CHAPTER 10

Rules for Differentiating Functions

Differentiation

Recall that a function f is said to be differentiable at x_{0} if the derivative $f^{\prime}\left(x_{0}\right)$ exists. A function is said to be differentiable on a set if the function is differentiable at every point of the set. If we say that a function is differentiable, we mean that it is differentiable at every real number. The process of finding the derivative of a function is called differentiation.

Theorem 10.1 (Differentiation Formulas): In the following formulas, it is assumed that u, v, and w are functions that are differentiable at $x ; c$ and m are assumed to be constants.
(1) $\frac{d}{d x}(c)=0$ (The derivative of a constant function is zero.)
(2) $\frac{d}{d x}(x)=1$ (The derivative of the identity function is 1 .)
(3) $\frac{d}{d x}(c u)=c \frac{d u}{d x}$
(4) $\frac{d}{d x}(u+v+\ldots)=\frac{d u}{d x}+\frac{d v}{d x}+\ldots \quad$ (Sum Rule)
(5) $\frac{d}{d x}(u-v)=\frac{d u}{d x}-\frac{d v}{d x} \quad$ (Difference Rule)
(6) $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x} \quad$ (Product Rule)
(7) $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \quad$ provided that $v \neq 0 \quad$ (Quotient Rule)
(8) $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}} \quad$ provided that $x \neq 0$
(9) $\frac{d}{d x}\left(x^{m}\right)=m x^{m-1} \quad$ (Power Rule)

Note that formula (8) is a special case of formula (9) when $m=-1$. For proofs, see Problems 1-4.

EXAMPLE 10.1: $\quad D_{x}\left(x^{3}+7 x+5\right)=D_{x}\left(x^{3}\right)+D_{x}(7 x)+D_{x}(5) \quad$ (Sum Rule)

$$
\begin{aligned}
& =3 x^{2}+7 D_{x}(x)+0 \quad(\text { Power Rule, formulas (3) and (1)) } \\
& =3 x^{2}+7 \quad(\text { formula }(2))
\end{aligned}
$$

Every polynomial is differentiable, and its derivative can be computed by using the Sum Rule, Power Rule, and formulas (1) and (3).

Composite Functions. The Chain Rule

The composite function $f \circ g$ of functions g and f is defined as follows: $(f \circ g)(x)=f(g(x))$. The function g is applied first and then $f \cdot g$ is called the inner function, and f is called the outer function. $f \circ g$ is called the composition of g and f.

EXAMPLE 10.2: Let $f(x)=x^{2}$ and $g(x)=x+1$. Then:

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(x+1)=(x+1)^{2}=x^{2}+2 x+1 \\
& (g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=x^{2}+1
\end{aligned}
$$

Thus, in this case, $f \circ g \neq g \circ f$.
When f and g are differentiable, then so is their composition $f \circ g$. There are two procedures for finding the derivative of $f \circ g$. The first method is to compute an explicit formula for $f(g(x))$ and differentiate.

EXAMPLE 10.3: If $f(x)=x^{2}+3$ and $g(x)=2 x+1$, then

$$
y=f(g(x))=f(2 x+1)=(2 x+1)^{2}+3=4 x^{2}+4 x+4 \quad \text { and } \quad \frac{d y}{d x}=8 x+4
$$

Thus, $D_{x}(f \circ g)=8 x+4$.
The second method of computing the derivative of a composite function is based on the following rule.

Chain Rule

$$
D_{x}\left(f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right.
$$

Thus, the derivative of $f \circ g$ is the product of the derivative of the outer function f (evaluated at $g(x)$) and the derivative of the inner function (evaluated at x). It is assumed that g is differentiable at x and that f is differentiable at $g(x)$.

EXAMPLE 10.4: In Example 10.3, $f^{\prime}(x)=2 x$ and $g^{\prime}(x)=2$. Hence, by the Chain Rule,

$$
D_{x}\left(f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)=2 g(x) \cdot 2=4 g(x)=4(2 x+1)=8 x+4\right.
$$

Alternative Formulation of the Chain Rule

Let $u=g(x)$ and $y=f(u)$. Then the composite function of g and f is $y=f(u)=f(g(x))$, and we have the formula:

$$
\left.\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} \quad \text { (Chain Rule }\right)
$$

EXAMPLE 10.5: Let $y=u^{3}$ and $u=4 x^{2}-2 x+5$. Then the composite function $y=\left(4 x^{2}-2 x+5\right)^{3}$ has the derivative

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=3 u^{2}(8 x-2)=3\left(4 x^{2}-2 x+5\right)^{2}(8 x-2)
$$

Warning. In the Alternative Formulation of the Chain Rule, $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$, the y on the left denotes the composite function of x, whereas the y on the right denotes the original function of u. Likewise, the two occurrences of u have different meanings. This notational confusion is made up for by the simplicity of the alternative formulation.

Inverse Functions

Two functions f and g such that $g(f(x))=x$ and $f(g(y))=y$ are said to be inverse functions. Inverse functions reverse the effect of each other. Given an equation $y=f(x)$, we can find a formula for the inverse of f by solving the equation for x in terms of y.

EXAMPLE 10.6:

(a) Let $f(x)=x+1$. Solving the equation $y=x+1$ for x, we obtain $x=y-1$. Then the inverse g of f is given by the formula $g(y)=y-1$. Note that g reverses the effect of f and f reverses the effect of g.
(b) Let $f(x)=-x$. Solving $y=-x$ for x, we obtain $x=-y$. Hence, $g(y)=-y$ is the inverse of f. In this case, the inverse of f is the same function as f.
(c) Let $f(x)=\sqrt{x} . f$ is defined only for nonnegative numbers, and its range is the set of nonnegative numbers. Solving $y=\sqrt{x}$ for x, we get $x=y^{2}$, so that $g(y)=y^{2}$. Note that, since g is the inverse of f, g is only defined for nonnegative numbers, since the values of f are the nonnegative numbers. (Since $y=f(g(y))$, then, if we allowed g to be defined for negative numbers, we would have $-1=f(g(-1))=f(1)=1$, a contradiction.)
(d) The inverse of $f(x)=2 x-1$ is the function $g(y)=\frac{y+1}{2}$.

Notation

The inverse of f will be denoted f^{-1}.
Do not confuse this with the exponential notation for raising a number to the power -1 . The context will usually tell us which meaning is intended.

Not every function has an inverse function. For example, the function $f(x)=x^{2}$ does not possess an inverse. Since $f(1)=1=f(-1)$, an inverse function g would have to satisfy $g(1)=1$ and $g(1)=-1$, which is impossible. (However, if we restricted the function $f(x)=x^{2}$ to the domain $x \geq 0$, then the function $g(y)=\sqrt{y}$ would be an inverse function of f.)

The condition that a function f must satisfy in order to have an inverse is that f is one-to-one, that is, for any x_{1} and x_{2}, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Equivalently, f is one-to-one if and only if, for any x_{1} and x_{2}, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

EXAMPLE 10.7: Let us show that the function $f(x)=3 x+2$ is one-to-one. Assume $f\left(x_{1}\right)=f\left(x_{2}\right)$. Then $3 x_{1}+2=$ $3 x_{2}+2,3 x_{1}=3 x_{2}, x_{1}=x_{2}$. Hence, f is one-to-one. To find the inverse, solve $y=3 x+2$ for x, obtaining $x=\frac{y-2}{3}$. Thus, $f^{-1}(y)=\frac{y-2}{3}$. (In general, if we can solve $y=f(x)$ for x in terms of y, then we know that f is one-to-one.)

Theorem 10.2 (Differentiation Formula for Inverse Functions): Let f be one-to-one and continuous on an interval (a, b). Then:
(a) The range of f is an interval I (possibly infinite) and f is either increasing or decreasing. Moreover, f^{-1} is continuous on I.
(b) If f is differentiable at x_{0} and $f^{\prime}\left(x_{0}\right) \neq 0$, then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}$.

The latter equation is sometimes written

$$
\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}
$$

where $x=f^{-11}(y)$.
For the proof, see Problem 69.

EXAMPLE 10.8:

(a) Let $y=f(x)=x^{2}$ for $x>0$. Then $x=f^{-1}(y)=\sqrt{y}$. Since $\frac{d y}{d x}=2 x, \frac{d x}{d y}=\frac{1}{2 x}=\frac{1}{2 \sqrt{y}}$. Thus, $D_{y}(\sqrt{y})=\frac{1}{2 \sqrt{y}}$. (Note that this is a special case of Theorem 8.1(9) when $m=\frac{1}{2}$.)
(b) Let $y=f(x)=x^{3}$ for all x. Then $x=f^{-1}(y)=\sqrt[3]{y}=y^{1 / 3}$ for all y. Since $\frac{d y}{d x}=3 x^{2}, \frac{d x}{d y}=\frac{1}{3 x^{2}}=\frac{1}{3 y^{2 / 3}}$. This holds for all $y \neq 0$. (Note that $f^{-1}(0)=0$ and $f^{\prime}(0)=3(0)^{2}=0$.)

Higher Derivatives

If $y=f(x)$ is differentiable, its derivative y^{\prime} is also called the first derivative of f. If y^{\prime} is differentiable, its derivative is called the second derivative of f. If this second derivative is differentiable, then its derivative is called the third derivative of f, and so on.

Notation

First derivative: $\quad y^{\prime}, \quad f^{\prime}(x), \quad \frac{d y}{d x}, \quad D_{x} y$
Second derivative: $\quad y^{\prime \prime}, \quad f^{\prime \prime}(x), \frac{d^{2} y}{d x^{2}}, \quad D_{x}^{2} y$
Third derivative: $\quad y^{\prime \prime \prime}, \quad f^{\prime \prime \prime}(x), \frac{d^{3} y}{d x^{3}}, \quad D_{x}^{3} y$
$n^{\text {th }}$ derivative: $\quad y^{(n)}, \quad f^{(n)}, \quad \frac{d^{n} y}{d x^{n}}, \quad D_{x}^{n} y$

SOLVED PROBLEMS

1. Prove Theorem 10.1, (1)-(3): (1) $\frac{d}{d x}(c)=0$; (2) $\frac{d}{d x}(x)=1$; (3) $\frac{d}{d x}(c u)=c \frac{d u}{d x}$.

Remember that $\frac{d}{d x} f(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.
(1) $\frac{d}{d x} c=\lim _{\Delta x \rightarrow 0} \frac{c-c}{\Delta x}=\lim _{\Delta x \rightarrow 0} 0=0$
(2) $\frac{d}{d x}(x)=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)-x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}=\lim _{\Delta x \rightarrow 0} 1=1$
(3) $\frac{d}{d x}(c u)=\lim _{\Delta x \rightarrow 0} \frac{c u(x+\Delta x)-c u(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} c \frac{u(x+\Delta x)-u(x)}{\Delta x}$

$$
=c \lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x}=c \frac{d u}{d x}
$$

2. Prove Theorem 10.1, (4), (6), (7):
(4) $\frac{d}{d x}(u+v+\cdots)=\frac{d u}{d x}+\frac{d v}{d x}+\cdots$
(6) $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
(7) $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$ provided that $v \neq 0$
(4) It suffice to prove this for just two summands, u and v. Let $f(x)=u+v$. Then

$$
\begin{aligned}
\frac{f(x+\Delta x)-f(x)}{\Delta x} & =\frac{u(x+\Delta x)+v(x+\Delta x)-u(x)-v(x)}{\Delta x} \\
& =\frac{u(x+\Delta x)-u(x)}{\Delta x}+\frac{v(x+\Delta x)-v(x)}{\Delta x}
\end{aligned}
$$

Taking the limit as $\Delta x \rightarrow 0$ yields $\frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x}$.
(6) Let $f(x)=u v$. Then

$$
\begin{aligned}
\frac{f(x+\Delta x)-f(x)}{\Delta x} & =\frac{u(x+\Delta x) v(x+\Delta x)-u(x) v(x)}{\Delta x} \\
& =\frac{[u(x+\Delta x) v(x+\Delta x)-v(x) u(x+\Delta x)]+[v(x) u(x+\Delta x)-u(x) v(x)]}{\Delta x} \\
& =u(x+\Delta x) \frac{v(x+\Delta x)-v(x)}{\Delta x}+v(x) \frac{u(x+\Delta x)-u(x)}{\Delta x}
\end{aligned}
$$

Taking the limit as $\Delta x \rightarrow 0$ yields

$$
\frac{d}{d x}(u v)=u(x) \frac{d}{d x} v(x)+v(x) \frac{d}{d x} u(x)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Note that $\lim _{\Delta x \rightarrow 0} u(x+\Delta x)=u(x)$ because the differentiability of u implies its continuity.
(7) Set $f(x)=\frac{u}{v}=\frac{u(x)}{v(x)}$, then

$$
\begin{aligned}
\frac{f(x+\Delta x)-f(x)}{\Delta x} & =\frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x}=\frac{u(x+\Delta x) v(x)-u(x) v(x+\Delta x)}{\Delta x\{v(x) v(x+\Delta x)\}} \\
& =\frac{[u(x+\Delta x) v(x)-u(x) v(x)]-[u(x) v(x+\Delta x)-u(x) v(x)]}{\Delta x[v(x) v(x+\Delta x)]} \\
& =\frac{v(x) \frac{u(x+\Delta x)-u(x)}{\Delta x}-u(x) \frac{v(x+\Delta x)-v(x)}{\Delta x}}{v(x) v(x+\Delta x)}
\end{aligned}
$$

and for $\Delta x \rightarrow 0, \frac{d}{d x} f(x)=\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v(x) \frac{d}{d x} u(x)-u(x) \frac{d}{d x} v(x)}{[v(x)]^{2}}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
3. Prove Theorem 10.1(9): $D_{x}\left(x^{m}\right)=m x^{m-1}$, when m is a nonnegative integer.

Use mathematical induction. When $m=0$,

$$
D_{x}\left(x^{m}\right)=D_{x}\left(x^{0}\right)=D_{x}(1)=0=0 \cdot x^{-1}=m x^{m-1}
$$

Assume the formula is true for m. Then, by the Product Rule,

$$
\begin{aligned}
D_{x}\left(x^{m+1}\right) & =D_{x}\left(x^{m} \cdot x\right)=x^{m} D_{x}(x)+x D_{x}\left(x^{m}\right)=x^{m} \cdot 1+x \cdot m x^{m-1} \\
& =x^{m}+m x^{m}=(m+1) x^{m}
\end{aligned}
$$

Thus, the formula holds for $m+1$.
4. Prove Theorem 10.1(9): $D_{x}\left(x^{m}\right)=m x^{m-1}$, when m is a negative integer.

Let $m=-k$, where k is a positive integer. Then, by the Quotient Rule and Problem 3,

$$
\begin{aligned}
D_{x}\left(x^{m}\right) & =D_{x}\left(x^{-k}\right)=D_{x}\left(\frac{1}{x^{k}}\right) \\
& =\frac{x^{k} D_{x}(1)-1 \cdot D_{x}\left(x^{k}\right)}{\left(x^{k}\right)^{2}}=\frac{x^{k} \cdot 0-k x^{k-1}}{x^{2 k}} \\
& =-k \frac{x^{k-1}}{x^{2 k}}=-k x^{-k-1}=m x^{m-1}
\end{aligned}
$$

5. Differentiate $y=4+2 x-3 x^{2}-5 x^{3}-8 x^{4}+9 x^{5}$.

$$
\frac{d y}{d x}=0+2(1)-3(2 x)-5\left(3 x^{2}\right)-8\left(4 x^{3}\right)+9\left(5 x^{4}\right)=2-6 x-15 x^{2}-32 x^{3}+45 x^{4}
$$

6. Differentiate $y=\frac{1}{x}+\frac{3}{x^{2}}+\frac{2}{x^{3}}=x^{-1}+3 x^{-2}+2 x^{-3}$.

$$
\frac{d y}{d x}=-x^{-2}+3\left(-2 x^{-3}\right)+2\left(-3 x^{-4}\right)=-x^{-2}-6 x^{-3}-6 x^{-4}=-\frac{1}{x^{2}}-\frac{6}{x^{3}}-\frac{6}{x^{4}}
$$

7. Differentiate $y=2 x^{1 / 2}+6 x^{1 / 3}-2 x^{3 / 2}$.

$$
\frac{d y}{d x}=2\left(\frac{1}{2} x^{-1 / 2}\right)+6\left(\frac{1}{3} x^{-2 / 3}\right)-2\left(\frac{3}{2} x^{1 / 2}\right)=x^{-1 / 2}+2 x^{-2 / 3}-3 x^{1 / 2}=\frac{1}{x^{1 / 2}}+\frac{2}{x^{2 / 3}}-3 x^{1 / 2}
$$

8. Differentiate $y=\frac{2}{x^{1 / 2}}+\frac{6}{x^{1 / 3}}-\frac{2}{x^{3 / 2}}-\frac{4}{x^{3 / 4}}=2 x^{-1 / 2}+6 x^{-1 / 3}-2 x^{-3 / 2}-4 x^{-3 / 4}$.

$$
\begin{aligned}
\frac{d y}{d x} & =2\left(-\frac{1}{2} x^{-3 / 2}\right)+6\left(-\frac{1}{3} x^{-4 / 3}\right)-2\left(-\frac{3}{2} x^{-5 / 2}\right)-4\left(-\frac{3}{4} x^{-7 / 4}\right) \\
& =-x^{-3 / 2}-2 x^{-4 / 3}+3 x^{-5 / 2}+3 x^{-7 / 4}=-\frac{1}{x^{3 / 2}}-\frac{2}{x^{4 / 3}}+\frac{3}{x^{5 / 2}}+\frac{3}{x^{7 / 4}}
\end{aligned}
$$

9. Differentiate $y=\sqrt[3]{3 x^{2}}-\frac{1}{\sqrt{5 x}}=\left(3 x^{2}\right)^{1 / 3}-(5 x)^{-1 / 2}$.

$$
\frac{d y}{d x}=\frac{1}{3}\left(3 x^{2}\right)^{-2 / 3}(6 x)-\left(-\frac{1}{2}\right)(5 x)^{-3 / 2}(5)=\frac{2 x}{\left(9 x^{4}\right)^{1 / 3}}+\frac{5}{2(5 x)(5 x)^{1 / 2}}=\frac{2}{\sqrt[3]{9 x}}+\frac{1}{2 x \sqrt{5 x}}
$$

10. Prove the Power Chain Rule: $D_{x}\left(y^{m}\right)=m y^{m-1} D_{x} y$.

This is simply the Chain Rule, where the outer function is $f(x)=x^{m}$ and the inner function is y.
11. Differentiate $s=\left(t^{2}-3\right)^{4}$.

By the Power Chain Rule, $\frac{d s}{d t}=4\left(t^{2}-3\right)^{3}(2 t)=8 t\left(t^{2}-3\right)^{3}$.
12. Differentiate (a) $z=\frac{3}{\left(a^{2}-y^{2}\right)^{2}}=3\left(a^{2}-y^{2}\right)^{-2}$; (b) $f(x)=\sqrt{x^{2}+6 x+3}=\left(x^{2}+6 x+3\right)^{1 / 2}$.
(a) $\frac{d z}{d y}=3(-2)\left(a^{2}-y^{2}\right)^{-3} \frac{d}{d y}\left(a^{2}-y^{2}\right)=3(-2)\left(a^{2}-y^{2}\right)^{-3}(-2 y)=\frac{12 y}{\left(a^{2}-y^{2}\right)^{3}}$
(b) $f^{\prime}(x)=\frac{1}{2}\left(x^{2}+6 x+3\right)^{-1 / 2} \frac{d}{d x}\left(x^{2}+6 x+3\right)=\frac{1}{2}\left(x^{2}+6 x+3\right)^{-1 / 2}(2 x+6)=\frac{x+3}{\sqrt{\left.x^{2}+6 x+3\right)}}$
13. Differentiate $y=\left(x^{2}+4\right)^{2}\left(2 x^{3}-1\right)^{3}$.

Use the Product Rule and the Power Chain Rule:

$$
\begin{aligned}
y^{\prime} & =\left(x^{2}+4\right)^{2} \frac{d}{d x}\left(2 x^{3}-1\right)^{3}+\left(2 x^{3}-1\right)^{3} \frac{d}{d x}\left(x^{2}+4\right)^{2} \\
& =\left(x^{2}+4\right)^{2}(3)\left(2 x^{3}-1\right)^{2} \frac{d}{d x}\left(2 x^{3}-1\right)+\left(2 x^{3}-1\right)^{3}(2)\left(x^{2}+4\right) \frac{d}{d x}\left(x^{2}+4\right) \\
& =\left(x^{2}+4\right)^{2}(3)\left(2 x^{3}-1\right)^{2}\left(6 x^{2}\right)+\left(2 x^{3}-1\right)^{3}(2)\left(x^{2}+4\right)(2 x) \\
& =2 x\left(x^{2}+4\right)\left(2 x^{3}-1\right)^{2}\left(13 x^{3}+36 x-2\right)
\end{aligned}
$$

14. Differentiate $y=\frac{3-2 x}{3+2 x}$.

Use the Quotient Rule:

$$
y^{\prime}=\frac{(3+2 x) \frac{d}{d x}(3-2 x)-(3-2 x) \frac{d}{d x}(3+2 x)}{(3+2 x)^{2}}=\frac{(3+2 x)(-2)-(3-2 x)(2)}{(3+2 x)^{2}}=\frac{-12}{(3+2 x)^{2}}
$$

15. Differentiate $y=\frac{x^{2}}{\sqrt{4-x^{2}}}=\frac{x^{2}}{\left(4-x^{2}\right)^{1 / 2}}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\left(4-x^{2}\right)^{1 / 2} \frac{d}{d x}\left(x^{2}\right)-x^{2} \frac{d}{d x}\left(4-x^{2}\right)^{1 / 2}}{4-x^{2}}=\frac{\left(4-x^{2}\right)^{1 / 2}(2 x)-\left(x^{2}\right)\left(\frac{1}{2}\right)\left(4-x^{2}\right)^{-1 / 2}(-2 x)}{4-x^{2}} \\
& =\frac{\left(4-x^{2}\right)^{1 / 2}(2 x)+x^{3}\left(4-x^{2}\right)^{-1 / 2}}{4-x^{2}} \frac{\left(4-x^{2}\right)^{1 / 2}}{\left(4-x^{2}\right)^{1 / 2}}=\frac{2 x\left(4-x^{2}\right)+x^{3}}{\left(4-x^{2}\right)^{3 / 2}}=\frac{8 x-x^{3}}{\left(4-x^{2}\right)^{3 / 2}}
\end{aligned}
$$

16. Find $\frac{d y}{d x}$, given $x=y \sqrt{1-y^{2}}$.

By the Product Rule,

$$
\frac{d x}{d y}=y \cdot \frac{1}{2}\left(1-y^{2}\right)^{-1 / 2}(-2 y)+\left(1-y^{2}\right)^{1 / 2}=\frac{1-2 y^{2}}{\sqrt{1-y^{2}}}
$$

By Theorem 10.2,

$$
\frac{d y}{d x}=\frac{1}{d x / d y}=\frac{\sqrt{1-y^{2}}}{1-2 y^{2}}
$$

17. Find the slope of the tangent line to the curve $x=y^{2}-4 y$ at the points where the curve crosses the y axis.

The intersection points are $(0,0)$ and $(0,4)$. We have $\frac{d x}{d y}=2 y-4$ and so $\frac{d y}{d x}=\frac{1}{d x / d y}=\frac{1}{2 y-4}$. At $(0,0)$ the slope is $-\frac{1}{4}$, and at $(0,4)$ the slope is $\frac{1}{4}$.
18. Derive the Chain Rule: $D_{x}\left(f(g(x))=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right)$.

Let $H=f \circ g$. Let $y=g(x)$ and $K=g(x+h)-g(x)$. Also, let $F(t)=\frac{f(y+t)-f(y)}{t}-f^{\prime}(y)$ for $t \neq 0$.
Since $\lim _{t \rightarrow 0} F(t)=0$, let $F(0)=0$. Then $f(y+t)-f(y)=t\left(F(t)+f^{\prime}(y)\right)$ for all t. When $t=K$,

Hence,

$$
f(y+K)-f(y)=K\left(F(K)+f^{\prime}(y)\right)
$$

$$
f(g(x+h))-f(g(x))=K\left(F(K)+f^{\prime}(y)\right)
$$

$$
\frac{H(x+h)-H(x)}{h}=\frac{K}{h}\left(F(K)+f^{\prime}(y)\right)
$$

Now,

$$
\lim _{h \rightarrow 0} \frac{K}{h}=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=g^{\prime}(x)
$$

Since $\lim _{h \rightarrow 0} K=0, \lim _{h \rightarrow 0} F(K)=0$. Hence,

$$
H^{\prime}(x)=f^{\prime}(y) g^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

19. Find $\frac{d y}{d x}$, given $y=\frac{u^{2}-1}{u^{2}+1}$ and $u=\sqrt[3]{x^{2}+2}$.

$$
\frac{d y}{d u}=\frac{4 u}{\left(u^{2}+1\right)^{2}} \quad \text { and } \quad \frac{d u}{d x}=\frac{2 x}{3\left(x^{2}+2\right)^{2 / 3}}=\frac{2 x}{3 u^{2}}
$$

Then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}=\frac{4 u}{\left(u^{2}+1\right)^{2}} \frac{2 x}{3 u^{2}}=\frac{8 x}{3 u\left(u^{2}+1\right)^{2}}
$$

20. A point moves along the curve $y=x^{3}-3 x+5$ so that $x=\frac{1}{2} \sqrt{t}+3$, where t is time. At what rate is y changing when $t=4$?

We must find the value of $d y / d t$ when $t=4$. First, $d y / d x=3\left(x^{2}-1\right)$ and $d x / d t=1 /(4 \sqrt{t})$. Hence,

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{3\left(x^{2}-1\right)}{4 \sqrt{t}}
$$

When $t=4, x=\frac{1}{2} \sqrt{4}+3=4$, and $\frac{d y}{d t}=\frac{3(16-1)}{4(2)}=\frac{45}{8}$ units per unit of time.
21. A point moves in the plane according to equations $x=t^{2}+2 t$ and $y=2 t^{3}-6 t$. Find $d y / d x$ when $t=0,2$, and 5 .

Since the first equation may be solved for t and this result substituted for t in the second equation, y is a function of x. We have $d y / d t=6 t^{2}-6$. Since $d x / d t=2 t+2$, Theorem 8.2 gives us $d t / d x=1 /(2 t+2)$. Then

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=6\left(t^{2}-1\right) \frac{1}{2(t+1)}=3(t-1) .
$$

The required values of $d y / d x$ are -3 at $t=0,3$ at $t=2$, and 12 at $t=5$.
22. If $y=x^{2}-4 x$ and $x=\sqrt{2 t^{2}+1}$, find $d y / d t$ when $t=\sqrt{2}$.

$$
\frac{d y}{d x}=2(x-2) \quad \text { and } \quad \frac{d x}{d t}=\frac{2 t}{\left(2 t^{2}+1\right)^{1 / 2}}
$$

So

$$
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{4 t(x-2)}{\left(2 t^{2}+1\right)^{1 / 2}}
$$

When $t=\sqrt{2}, x=\sqrt{5}$ and $\frac{d y}{d t}=\frac{4 \sqrt{2}(\sqrt{5}-2)}{\sqrt{5}}=\frac{4 \sqrt{2}}{5}(5-2 \sqrt{5})$.
23. Show that the function $f(x)=x^{3}+3 x^{2}-8 x+2$ has derivatives of all orders and find them.

$$
f^{\prime}(x)=3 x^{2}+6 x-8, f^{\prime \prime}(x)=6 x+6, f^{\prime \prime \prime}(x)=6, \text { and all derivatives of higher order are zero. }
$$

24. Investigate the successive derivatives of $f(x)=x^{4 / 3}$ at $x=0$.

$$
\begin{array}{rlrl}
f^{\prime}(x)=\frac{4}{3} x^{1 / 3} & \text { and } & f^{\prime}(0)=0 \\
f^{\prime \prime}(x)=\frac{4}{9} x^{-2 / 3} & =\frac{4}{9 x^{2 / 3}} & \text { and } & f^{\prime \prime}(0) \text { does not exist }
\end{array}
$$

$f^{(n)}(0)$ does not exist for $n \geq 2$.
25. If $f(x)=\frac{2}{1-x}=2(1-x)^{-1}$, find a formula for $f^{(n)}(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=2(-1)(1-x)^{-2}(-1)=2(1-x)^{-2}=2(1!)(1-x)^{-2} \\
& f^{\prime \prime}(x)=2(1!)(-2)(1-x)^{-3}(-1)=2(2!)(1-x)^{-3} \\
& f^{\prime \prime \prime}(x)=2(2!)(-3)(1-x)^{-4}(-1)=2(3!)(1-x)^{-4}
\end{aligned}
$$

which suggest $f^{(n)}(x)=2(n!)(1-x)^{-(n+1)}$. This result may be established by mathematical induction by showing that if $f^{(k)}(x)=2(k!)(1-x)^{-(k+1)}$, then

$$
f^{(k+1)}(x)=-2(k!)(k+1)(1-x)^{-(k+2)}(-1)=2[(k+1)!](1-x)^{-(k+2)}
$$

SUPPLEMENTARY PROBLEMS

26. Prove Theorem 10.1 (5): $D_{x}(u-v)=D_{x} u-D_{x} v$.

Ans. $\quad D_{x}(u-v)=D_{x}(u+(-v))=D_{x} u+D_{x}(-v)=D_{x} u+D_{x}((-1) v)=D_{x} u+(-1) D_{x} v=D_{x} u-D_{x} v$ by Theorem 8.1(4, 3)

In Problems 27 to 45, find the derivative.
27. $y=x^{5}+5 x^{4}-10 x^{2}+6$
28. $y=3 x^{1 / 2}-x^{3 / 2}+2 x^{-1 / 2}$
29. $y=\frac{1}{2 x^{2}}+\frac{4}{\sqrt{x}}=\frac{1}{2} x^{-2}+4 x^{-1 / 2}$
30. $y=\sqrt{2 x}+2 \sqrt{x}$
31. $f(t)=\frac{2}{\sqrt{t}}+\frac{6}{\sqrt[3]{t}}$
32. $y=(1-5 x)^{6}$
33. $f(x)=\left(3 x-x^{3}+1\right)^{4}$
34. $y=\left(3+4 x-x^{2}\right)^{1 / 2}$
35. $\theta=\frac{3 r+2}{2 r+3}$
36. $y=\left(\frac{x}{1+x}\right)^{5}$
37. $y=2 x^{2} \sqrt{2-x}$
38. $f(x)=x \sqrt{3-2 x^{2}}$
39. $y=(x-1) \sqrt{x^{2}-2 x+2}$
40. $z=\frac{w}{\sqrt{1-4 w^{2}}}$
41. $y=\sqrt{1+\sqrt{x}}$
42. $f(x)=\sqrt{\frac{x-1}{x+1}}$
43. $y=\left(x^{2}+3\right)^{4}\left(2 x^{3}-5\right)^{3}$
44. $s=\frac{t^{2}+2}{3-t^{2}}$
45. $y=\left(\frac{x^{2}-1}{2 x^{3}+1}\right)^{4}$

Ans. $\frac{d y}{d x}=5 x\left(x^{3}+4 x^{2}-4\right)$
Ans. $\frac{d y}{d x}=\frac{3}{2 \sqrt{x}}-\frac{3}{2} \sqrt{x}-1 / x^{3 / 2}$
Ans. $\frac{d y}{d x}=-\frac{1}{x^{3}}-\frac{2}{x^{3 / 2}}$

Ans. $y^{\prime}=(1+\sqrt{2}) / \sqrt{2 x}$
Ans. $\quad f^{\prime}(t)=-\frac{t^{1 / 2}+2 t^{2 / 3}}{t^{2}}$

Ans. $\quad y^{\prime}=-30(1-5 x)^{5}$

Ans. $f^{\prime}(x)=12\left(1-x^{2}\right)\left(3 x-x^{3}+1\right)^{3}$

Ans. $y^{\prime}=(2-x) / y$

Ans. $\frac{d \theta}{d r}=\frac{5}{(2 r+3)^{2}}$
Ans. $y^{\prime}=\frac{5 x^{4}}{(1+x)^{6}}$
Ans. $y^{\prime}=\frac{x(8-5 x)}{\sqrt{2-x}}$
Ans. $f^{\prime}(x)=\frac{3-4 x^{2}}{\sqrt{3-2 x^{2}}}$
Ans. $\frac{d y}{d x}=\frac{2 x^{2}-4 x+3}{\sqrt{x^{2}-2 x+2}}$
Ans. $\quad \frac{d z}{d w}=\frac{1}{\left(1-4 w^{2}\right)^{3 / 2}}$
Ans. $\quad y^{\prime}=\frac{1}{4 \sqrt{x} \sqrt{1+\sqrt{x}}}$
Ans. $f^{\prime}(x)=\frac{1}{(x+1) \sqrt{x^{2}-1}}$
Ans. $\quad y^{\prime}=2 x\left(x^{2}+3\right)^{3}\left(2 x^{3}-5\right)^{2}\left(17 x^{3}+27 x-20\right)$

Ans. $\quad \frac{d s}{d t}=\frac{10 t}{\left(3-t^{2}\right)^{2}}$
Ans. $y^{\prime}=\frac{8 x\left(1+3 x-x^{3}\right)\left(x^{2}-1\right)^{3}}{\left(2 x^{3}+1\right)^{5}}$
46. For each of the following, compute $d y / d x$ by two different methods and check that the results are the same:
(a) $x=(1+2 y)^{3}$
(b) $x=\frac{1}{2+y}$.

In Problems 47 to 50, use the Chain Rule to find $\frac{d y}{d x}$.
47. $y=\frac{u-1}{u+1}, u=\sqrt{x}$

Ans. $\quad \frac{d y}{d x}=\frac{1}{\sqrt{x}(1+\sqrt{x})^{2}}$
48. $y=u^{3}+4, u=x^{2}+2 x$

Ans. $\frac{d y}{d x}=6 x^{2}(x+2)^{2}(x+1)$
49. $y=\sqrt{1+u}, u=\sqrt{x}$

Ans. See Problem 42.
50. $y=\sqrt{u}, u=v(3-2 v), v=x^{2}$

Ans. See Problem 39.
$\left(\right.$ Hint: $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d v} \frac{d v}{d x}$.)
In Problems 51 to 54, find the indicated derivative.
51. $y=3 x^{4}-2 x^{2}+x-5$; $y^{\prime \prime \prime}$

Ans. $y^{\prime \prime \prime}=72 x$
52. $y=\frac{1}{\sqrt{x}} ; y^{(4)}$

Ans. $\quad y^{(4)}=\frac{105}{16 x^{9 / 2}}$
53. $f(x)=\sqrt{2-3 x^{2}} ; f^{\prime \prime}(x)$

Ans. $f^{\prime \prime}(x)=-\frac{6}{\left(2-3 x^{2}\right)^{3 / 2}}$
54. $y=\frac{x}{\sqrt{x-1}} ; y^{\prime \prime}$

$$
y^{\prime \prime}=\frac{4-x}{4(x-1)^{5 / 2}}
$$

In Problems 55 and 56, find a formula for the nth derivative.
55. $y=\frac{1}{x^{2}}$

Ans. $y^{(n)}=\frac{(-1)^{n}[(n+1)!]}{x^{n+2}}$
56. $f(x)=\frac{1}{3 x+2}$

Ans. $\quad f^{(n)}(x)=(-1)^{n} \frac{3^{n}(n!)}{(3 x+2)^{n+1}}$
57. If $y=f(u)$ and $u=g(x)$, show that
(a) $\frac{d^{2} y}{d x^{2}}=\frac{d y}{d u} \cdot \frac{d^{2} u}{d x^{2}}+\frac{d^{2} y}{d u^{2}}\left(\frac{d u}{d x}\right)^{2}$
(b) $\frac{d^{3} y}{d x^{3}}=\frac{d y}{d u} \cdot \frac{d^{3} u}{d x^{3}}+3 \frac{d^{2} y}{d u^{2}} \cdot \frac{d^{2} u}{d x^{2}} \cdot \frac{d u}{d x}+\frac{d^{3} y}{d u^{3}}\left(\frac{d u}{d x}\right)^{3}$
58. From $\frac{d x}{d y}=\frac{1}{y^{\prime}}$, derive $\frac{d^{2} x}{d y^{2}}=-\frac{y^{\prime \prime}}{\left(y^{\prime}\right)^{3}}$ and $\frac{d^{3} x}{d y^{3}}=\frac{3\left(y^{\prime \prime}\right)^{2}-y^{\prime} y^{\prime \prime \prime}}{\left(y^{\prime}\right)^{5}}$.

In Problems 59 to 64, determine whether the given function has an inverse; if it does, find a formula for the inverse f^{-1} and calculate its derivative.
59. $f(x)=1 / x$

Ans. $\quad x=f^{-1}(y)=1 / y ; d x / d y=-x^{2}=-1 / y^{2}$
60. $f(x)=\frac{1}{3} x+4$

Ans. $\quad x=f^{-1}(y)=3 y-12 ; d x / d y=3$.
61. $f(x)=\sqrt{x-5}$

Ans. $\quad x=f^{-1}(y)=y^{2}+5 ; \quad d x / d y=2 y=2 \sqrt{x-5}$
62. $f(x)=x^{2}+2$
63. $f(x)=x^{3}$
64. $f(x)=\frac{2 x-1}{x+2}$

Ans. no inverse function

Ans. $\quad x=f^{-1}(y)=\sqrt[3]{y} ; \quad \frac{d x}{d y}=\frac{1}{3 x^{2}}=\frac{1}{3} y^{-2 / 3}$
Ans. $\quad x=f^{-1}(y)=-\frac{2 y+1}{y-2} ; \frac{d x}{d y}=\frac{5}{(y-2)^{2}}$
65. Find the points at which the function $f(x)=|x+2|$ is differentiable.

Ans. All points except $x=-2$
66. (GC) Use a graphing calculator to draw the graph of the parabola $y=x^{2}-2 x$ and the curve $y=\left|x^{2}-2 x\right|$. Find all points of discontinuity of the latter curve.

Ans. $x=0$ and $x=2$
67. Find a formula for the nth derivative of the following functions: (a) $f(x)=\frac{x}{x+2}$; (b) $f(x)=\sqrt{x}$.

Ans.
(a) $f^{(n)}(x)=(-1)^{n+1} \frac{2 n!}{(x+2)^{n+1}}$
(b) $f^{(n)}(x)=(-1)^{n+1} \frac{3 \cdot 5 \cdot 7 \cdot \cdots \cdot(2 n-3)}{2 n} x^{-(2 n-1) / 2}$
68. Find the second derivatives of the following functions:
(a) $f(x)=2 x-7$
(b) $f(x)=3 x^{2}+5 x-10$
(c) $f(x)=\frac{1}{x+4}$
(d) $f(x)=\sqrt{7-x}$

Ans.
(a) 0 ; (b)
; (c) $\frac{2}{(x+4)^{3}}$;
(d) $-\frac{1}{4} \frac{1}{(7-x)^{3 / 2}}$
69. Prove Theorem 10.2.

Ans. Hints: (a) Use the intermediate value theorem to show that the range is an interval. That f is increasing or decreasing follows by an argument that uses the extreme value and intermediate value theorems. The continuity of f^{-1} is then derived easily.
(b) $\frac{f^{-1}(y)-f^{-1}\left(y_{0}\right)}{y-y_{0}}=\frac{1}{\frac{f\left(f^{-1}(y)\right)-f\left(f^{-1}\left(y_{0}\right)\right)}{f^{-1}(y)-f^{-1}\left(y_{0}\right)}}=\frac{1}{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}}$

By the continuity of f^{-1}, as $y \rightarrow y_{0}, x \rightarrow x_{0}$, and we get $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}$.

