - y') - (2x - y)(1 - 2y')}{(x - 2y)^2}$$

$$= \frac{2x - xy' - 4y + 2yy' - 2x + 4xy' + y - 2yy'}{(x - 2y)^2} = \frac{3xy' - 3y}{(x - 2y)^2}$$

$$= \frac{3x\left(\frac{2x - y}{x - 2y}\right) - 3y}{(x - 2y)^2} = \frac{3x(2x - y) - 3y(x - 2y)}{(x - 2y)^3} = \frac{6(x^2 - xy + y^2)}{(x - 2y)^3}$$

$$= \frac{18}{(x - 2y)^3}$$

3. Given $x^3y + xy^3 = 2$, find y' and y'' at the point (1, 1).

By implicit differentiation twice,

$$x^3y' + 3x^2y + x(3y^2y') + y^3 = 0$$

and

$$x^{3}y'' + 3x^{2}y' + 3x^{2}y' + 6xy + 3xy^{2}y'' + y'[6xyy' + 3y^{2}] + 3y^{2}y' = 0$$

Substituting x = 1, y = 1 in the first equation yields y' = -1. Then substituting x = 1, y = 1, y' = -1 in the second equation yields y'' = 0.

SUPPLEMENTARY PROBLEMS

4. Find y", given: (a) x + xy + y = 2; (b) $x^3 - 3xy + y^3 = 1$.

Ans. (a) $y'' = \frac{2(1+y)}{(1+x)^2}$; (b) $y'' = -\frac{4xy}{(y^2-x)^3}$

5. Find y', y", and y"' at: (a) the point (2, 1) on $x^2 - y^2 - x = 1$; (b) the point (1, 1) on $x^3 + 3x^2y - 6xy^2 + 2y^3 = 0$.

Ans. (a) $\frac{3}{2}$, $-\frac{5}{4}$, $\frac{45}{8}$; (b) 1, 0, 0

6. Find the slope of the tangent line at a point (x_0, y_0) of: (a) $b^2x^2 + a^2y^2 = a^2b^2$; (b) $b^2x^2 - a^2y^2 = a^2b^2$; (c) $x^3 + y^3 - 6x^2y = 0$.

Ans. (a)
$$-\frac{b^2 x_0}{a^2 y_0}$$
; (b) $\frac{b^2 x_0}{a^2 y_0}$; (c) $\frac{4x_0 y_0 - x_0^2}{y_0^2 - 2x_0^2}$

- 7. Prove that the lines tangent to the curves $5y 2x + y^3 x^2y = 0$ and $2y + 5x + x^4 x^3y^2 = 0$ at the origin intersect at right angles.
- 8. (a) The total surface area of a closed rectangular box whose base is a square with side y and whose height is x is given by $S = 2y^2 + 4xy$. If S is constant, find dy/dx without solving for y.
 - (b) The total surface area of a right circular cylinder of radius *r* and height *h* is given by $S = 2\pi r^2 + 2\pi rh$. If *S* is constant, find *dr/dh*.

Ans. (a)
$$-\frac{y}{x+y}$$
; (b) $-\frac{r}{2r+h}$

- 9. For the circle $x^2 + y^2 = r^2$, show that $\left| \frac{y''}{[1 + (y')^2]^{3/2}} \right| = \frac{1}{r}$.
- 10. Given $S = \pi x(x + 2y)$ and $V = \pi x^2 y$, show that $dS/dx = 2\pi(x y)$ when V is a constant, and $dV/dx = -\pi x(x y)$ when S is a constant.
- 11. Derive the formula $D_x(x^m) = mx^{m-1}$ of Theorem 10.1(9) when m = p/q, where *p* and *q* are nonzero integers. You may assume that $x^{p/q}$ is differentiable. (*Hint*: Let $y = x^{p/q}$. Then $y^q = x^p$. Now use implicit differentiation.)
- 12. (GC) Use implicit differentation to find an equation of the tangent line to $\sqrt{x} + \sqrt{y} = 4$ at (4, 4), and verify your answer on a graphing calculator.

Ans. y = -x + 8