

Rules for Differentiating Functions

Differentiation

Recall that a function f is said to be *differentiable* at x_0 if the derivative $f'(x_0)$ exists. A function is said to be differentiable on a set if the function is differentiable at every point of the set. If we say that a function is differentiable, we mean that it is differentiable at every real number. The process of finding the derivative of a function is called *differentiation*.

Theorem 10.1 (Differentiation Formulas): In the following formulas, it is assumed that u, v, and w are functions that are differentiable at x; c and m are assumed to be constants.

- (1) $\frac{d}{dx}(c) = 0$ (The derivative of a constant function is zero.)
- (2) $\frac{d}{dx}(x) = 1$ (The derivative of the identity function is 1.)
- (3) $\frac{d}{dx}(cu) = c\frac{du}{dx}$
- (4) $\frac{d}{dx}(u+v+...) = \frac{du}{dx} + \frac{dv}{dx} + ...$ (Sum Rule)
- (5) $\frac{d}{dx}(u-v) = \frac{du}{dx} \frac{dv}{dx}$ (Difference Rule)
- (6) $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$ (Product Rule)
- (7) $\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} u\frac{dv}{dx}}{v^2}$ provided that $v \neq 0$ (Quotient Rule) (8) $\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$ provided that $x \neq 0$
- $dx(x) = x^2$ provided that $x \neq 0$
- (9) $\frac{d}{dx}(x^m) = mx^{m-1}$ (Power Rule)

Note that formula (8) is a special case of formula (9) when m = -1. For proofs, see Problems 1–4.

EXAMPLE 10.1: $D_x(x^3 + 7x + 5) = D_x(x^3) + D_x(7x) + D_x(5)$ (Sum Rule) = $3x^2 + 7D_x(x) + 0$ (Power Rule, formulas (3) and (1)) = $3x^2 + 7$ (formula (2))

Every polynomial is differentiable, and its derivative can be computed by using the Sum Rule, Power Rule, and formulas (1) and (3).

Composite Functions. The Chain Rule

The *composite function* $f \circ g$ of functions g and f is defined as follows: $(f \circ g)(x) = f(g(x))$. The function g is applied first and then $f \cdot g$ is called the *inner function*, and f is called the *outer function*. $f \circ g$ is called the *composition* of g and f.

EXAMPLE 10.2: Let $f(x) = x^2$ and g(x) = x + 1. Then:

$$(f \circ g)(x) = f(g(x)) = f(x+1) = (x+1)^2 = x^2 + 2x + 1$$
$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 + 1$$

Thus, in this case, $f \circ g \neq g \circ f$.

When *f* and *g* are differentiable, then so is their composition $f \circ g$. There are two procedures for finding the derivative of $f \circ g$. The first method is to compute an explicit formula for f(g(x)) and differentiate.

EXAMPLE 10.3: If $f(x) = x^2 + 3$ and g(x) = 2x + 1, then

$$y = f(g(x)) = f(2x+1) = (2x+1)^2 + 3 = 4x^2 + 4x + 4$$
 and $\frac{dy}{dx} = 8x + 4$

Thus, $D_{x}(f \circ g) = 8x + 4$.

The second method of computing the derivative of a composite function is based on the following rule.

Chain Rule

$$D_x(f(g(x)) = f'(g(x)) \cdot g'(x))$$

Thus, the derivative of $f \circ g$ is the product of the derivative of the outer function f (evaluated at g(x)) and the derivative of the inner function (evaluated at x). It is assumed that g is differentiable at x and that f is differentiable at g(x).

EXAMPLE 10.4: In Example 10.3, f'(x) = 2x and g'(x) = 2. Hence, by the Chain Rule,

$$D_{x}(f(g(x)) = f'(g(x)) \cdot g'(x) = 2g(x) \cdot 2 = 4g(x) = 4(2x+1) = 8x+4$$

Alternative Formulation of the Chain Rule

Let u = g(x) and y = f(u). Then the composite function of g and f is y = f(u) = f(g(x)), and we have the formula:

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$
 (Chain Rule)

EXAMPLE 10.5: Let $y = u^3$ and $u = 4x^2 - 2x + 5$. Then the composite function $y = (4x^2 - 2x + 5)^3$ has the derivative

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = 3u^2(8x-2) = 3(4x^2 - 2x + 5)^2(8x-2)$$

Warning. In the Alternative Formulation of the Chain Rule, $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$, the y on the left denotes the composite function of x, whereas the y on the right denotes the original function of u. Likewise, the two occurrences of u have different meanings. This notational confusion is made up for by the simplicity of the alternative formulation.

80

Inverse Functions

Two functions *f* and *g* such that g(f(x)) = x and f(g(y)) = y are said to be *inverse functions*. Inverse functions reverse the effect of each other. Given an equation y = f(x), we can find a formula for the inverse of *f* by solving the equation for *x* in terms of *y*.

EXAMPLE 10.6:

- (a) Let f(x) = x + 1. Solving the equation y = x + 1 for x, we obtain x = y 1. Then the inverse g of f is given by the formula g(y) = y 1. Note that g reverses the effect of f and f reverses the effect of g.
- (b) Let f(x) = -x. Solving y = -x for x, we obtain x = -y. Hence, g(y) = -y is the inverse of f. In this case, the inverse of f is the same function as f.
- (c) Let $f(x) = \sqrt{x}$. *f* is defined only for nonnegative numbers, and its range is the set of nonnegative numbers. Solving $y = \sqrt{x}$ for *x*, we get $x = y^2$, so that $g(y) = y^2$. Note that, since *g* is the inverse of *f*, *g* is only defined for nonnegative numbers, since the values of *f* are the nonnegative numbers. (Since y = f(g(y)), then, if we allowed *g* to be defined for negative numbers, we would have -1 = f(g(-1)) = f(1) = 1, a contradiction.)
- (d) The inverse of f(x) = 2x 1 is the function $g(y) = \frac{y+1}{2}$.

Notation

The inverse of f will be denoted f^{-1} .

Do not confuse this with the exponential notation for raising a number to the power -1. The context will usually tell us which meaning is intended.

Not every function has an inverse function. For example, the function $f(x) = x^2$ does not possess an inverse. Since f(1) = 1 = f(-1), an inverse function g would have to satisfy g(1) = 1 and g(1) = -1, which is impossible. (However, if we restricted the function $f(x) = x^2$ to the domain $x \ge 0$, then the function $g(y) = \sqrt{y}$ would be an inverse function of f.)

The condition that a function f must satisfy in order to have an inverse is that f is *one-to-one*, that is, for any x_1 and x_2 , if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Equivalently, f is one-to-one if and only if, for any x_1 and x_2 , if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

EXAMPLE 10.7: Let us show that the function f(x) = 3x + 2 is one-to-one. Assume $f(x_1) = f(x_2)$. Then $3x_1 + 2 = 3x_2 + 2$, $3x_1 = 3x_2$, $x_1 = x_2$. Hence, *f* is one-to-one. To find the inverse, solve y = 3x + 2 for *x*, obtaining $x = \frac{y-2}{3}$. Thus, $f^{-1}(y) = \frac{y-2}{3}$. (In general, if we can solve y = f(x) for *x* in terms of *y*, then we know that *f* is one-to-one.)

Theorem 10.2 (Differentiation Formula for Inverse Functions): Let f be one-to-one and continuous on an interval (a, b). Then:

- (a) The range of f is an interval I (possibly infinite) and f is either increasing or decreasing. Moreover, f^{-1} is continuous on I.
- (b) If f is differentiable at x_0 and $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

The latter equation is sometimes written

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$

where $x = f^{-11}(y)$.

For the proof, see Problem 69.

EXAMPLE 10.8:

(a) Let $y = f(x) = x^2$ for x > 0. Then $x = f^{-1}(y) = \sqrt{y}$. Since $\frac{dy}{dx} = 2x$, $\frac{dx}{dy} = \frac{1}{2x} = \frac{1}{2\sqrt{y}}$. Thus, $D_y(\sqrt{y}) = \frac{1}{2\sqrt{y}}$. (Note that this is a special case of Theorem 8.1(9) when $m = \frac{1}{2}$.)

(b) Let $y = f(x) = x^3$ for all x. Then $x = f^{-1}(y) = \sqrt[3]{y} = y^{1/3}$ for all y. Since $\frac{dy}{dx} = 3x^2$, $\frac{dx}{dy} = \frac{1}{3x^2} = \frac{1}{3y^{2/3}}$. This holds for all $y \neq 0$. (Note that $f^{-1}(0) = 0$ and $f'(0) = 3(0)^2 = 0$.)

Higher Derivatives

If y = f(x) is differentiable, its derivative y' is also called the *first derivative* of f. If y' is differentiable, its derivative is called the *second derivative* of f. If this second derivative is differentiable, then its derivative is called the *third derivative* of f, and so on.

Notation

First derivative:	y ' ,	f'(x),	$\frac{dy}{dx}$,	$D_x y$
Second derivative:	y",	f''(x),	$\frac{d^2y}{dx^2},$	$D_x^2 y$
Third derivative:	y‴,	f'''(x),	$\frac{d^3y}{dx^3},$	$D_x^3 y$
n^{th} derivative:	<i>y</i> ^(<i>n</i>) ,	$f^{(n)}$,	$\frac{d^n y}{dx^n}$,	$D_x^n y$

SOLVED PROBLEMS

1. Prove Theorem 10.1, (1)–(3): (1) $\frac{d}{dx}(c) = 0$; (2) $\frac{d}{dx}(x) = 1$; (3) $\frac{d}{dx}(cu) = c\frac{du}{dx}$.

Remember that $\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

(1)
$$\frac{d}{dx}c = \lim_{\Delta x \to 0} \frac{c-c}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0$$

(2)
$$\frac{d}{dx}(x) = \lim_{\Delta x \to 0} \frac{(x+\Delta x) - x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = \lim_{\Delta x \to 0} 1 = 1$$

(3)
$$\frac{d}{dx}(cu) = \lim_{\Delta x \to 0} \frac{cu(x + \Delta x) - cu(x)}{\Delta x} = \lim_{\Delta x \to 0} c \frac{u(x + \Delta x) - u(x)}{\Delta x}$$
$$= c \lim_{\Delta x \to 0} \frac{u(x + \Delta x) - u(x)}{\Delta x} = c \frac{du}{dx}$$

2. Prove Theorem 10.1, (4), (6), (7):

(4)
$$\frac{d}{dx}(u+v+\cdots) = \frac{du}{dx} + \frac{dv}{dx} + \cdots$$

(6)
$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

(7)
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$
 provided that $v \neq 0$

(4) It suffice to prove this for just two summands, u and v. Let f(x) = u + v. Then

$$\frac{f(x+\Delta x) - f(x)}{\Delta x} = \frac{u(x+\Delta x) + v(x+\Delta x) - u(x) - v(x)}{\Delta x}$$
$$= \frac{u(x+\Delta x) - u(x)}{\Delta x} + \frac{v(x+\Delta x) - v(x)}{\Delta x}$$

Taking the limit as $\Delta x \to 0$ yields $\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}$.

(6) Let f(x) = uv. Then

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{u(x + \Delta x)v(x + \Delta x) - u(x)v(x)}{\Delta x}$$
$$= \frac{[u(x + \Delta x)v(x + \Delta x) - v(x)u(x + \Delta x)] + [v(x)u(x + \Delta x) - u(x)v(x)]}{\Delta x}$$
$$= u(x + \Delta x)\frac{v(x + \Delta x) - v(x)}{\Delta x} + v(x)\frac{u(x + \Delta x) - u(x)}{\Delta x}$$

Taking the limit as $\Delta x \rightarrow 0$ yields

$$\frac{d}{dx}(uv) = u(x)\frac{d}{dx}v(x) + v(x)\frac{d}{dx}u(x) = u\frac{dv}{dx} + v\frac{du}{dx}$$

Note that $\lim_{\Delta x \to 0} u(x + \Delta x) = u(x)$ because the differentiability of *u* implies its continuity.

(7) Set
$$f(x) = \frac{u}{v} = \frac{u(x)}{v(x)}$$
, then

$$\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{\frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} = \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{\Delta x\{v(x)v(x + \Delta x)\}}$$

$$= \frac{[u(x + \Delta x)v(x) - u(x)v(x)] - [u(x)v(x + \Delta x) - u(x)v(x)]}{\Delta x[v(x)v(x + \Delta x)]}$$

$$= \frac{v(x)\frac{u(x + \Delta x) - u(x)}{\Delta x} - u(x)\frac{v(x + \Delta x) - v(x)}{\Delta x}}{v(x)v(x + \Delta x)}$$
and for $\Delta x \to 0$, $\frac{d}{dx}f(x) = \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v(x)\frac{d}{dx}u(x) - u(x)\frac{d}{dx}v(x)}{[v(x)]^2} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

3. Prove Theorem 10.1(9): $D_x(x^m) = mx^{m-1}$, when *m* is a nonnegative integer. Use mathematical induction. When m = 0,

$$D_x(x^m) = D_x(x^0) = D_x(1) = 0 = 0 \cdot x^{-1} = mx^{m-1}$$

Assume the formula is true for *m*. Then, by the Product Rule,

$$D_x(x^{m+1}) = D_x(x^m \cdot x) = x^m D_x(x) + x D_x(x^m) = x^m \cdot 1 + x \cdot m x^{m-1}$$
$$= x^m + m x^m = (m+1) x^m$$

Thus, the formula holds for m + 1.

4. Prove Theorem 10.1(9): $D_x(x^m) = mx^{m-1}$, when *m* is a negative integer. Let m = -k, where *k* is a positive integer. Then, by the Quotient Rule and Problem 3,

$$D_x(x^m) = D_x(x^{-k}) = D_x\left(\frac{1}{x^k}\right)$$
$$= \frac{x^k D_x(1) - 1 \cdot D_x(x^k)}{(x^k)^2} = \frac{x^k \cdot 0 - kx^{k-1}}{x^{2k}}$$
$$= -k \frac{x^{k-1}}{x^{2k}} = -kx^{-k-1} = mx^{m-1}$$

5. Differentiate $y = 4 + 2x - 3x^2 - 5x^3 - 8x^4 + 9x^5$.

$$\frac{dy}{dx} = 0 + 2(1) - 3(2x) - 5(3x^2) - 8(4x^3) + 9(5x^4) = 2 - 6x - 15x^2 - 32x^3 + 45x^4$$

6. Differentiate $y = \frac{1}{x} + \frac{3}{x^2} + \frac{2}{x^3} = x^{-1} + 3x^{-2} + 2x^{-3}$. $\frac{dy}{dx} = -x^{-2} + 3(-2x^{-3}) + 2(-3x^{-4}) = -x^{-2} - 6x^{-3} - 6x^{-4} = -\frac{1}{x^2} - \frac{6}{x^3} - \frac{6}{x^4}$

7. Differentiate $y = 2x^{1/2} + 6x^{1/3} - 2x^{3/2}$.

$$\frac{dy}{dx} = 2\left(\frac{1}{2}x^{-1/2}\right) + 6\left(\frac{1}{3}x^{-2/3}\right) - 2\left(\frac{3}{2}x^{1/2}\right) = x^{-1/2} + 2x^{-2/3} - 3x^{1/2} = \frac{1}{x^{1/2}} + \frac{2}{x^{2/3}} - 3x^{1/2}$$

8. Differentiate
$$y = \frac{2}{x^{1/2}} + \frac{6}{x^{1/3}} - \frac{2}{x^{3/2}} - \frac{4}{x^{3/4}} = 2x^{-1/2} + 6x^{-1/3} - 2x^{-3/2} - 4x^{-3/4}.$$

$$\frac{dy}{dx} = 2\left(-\frac{1}{2}x^{-3/2}\right) + 6\left(-\frac{1}{3}x^{-4/3}\right) - 2\left(-\frac{3}{2}x^{-5/2}\right) - 4\left(-\frac{3}{4}x^{-7/4}\right)$$
$$= -x^{-3/2} - 2x^{-4/3} + 3x^{-5/2} + 3x^{-7/4} = -\frac{1}{x^{3/2}} - \frac{2}{x^{4/3}} + \frac{3}{x^{5/2}} + \frac{3}{x^{7/4}}$$

9. Differentiate
$$y = \sqrt[3]{3x^2} - \frac{1}{\sqrt{5x}} = (3x^2)^{1/3} - (5x)^{-1/2}$$
.
$$\frac{dy}{dx} = \frac{1}{3}(3x^2)^{-2/3}(6x) - \left(-\frac{1}{2}\right)(5x)^{-3/2}(5) = \frac{2x}{(9x^4)^{1/3}} + \frac{5}{2(5x)(5x)^{1/2}} = \frac{2}{\sqrt[3]{9x}} + \frac{1}{2x\sqrt{5x}}$$

- 10. Prove the Power Chain Rule: $D_x(y^m) = my^{m-1}D_x y$. This is simply the Chain Rule, where the outer function is $f(x) = x^m$ and the inner function is y.
- 11. Differentiate $s = (t^2 3)^4$. By the Power Chain Rule, $\frac{ds}{dt} = 4(t^2 - 3)^3(2t) = 8t(t^2 - 3)^3$.
- 12. Differentiate (a) $z = \frac{3}{(a^2 y^2)^2} = 3(a^2 y^2)^{-2}$; (b) $f(x) = \sqrt{x^2 + 6x + 3} = (x^2 + 6x + 3)^{1/2}$.

(a)
$$\frac{dz}{dy} = 3(-2)(a^2 - y^2)^{-3} \frac{d}{dy}(a^2 - y^2) = 3(-2)(a^2 - y^2)^{-3}(-2y) = \frac{12y}{(a^2 - y^2)^3}$$

(b)
$$f'(x) = \frac{1}{2}(x^2 + 6x + 3)^{-1/2} \frac{d}{dx}(x^2 + 6x + 3) = \frac{1}{2}(x^2 + 6x + 3)^{-1/2}(2x + 6) = \frac{x + 3}{\sqrt{x^2 + 6x + 3}}$$

13. Differentiate $y = (x^2 + 4)^2(2x^3 - 1)^3$.

Use the Product Rule and the Power Chain Rule:

$$y' = (x^{2} + 4)^{2} \frac{d}{dx} (2x^{3} - 1)^{3} + (2x^{3} - 1)^{3} \frac{d}{dx} (x^{2} + 4)^{2}$$

= $(x^{2} + 4)^{2} (3)(2x^{3} - 1)^{2} \frac{d}{dx} (2x^{3} - 1) + (2x^{3} - 1)^{3} (2)(x^{2} + 4) \frac{d}{dx} (x^{2} + 4)$
= $(x^{2} + 4)^{2} (3)(2x^{3} - 1)^{2} (6x^{2}) + (2x^{3} - 1)^{3} (2)(x^{2} + 4)(2x)$
= $2x(x^{2} + 4)(2x^{3} - 1)^{2} (13x^{3} + 36x - 2)$

84

14. Differentiate
$$y = \frac{3-2x}{3+2x}$$
.

Use the Quotient Rule:

$$y' = \frac{(3+2x)\frac{d}{dx}(3-2x) - (3-2x)\frac{d}{dx}(3+2x)}{(3+2x)^2} = \frac{(3+2x)(-2) - (3-2x)(2)}{(3+2x)^2} = \frac{-12}{(3+2x)^2}$$

15. Differentiate
$$y = \frac{x^2}{\sqrt{4 - x^2}} = \frac{x^2}{(4 - x^2)^{1/2}}$$
.

$$\frac{dy}{dx} = \frac{(4 - x^2)^{1/2} \frac{d}{dx} (x^2) - x^2 \frac{d}{dx} (4 - x^2)^{1/2}}{4 - x^2} = \frac{(4 - x^2)^{1/2} (2x) - (x^2) (\frac{1}{2}) (4 - x^2)^{-1/2} (-2x)}{4 - x^2}$$

$$= \frac{(4 - x^2)^{1/2} (2x) + x^3 (4 - x^2)^{-1/2}}{4 - x^2} \frac{(4 - x^2)^{1/2}}{(4 - x^2)^{1/2}} = \frac{2x(4 - x^2) + x^3}{(4 - x^2)^{3/2}} = \frac{8x - x^3}{(4 - x^2)^{3/2}}$$

16. Find $\frac{dy}{dx}$, given $x = y\sqrt{1-y^2}$.

By the Product Rule,

$$\frac{dx}{dy} = y \cdot \frac{1}{2} (1 - y^2)^{-1/2} (-2y) + (1 - y^2)^{1/2} = \frac{1 - 2y^2}{\sqrt{1 - y^2}}$$

By Theorem 10.2,

$$\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{\sqrt{1 - y^2}}{1 - 2y^2}$$

17. Find the slope of the tangent line to the curve $x = y^2 - 4y$ at the points where the curve crosses the y axis. The intersection points are (0, 0) and (0, 4). We have $\frac{dx}{dy} = 2y - 4$ and so $\frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{2y - 4}$. At (0, 0) the slope is $-\frac{1}{4}$, and at (0, 4) the slope is $\frac{1}{4}$.

18. Derive the Chain Rule:
$$D_x(f(g(x)) = f'(g(x)) \cdot g'(x))$$
.
Let $H = f \circ g$. Let $y = g(x)$ and $K = g(x + h) - g(x)$. Also, let $F(t) = \frac{f(y + t) - f(y)}{t} - f'(y)$ for $t \neq 0$.
Since $\lim_{t \to 0} F(t) = 0$, let $F(0) = 0$. Then $f(y + t) - f(y) = t(F(t) + f'(y))$ for all *t*. When $t = K$,

$$f(y+K) - f(y) = K(F(K) + f'(y))$$
$$f(g(x+h)) - f(g(x)) = K(F(K) + f'(y))$$
$$\frac{H(x+h) - H(x)}{h} = \frac{K}{h}(F(K) + f'(y))$$

Hence,

Now,

$$\lim_{h \to 0} \frac{K}{h} = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = g'(x)$$

Since $\lim_{h\to 0} K = 0$, $\lim_{h\to 0} F(K) = 0$. Hence,

$$H'(x) = f'(y)g'(x) = f'(g(x))g'(x)$$

19. Find $\frac{dy}{dx}$, given $y = \frac{u^2 - 1}{u^2 + 1}$ and $u = \sqrt[3]{x^2 + 2}$.

$$\frac{dy}{du} = \frac{4u}{(u^2+1)^2}$$
 and $\frac{du}{dx} = \frac{2x}{3(x^2+2)^{2/3}} = \frac{2x}{3u^2}$

Then

So

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = \frac{4u}{(u^2+1)^2}\frac{2x}{3u^2} = \frac{8x}{3u(u^2+1)^2}$$

20. A point moves along the curve $y = x^3 - 3x + 5$ so that $x = \frac{1}{2}\sqrt{t} + 3$, where t is time. At what rate is y changing when t = 4?

We must find the value of dy/dt when t = 4. First, $dy/dx = 3(x^2 - 1)$ and $dx/dt = 1/(4\sqrt{t})$. Hence,

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{3(x^2 - 1)}{4\sqrt{t}}$$

When t = 4, $x = \frac{1}{2}\sqrt{4} + 3 = 4$, and $\frac{dy}{dt} = \frac{3(16-1)}{4(2)} = \frac{45}{8}$ units per unit of time.

21. A point moves in the plane according to equations $x = t^2 + 2t$ and $y = 2t^3 - 6t$. Find dy/dx when t = 0, 2, and 5.

Since the first equation may be solved for t and this result substituted for t in the second equation, y is a function of x. We have $dy/dt = 6t^2 - 6$. Since dx/dt = 2t + 2, Theorem 8.2 gives us dt/dx = 1/(2t + 2). Then

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = 6(t^2 - 1)\frac{1}{2(t+1)} = 3(t-1).$$

The required values of dy/dx are -3 at t = 0, 3 at t = 2, and 12 at t = 5.

22. If $y = x^2 - 4x$ and $x = \sqrt{2t^2 + 1}$, find dy/dt when $t = \sqrt{2}$.

$$\frac{dy}{dx} = 2(x-2) \quad \text{and} \quad \frac{dx}{dt} = \frac{2t}{(2t^2+1)^{1/2}}$$

So
$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt} = \frac{4t(x-2)}{(2t^2+1)^{1/2}}$$

When $t = \sqrt{2}$, $x = \sqrt{5}$ and $\frac{dy}{dt} = \frac{4\sqrt{2}(\sqrt{5}-2)}{\sqrt{5}} = \frac{4\sqrt{2}}{5}(5-2\sqrt{5}).$

- **23.** Show that the function $f(x) = x^3 + 3x^2 8x + 2$ has derivatives of all orders and find them. $f'(x) = 3x^2 + 6x - 8$, f''(x) = 6x + 6, f'''(x) = 6, and all derivatives of higher order are zero.
- **24.** Investigate the successive derivatives of $f(x) = x^{4/3}$ at x = 0.

$$f'(x) = \frac{4}{3}x^{1/3}$$
 and $f'(0) = 0$
 $f''(x) = \frac{4}{9}x^{-2/3} = \frac{4}{9x^{2/3}}$ and $f''(0)$ does not exist

 $f^{(n)}(0)$ does not exist for $n \ge 2$.

25. If $f(x) = \frac{2}{1-x} = 2(1-x)^{-1}$, find a formula for $f^{(n)}(x)$.

$$f'(x) = 2(-1)(1-x)^{-2}(-1) = 2(1-x)^{-2} = 2(1!)(1-x)^{-2}$$
$$f''(x) = 2(1!)(-2)(1-x)^{-3}(-1) = 2(2!)(1-x)^{-3}$$
$$f'''(x) = 2(2!)(-3)(1-x)^{-4}(-1) = 2(3!)(1-x)^{-4}$$

which suggest $f^{(n)}(x) = 2(n!)(1-x)^{-(n+1)}$. This result may be established by mathematical induction by showing that if $f^{(k)}(x) = 2(k!)(1-x)^{-(k+1)}$, then

$$f^{(k+1)}(x) = -2(k!)(k+1)(1-x)^{-(k+2)}(-1) = 2[(k+1)!](1-x)^{-(k+2)}$$

SUPPLEMENTARY PROBLEMS

- **26.** Prove Theorem 10.1 (5): $D_x(u v) = D_x u D_x v$.
 - Ans. $D_x(u-v) = D_x(u+(-v)) = D_xu + D_x(-v) = D_xu + D_x((-1)v) = D_xu + (-1)D_xv = D_xu D_xv$ by Theorem 8.1(4, 3)

In Problems 27 to 45, find the derivative.

Ans. See Problem 42.

Ans. See Problem 39.

46. For each of the following, compute dy/dx by two different methods and check that the results are the same: (a) $x = (1 + 2y)^3$ (b) $x = \frac{1}{2 + y}$.

In Problems 47 to 50, use the Chain Rule to find $\frac{dy}{dx}$.

- **47.** $y = \frac{u-1}{u+1}, u = \sqrt{x}$ **48.** $y = u^3 + 4, u = x^2 + 2x$ **48.** $y = u^3 + 4, u = x^2 + 2x$ **47.** $\frac{dy}{dx} = \frac{1}{\sqrt{x}(1+\sqrt{x})^2}$ **48.** $\frac{dy}{dx} = 6x^2(x+2)^2(x+1)$
- 50 $y = \sqrt{y}$ u = v(3 2v) $v = y^2$

49. $y = \sqrt{1+u}, u = \sqrt{x}$

$$\left(\text{Hint: } \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dv}\frac{dv}{dx}.\right)$$

In Problems 51 to 54, find the indicated derivative.

- **51.** $y = 3x^4 2x^2 + x 5$; y''' Ans. y''' = 72x
- **52.** $y = \frac{1}{\sqrt{x}}; y^{(4)}$ Ans. $y^{(4)} = \frac{105}{16x^{9/2}}$
- **53.** $f(x) = \sqrt{2 3x^2}; f''(x)$ Ans. $f''(x) = -\frac{6}{(2 3x^2)^{3/2}}$
- 54. $y = \frac{x}{\sqrt{x-1}}; y''$ $y'' = \frac{4-x}{4(x-1)^{5/2}}$

In Problems 55 and 56, find a formula for the *n*th derivative.

- **55.** $y = \frac{1}{x^2}$ **56.** $f(x) = \frac{1}{3x+2}$ **57.** $y^{(n)} = \frac{(-1)^n [(n+1)!]}{x^{n+2}}$ **56.** $f^{(n)}(x) = (-1)^n \frac{3^n (n!)}{(3x+2)^{n+1}}$
- **57.** If y = f(u) and u = g(x), show that

(a)
$$\frac{d^2y}{dx^2} = \frac{dy}{du} \cdot \frac{d^2u}{dx^2} + \frac{d^2y}{du^2} \left(\frac{du}{dx}\right)^2$$
 (b)
$$\frac{d^3y}{dx^3} = \frac{dy}{du} \cdot \frac{d^3u}{dx^3} + 3\frac{d^2y}{du^2} \cdot \frac{d^2u}{dx} \cdot \frac{du}{dx} + \frac{d^3y}{du^3} \left(\frac{du}{dx}\right)^3$$

58. From $\frac{dx}{dy} = \frac{1}{y'}$, derive $\frac{d^2x}{dy^2} = -\frac{y''}{(y')^3}$ and $\frac{d^3x}{dy^3} = \frac{3(y'')^2 - y'y'''}{(y')^5}$.

In Problems 59 to 64, determine whether the given function has an inverse; if it does, find a formula for the inverse f^{-1} and calculate its derivative.

- **59.** f(x) = 1/x Ans. $x = f^{-1}(y) = 1/y$; $dx/dy = -x^2 = -1/y^2$
- **60.** $f(x) = \frac{1}{3}x + 4$ Ans. $x = f^{-1}(y) = 3y 12; dx/dy = 3.$

61.
$$f(x) = \sqrt{x-5}$$
 Ans. $x = f^{-1}(y) = y^2 + 5$; $dx/dy = 2y = 2\sqrt{x-5}$

88

62. $f(x) = x^2 + 2$ Ans. no inverse function

63.
$$f(x) = x^3$$

64.
$$f(x) = \frac{2x-1}{x+2}$$
 Ans. $x = f^{-1}(y) = -\frac{2y+1}{y-2};$

65. Find the points at which the function f(x) = |x + 2| is differentiable.

Ans. All points except x = -2

66. (GC) Use a graphing calculator to draw the graph of the parabola $y = x^2 - 2x$ and the curve $y = |x^2 - 2x|$. Find all points of discontinuity of the latter curve.

Ans. x = 0 and x = 2

67. Find a formula for the *n*th derivative of the following functions: (a) $f(x) = \frac{x}{x+2}$; (b) $f(x) = \sqrt{x}$.

Ans. (a)
$$f^{(n)}(x) = (-1)^{n+1} \frac{2n!}{(x+2)^{n+1}}$$

(b) $f^{(n)}(x) = (-1)^{n+1} \frac{3 \cdot 5 \cdot 7 \cdot \dots \cdot (2n-3)}{2n} x^{-(2n-1)/2}$

68. Find the second derivatives of the following functions:

(a)
$$f(x) = 2x - 7$$

(b) $f(x) = 3x^2 + 5x - 10$
(c) $f(x) = \frac{1}{x+4}$
(d) $f(x) = \sqrt{7-x}$

Ans. (a) 0; (b) 6; (c)
$$\frac{2}{(x+4)^3}$$
; (d) $-\frac{1}{4}\frac{1}{(7-x)^{3/2}}$

69. Prove Theorem 10.2.

Hints: (a) Use the intermediate value theorem to show that the range is an interval. That f is increasing Ans. or decreasing follows by an argument that uses the extreme value and intermediate value theorems. The continuity of f^{-1} is then derived easily.

(b)
$$\frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \frac{1}{\frac{f(f^{-1}(y)) - f(f^{-1}(y_0))}{f^{-1}(y) - f^{-1}(y_0)}} = \frac{1}{\frac{f(x) - f(x_0)}{x - x_0}}$$

By the continuity of f^{-1} , as $y \to y_0$, $x \to x_0$, and we get $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Ans.
$$x = f^{-1}(y) = \sqrt[3]{y}; \ \frac{dx}{dy} = \frac{1}{3x^2} = \frac{1}{3}y^{-2/3}$$

Ans. $x = f^{-1}(y) = -\frac{2y+1}{y-2}; \ \frac{dx}{dy} = \frac{5}{(y-2)^2}$