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Sequences

DEFINITION OF A SEQUENCE

A sequence is a set of numbers u1; u2; u3; . . . in a definite order of arrangement (i.e., a correspondence
with the natural numbers) and formed according to a definite rule. Each number in the sequence is
called a term; un is called the nth term. The sequence is called finite or infinite according as there are or
are not a finite number of terms. The sequence u1; u2; u3; . . . is also designated briefly by fung.
EXAMPLES. 1. The set of numbers 2; 7; 12; 17; . . . ; 32 is a finite sequence; the nth term is given by

un ¼ 2 þ 5ðn � 1Þ ¼ 5n � 3, n ¼ 1; 2; . . . ; 7.

2. The set of numbers 1; 1=3; 1=5; 1=7; . . . is an infinite sequence with nth term un ¼ 1=ð2n � 1Þ,
n ¼ 1; 2; 3; . . . .

Unless otherwise specified, we shall consider infinite sequences only.

LIMIT OF A SEQUENCE

A number l is called the limit of an infinite sequence u1; u2; u3; . . . if for any positive number � we can
find a positive number N depending on � such that jun � lj < � for all integers n > N. In such case we
write lim

n!1 un ¼ l.

EXAMPLE . If un ¼ 3 þ 1=n ¼ ð3n þ 1Þ=n, the sequence is 4; 7=2; 10=3; . . . and we can show that lim
n!1 un ¼ 3.

If the limit of a sequence exists, the sequence is called convergent; otherwise, it is called divergent. A
sequence can converge to only one limit, i.e., if a limit exists, it is unique. See Problem 2.8.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence
u1; u2; u3; . . . has a limit l if the successive terms get ‘‘closer and closer’’ to l. This is often used to
provide a ‘‘guess’’ as to the value of the limit, after which the definition is applied to see if the guess is
really correct.

THEOREMS ON LIMITS OF SEQUENCES

If lim
n!1 an ¼ A and lim

n!1 bn ¼ B, then

1. lim
n!1ðan þ bnÞ ¼ lim

n!1 an þ lim
n!1 bn ¼ A þ B

2. lim
n!1ðan � bnÞ ¼ lim

n!1 an � lim
n!1 bn ¼ A � B

3. lim
n!1ðan � bnÞ ¼ ð lim

n!1 anÞð lim
n!1 bnÞ ¼ AB
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4. lim
n!1

an
bn

¼
lim
n!1 an

lim
n!1 bn

¼ A

B
if lim

n!1 bn ¼ B 6¼ 0

If B ¼ 0 and A 6¼ 0, lim
n!1

an
bn

does not exist.

If B ¼ 0 and A ¼ 0, lim
n!1

an
bn

may or may not exist.

5. lim
n!1 ap

n ¼ ð lim
n!1 anÞ p ¼ Ap, for p ¼ any real number if Ap exists.

6. lim
n!1 pan ¼ p

liman

n!1 ¼ pA, for p ¼ any real number if pA exists.

INFINITY

We write lim
n!1 an ¼ 1 if for each positive number M we can find a positive number N (depending on

M) such that an > M for all n > N. Similarly, we write lim
n!1 an ¼ �1 if for each positive number M we

can find a positive number N such that an < �M for all n > N. It should be emphasized that 1 and
�1 are not numbers and the sequences are not convergent. The terminology employed merely
indicates that the sequences diverge in a certain manner. That is, no matter how large a number in
absolute value that one chooses there is an n such that the absolute value of an is greater than that
quantity.

BOUNDED, MONOTONIC SEQUENCES

If un @M for n ¼ 1; 2; 3; . . . ; where M is a constant (independent of n), we say that the sequence
fung is bounded above and M is called an upper bound. If un A m, the sequence is bounded below and m is
called a lower bound.

If m@ un @M the sequence is called bounded. Often this is indicated by junj@ P. Every
convergent sequence is bounded, but the converse is not necessarily true.

If unþ1 A un the sequence is called monotonic increasing; if unþ1 > un it is called strictly increasing.
Similarly, if unþ1 @ un the sequence is called monotonic decreasing, while if unþ1 < un it is strictly

decreasing.

EXAMPLES. 1. The sequence 1; 1:1; 1:11; 1:111; . . . is bounded and monotonic increasing. It is also strictly
increasing.

2. The sequence 1;�1; 1;�1; 1; . . . is bounded but not monotonic increasing or decreasing.
3. The sequence �1;�1:5;�2;�2:5;�3; . . . is monotonic decreasing and not bounded. However, it

is bounded above.

The following theorem is fundamental and is related to the Bolzano–Weierstrass theorem (Chapter
1, Page 6) which is proved in Problem 2.23.

Theorem. Every bounded monotonic (increasing or decreasing) sequence has a limit.

LEAST UPPER BOUND AND GREATEST LOWER BOUND OF A SEQUENCE

A number M is called the least upper bound (l.u.b.) of the sequence fung if un @M, n ¼ 1; 2; 3; . . .
while at least one term is greater than M � � for any � > 0.

A number �mm is called the greatest lower bound (g.l.b.) of the sequence fung if un A �mm, n ¼ 1; 2; 3; . . .
while at least one term is less than �mm þ � for any � > 0.

Compare with the definition of l.u.b. and g.l.b. for sets of numbers in general (see Page 6).

24 SEQUENCES [CHAP. 2



LIMIT SUPERIOR, LIMIT INFERIOR

A number �ll is called the limit superior, greatest limit or upper limit (lim sup or lim) of the sequence

fung if infinitely many terms of the sequence are greater than �ll � � while only a finite number of terms are

greater than �ll þ �, where � is any positive number.

A number l is called the limit inferior, least limit or lower limit (lim inf or lim) of the sequence fung if
infintely many terms of the sequence are less than l þ � while only a finite number of terms are less than

l � �, where � is any positive number.

These correspond to least and greatest limiting points of general sets of numbers.

If infintely many terms of fung exceed any positive number M, we define lim sup fung ¼ 1. If

infinitely many terms are less than �M, where M is any positive number, we define lim inf fung ¼ �1.

If lim
n!1 un ¼ 1, we define lim sup fung ¼ lim inf fung ¼ 1.

If lim
n!1 un ¼ �1, we define lim sup fung ¼ lim inf fung ¼ �1.

Although every bounded sequence is not necessarily convergent, it always has a finite lim sup and

lim inf.

A sequence fung converges if and only if lim sup un ¼ lim inf un is finite.

NESTED INTERVALS

Consider a set of intervals ½an; bn�, n ¼ 1; 2; 3; . . . ; where each interval is contained in the preceding

one and lim
n!1ðan � bnÞ ¼ 0. Such intervals are called nested intervals.

We can prove that to every set of nested intervals there corresponds one and only one real number.

This can be used to establish the Bolzano–Weierstrass theorem of Chapter 1. (See Problems 2.22 and

2.23.)

CAUCHY’S CONVERGENCE CRITERION

Cauchy’s convergence criterion states that a sequence fung converges if and only if for each � > 0 we

can find a number N such that jup � uqj < � for all p; q > N. This criterion has the advantage that one

need not know the limit l in order to demonstrate convergence.

INFINITE SERIES

Let u1; u2; u3; . . . be a given sequence. Form a new sequence S1;S2;S3; . . . where

S1 ¼ u1;S2 ¼ u1 þ u2;S3 ¼ u1 þ u2 þ u3; . . . ;Sn ¼ u1 þ u2 þ u3 þ � � � þ un; . . .

where Sn, called the nth partial sum, is the sum of the first n terms of the sequence fung.
The sequence S1;S2;S3; . . . is symbolized by

u1 þ u2 þ u3 þ � � � ¼
X1
n¼1

un

which is called an infinite series. If lim
n!1Sn ¼ S exists, the series is called convergent and S is its sum,

otherwise the series is called divergent.

Further discussion of infinite series and other topics related to sequences is given in Chapter 11.
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Solved Problems

SEQUENCES

2.1. Write the first five terms of each of the following sequences.

ðaÞ 2n � 1

3n þ 2

� �

ðbÞ 1 � ð�1Þn
n3

� �

ðcÞ ð�1Þn�1

2 � 4 � 6 � � � 2n

( )

ðdÞ 1

2
þ 1

4
þ 1

8
þ � � � þ 1

2n

� �

ðeÞ ð�1Þn�1x2n�1

ð2n � 1Þ!

( )

ðaÞ 1

5
;
3

8
;
5

11
;
7

14
;
9

17

ðbÞ 2

13
; 0;

2

33
; 0;

2

53

ðcÞ 1

2
;
�1

2 � 4 ;
1

2 � 4 � 6 ;
�1

2 � 4 � 6 � 8 ;
1

2 � 4 � 6 � 8 � 10

ðdÞ 1

2
;
1

2
þ 1

4
;
1

2
þ 1

4
þ 1

8
;
1

2
þ 1

4
þ 1

8
þ 1

16
;
1

2
þ 1

4
þ 1

8
þ 1

16
þ 1

32

ðeÞ x

1!
;
�x3

3!
;
x5

5!
;
�x7

7!
;
x9

9!

Note that n! ¼ 1 � 2 � 3 � 4 � � � n. Thus 1! ¼ 1, 3! ¼ 1 � 2 � 3 ¼ 6, 5! ¼ 1 � 2 � 3 � 4 � 5 ¼ 120, etc. We define

0! ¼ 1.

2.2. Two students were asked to write an nth term for the sequence 1; 16; 81; 256; . . . and to write the
5th term of the sequence. One student gave the nth term as un ¼ n4. The other student, who did
not recognize this simple law of formation, wrote un ¼ 10n3 � 35n2 þ 50n � 24. Which student
gave the correct 5th term?

If un ¼ n4, then u1 ¼ 14 ¼ 1, u2 ¼ 24 ¼ 16, u3 ¼ 34 ¼ 81, u4 ¼ 44 ¼ 256, which agrees with the first four
terms of the sequence. Hence the first student gave the 5th term as u5 ¼ 54 ¼ 625:

If un ¼ 10n3 � 35n2 þ 50n � 24, then u1 ¼ 1; u2 ¼ 16; u3 ¼ 81; u4 ¼ 256, which also agrees with the first
four terms given. Hence, the second student gave the 5th term as u5 ¼ 601:

Both students were correct. Merely giving a finite number of terms of a sequence does not define a
unique nth term. In fact, an infinite number of nth terms is possible.
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LIMIT OF A SEQUENCE

2.3. A sequence has its nth term given by un ¼ 3n � 1

4n þ 5
. (a) Write the 1st, 5th, 10th, 100th, 1000th,

10,000th and 100,000th terms of the sequence in decimal form. Make a guess as to the limit of
this sequence as n ! 1. (b) Using the definition of limit verify that the guess in (a) is actually
correct.

ðaÞ n ¼ 1 n ¼ 5 n ¼ 10 n ¼ 100 n ¼ 1000 n ¼ 10,000 n ¼ 100,000

:22222 . . . :56000 . . . :64444 . . . :73827 . . . :74881 . . . :74988 . . . :74998 . . .

A good guess is that the limit is :75000 . . . ¼ 3
4. Note that it is only for large enough values of n that

a possible limit may become apparent.

(b) We must show that for any given � > 0 (no matter how small) there is a number N (depending on �)
such that jun � 3

4 j < � for all n > N.

Now
3n � 1

4n þ 5
� 3

4

����
���� ¼ �19

4ð4n þ 5Þ
����

���� < � when
19

4ð4n þ 5Þ < � or

4ð4n þ 5Þ
19

>
1

�
; 4n þ 5 >

19

4�
; n >

1

4

19

4�
� 5

� �
Choosing N ¼ 1

4 ð19=4� � 5Þ, we see that jun � 3
4 j < � for all n > N, so that lim

n!1 ¼ 3
4 and the proof is

complete.

Note that if � ¼ :001 (for example), N ¼ 1
4 ð19000=4 � 5Þ ¼ 1186 1

4. This means that all terms of the
sequence beyond the 1186th term differ from 3

4 in absolute value by less than .001.

2.4. Prove that lim
n!1

c

np ¼ 0 where c 6¼ 0 and p > 0 are constants (independent of n).

We must show that for any � > 0 there is a number N such that jc=np � 0j < � for all n > N.

Now
c

np

��� ��� < � when
jcj
np < �, i.e., np >

jcj
�
or n >

jcj
�

� �1=p

. Choosing N ¼ jcj
�

� �1=p

(depending on �), we

see that jc=npj < � for all n > N, proving that lim
n!1ðc=npÞ ¼ 0.

2.5. Prove that lim
n!1

1 þ 2 � 10n
5 þ 3 � 10n ¼ 2

3
.

We must show that for any � > 0 there is a number N such that
1 þ 2 � 10n
5 þ 3 � 10n � 2

3

����
���� < � for all n > N.

Now
1 þ 2 � 10n
5 þ 3 � 10n � 2

3

����
���� ¼ �7

3ð5 þ 3 � 10nÞ
����

���� < � when
7

3ð5 þ 3 � 10nÞ < �, i.e. when 3
7 ð5 þ 3 � 10nÞ > 1=�,

3 � 10n > 7=3� � 5, 10n > 1
8 ð7=3� � 5Þ or n > log10f13 ð7=3� � 5Þg ¼ N, proving the existence of N and thus

establishing the required result.

Note that the above value of N is real only if 7=3� � 5 > 0, i.e., 0 < � < 7=15. If �A 7=15, we see that

1 þ 2 � 10n
5 þ 3 � 10n � 2

3

����
���� < � for all n > 0.

2.6. Explain exactly what is meant by the statements (a) lim
n!1 32n�1 ¼ 1, (b) lim

n!1ð1 � 2nÞ ¼ �1.

(a) If for each positive numberM we can find a positive number N (depending onM) such that an > M for
all n > N, then we write lim

n!1 an ¼ 1.

In this case, 32n�1 > M when ð2n � 1Þ log 3 > logM; i.e., n >
1

2

logM

log 3
þ 1

� �
¼ N.

(b) If for each positive number M we can find a positive number N (depending on M) such that an < �M
for all n > N, then we write lim

n!1 ¼ �1.

In this case, 1 � 2n < �M when 2n � 1 > M or n > 1
2 ðM þ 1Þ ¼ N.

CHAP. 2] SEQUENCES 27



It should be emphasized that the use of the notations 1 and �1 for limits does not in any way

imply convergence of the given sequences, since 1 and �1 are not numbers. Instead, these are
notations used to describe that the sequences diverge in specific ways.

2.7. Prove that lim
n!1 xn ¼ 0 if jxj < 1.

Method 1:

We can restrict ourselves to x 6¼ 0, since if x ¼ 0, the result is clearly true. Given � > 0, we must show
that there exists N such that jxnj < � for n > N. Now jxnj ¼ jxjn < � when n log10 jxj < log10 �. Dividing by

log10 jxj, which is negative, yields n >
log10 �

log10 jxj ¼ N, proving the required result.

Method 2:

Let jxj ¼ 1=ð1 þ pÞ, where p > 0. By Bernoulli’s inequality (Problem 1.31, Chapter 1), we have

jxnj ¼ jxjn ¼ 1=ð1 þ pÞn < 1=ð1 þ npÞ < � for all n > N. Thus lim
n!1xn ¼ 0.

THEOREMS ON LIMITS OF SEQUENCES

2.8. Prove that if lim
n!1 un exists, it must be unique.

We must show that if lim
n!1 un ¼ l1 and lim

n!1 un ¼ l2, then l1 ¼ l2.

By hypothesis, given any � > 0 we can find N such that

jun � l1j < 1
2 � when n > N; jun � l2j < 1

2 � when n > N

Then

jl1 � l2j ¼ jl1 � un þ un � l2j@ jl1 � unj þ jun � l2j < 1
2 � þ 1

2 � ¼ �

i.e., jl1 � l2j is less than any positive � (however small) and so must be zero. Thus, l1 ¼ l2.

2.9. If lim
n!1 an ¼ A and lim

n!1 bn ¼ B, prove that lim
n!1ðan þ bnÞ ¼ A þ B.

We must show that for any � > 0, we can find N > 0 such that jðan þ bnÞ � ðA þ BÞj < � for all n > N.

From absolute value property 2, Page 3 we have

jðan þ bnÞ � ðA þ BÞj ¼ jðan � AÞ þ ðbn � BÞj@ jan � Aj þ jbn � Bj ð1Þ
By hypothesis, given � > 0 we can find N1 and N2 such that

jan � Aj < 1
2 � for all n > N1 ð2Þ

jbn � Bj < 1
2 � for all n > N2 ð3Þ

Then from (1), (2), and (3),

jðan þ bnÞ � ðA þ BÞj < 1
2 � þ 1

2 � ¼ � for all n > N

where N is chosen as the larger of N1 and N2. Thus, the required result follows.

2.10. Prove that a convergent sequence is bounded.

Given lim
n!1 an ¼ A, we must show that there exists a positive number P such that janj < P for all n. Now

janj ¼ jan � A þ Aj@ jan � Aj þ jAj
But by hypothesis we can find N such that jan � Aj < � for all n > N, i.e.,

janj < � þ jAj for all n > N

It follows that janj < P for all n if we choose P as the largest one of the numbers a1; a2; . . . ; aN , � þ jAj.
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2.11. If lim
n!1 bn ¼ B 6¼ 0, prove there exists a number N such that jbnj > 1

2 jBj for all n > N.

Since B ¼ B � bn þ bn, we have: (1) jBj@ jB � bnj þ jbnj.
Now we can choose N so that jB � bnj ¼ jbn � Bj < 1

2 jBj for all n > N, since lim
n!1 bn ¼ B by hypothesis.

Hence, from (1), jBj < 1
2 jBj þ jbnj or jbnj > 1

2 jBj for all n > N.

2.12. If lim
n!1 an ¼ A and lim

n!1 bn ¼ B, prove that lim
n!1 anbn ¼ AB.

We have, using Problem 2.10,

janbn � ABj ¼ janðbn � BÞ þ Bðan � AÞj@ janjjbn � Bj þ jBjjan � Aj ð1Þ
@ Pjbn � Bj þ ðjBj þ 1Þjan � Aj

But since lim
n!1 an ¼ A and lim

n!1 bn ¼ B, given any � > 0 we can find N1 and N2 such that

jbn � Bj <
�

2P
for all n > N1 jan � Aj <

�

2ðjBj þ 1Þ for all n > N2

Hence, from (1), janbn � ABj < 1
2 � þ 1

2 � ¼ � for all n > N, where N is the larger of N1 and N2. Thus, the
result is proved.

2.13. If lim
n!1 an ¼ A and lim

n!1 bn ¼ B 6¼ 0, prove (a) lim
n!1

1

bn
¼ 1

B
, (b) lim

n!1
an
bn

¼ A

B
.

(a) We must show that for any given � > 0, we can find N such that

1

bn
� 1

B

����
���� ¼ jB � bnj

jBjjbnj
< � for all n > N ð1Þ

By hypothesis, given any � > 0, we can find N1, such that jbn � Bj < 1
2B

2� for all n > N1.

Also, since lim
n!1 bn ¼ B 6¼ 0, we can find N2 such that jbnj > 1

2 jBj for all n > N2 (see Problem 11).

Then if N is the larger of N1 and N2, we can write (1) as

1

bn
� 1

B

����
���� ¼ jbn � Bj

jBjjbnj
<

1
2B

2�

jBj � 12 jBj ¼ � for all n > N

and the proof is complete.

(b) From part (a) and Problem 2.12, we have

lim
n!1

an
bn

¼ lim
n!1 an � 1

bn

� �
¼ lim

n!1 an � lim
n!1

1

bn
¼ A � 1

B
¼ A

B

This can also be proved directly (see Problem 41).

2.14. Evaluate each of the following, using theorems on limits.

ðaÞ lim
n!1

3n2 � 5n

5n2 þ 2n � 6
¼ lim

n!1
3 � 5=n

5 þ 2=n � 6=n2
¼ 3 þ 0

5 þ 0 þ 0
¼ 3

5

ðbÞ lim
n!1

nðn þ 2Þ
n þ 1

� n3

n2 þ 1

( )
¼ lim

n!1
n3 þ n2 þ 2n

ðn þ 1Þðn2 þ 1Þ

( )
¼ lim

n!1
1 þ 1=n þ 2=n2

ð1 þ 1=nÞð1 þ 1=n2Þ

( )

¼ 1 þ 0 þ 0

ð1 þ 0Þ � ð1 þ 0Þ ¼ 1

ðcÞ lim
n!1ð ffiffiffiffiffiffiffiffiffiffiffi

n þ 1
p � ffiffiffi

n
p Þ ¼ lim

n!1ð ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p � ffiffiffi
n

p Þ
ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p þ ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p þ ffiffiffi
n

p ¼ lim
n!1

1ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p þ ffiffiffi
n

p ¼ 0
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ðdÞ lim
n!1

3n2 þ 4n

2n � 1
¼ lim

n!1
3 þ 4=n

2=n � 1=n2

Since the limits of the numerator and denominator are 3 and 0, respectively, the limit does not
exist.

Since
3n2 þ 4n

2n � 1
>

3n2

2n
¼ 3n

2
can be made larger than any positive number M by choosing n > N, we

can write, if desired, lim
n!1

3n2 þ 4n

2n � 1
¼ 1.

ðeÞ lim
n!1

2n � 3

2n þ 7

� �4

¼ lim
n!1

2 � 3=n

3 þ 7=n

� �4

¼ 2

3

� �4

¼ 16

81

ð f Þ lim
n!1

2n5 � 4n2

3n7 þ n3 � 10
¼ lim

n!1
2=n2 � 4=n5

3 þ 1=n4 � 10=n7
¼ 0

3
¼ 0

ðgÞ lim
n!1

1 þ 2 � 10n
5 þ 3 � 10n ¼ lim

n!1
10�n þ 2

5 � 10�n þ 3
¼ 2

3
(Compare with Problem 2.5.)

BOUNDED MONOTONIC SEQUENCES

2.15. Prove that the sequence with nth un ¼ 2n � 7

3n þ 2
(a) is monotonic increasing, (b) is bounded

above, (c) is bounded below, (d) is bounded, (e) has a limit.

(a) fung is monotonic increasing if unþ1 A un, n ¼ 1; 2; 3; . . . . Now

2ðn þ 1Þ � 7

3ðn þ 1Þ þ 2
A

2n � 7

3n þ 2
if and only if

2n � 5

2n þ 5
A

2n � 7

3n þ 2

or ð2n � 5Þð3n þ 2ÞA ð2n � 7Þð3n þ 5Þ, 6n2 � 11n � 10A 6n2 � 11n � 35, i.e. �10A � 35, which is
true. Thus, by reversal of steps in the inequalities, we see that fung is monotonic increasing. Actually,

since �10 > �35, the sequence is strictly increasing.

(b) By writing some terms of the sequence, we may guess that an upper bound is 2 (for example). To prove

this we must show that un @ 2. If ð2n � 7Þ=ð3n þ 2Þ@ 2 then 2n � 7@ 6n þ 4 or �4n < 11, which is
true. Reversal of steps proves that 2 is an upper bound.

(c) Since this particular sequence is monotonic increasing, the first term �1 is a lower bound, i.e.,
un A � 1, n ¼ 1; 2; 3; . . . . Any number less than �1 is also a lower bound.

(d) Since the sequence has an upper and lower bound, it is bounded. Thus, for example, we can write
junj@ 2 for all n.

(e) Since every bounded monotonic (increasing or decreasing) sequence has a limit, the given sequence has

a limit. In fact, lim
n!1

2n � 7

3n þ 2
¼ lim

n!1
2 � 7=n

3 þ 2=n
¼ 2

3
.

2.16. A sequence fung is defined by the recursion formula unþ1 ¼ ffiffiffiffiffiffiffi
3un

p
, u1 ¼ 1. (a) Prove that lim

n!1 un
exists. (b) Find the limit in (a).

(a) The terms of the sequence are u1 ¼ 1, u2 ¼ ffiffiffiffiffiffiffi
3u1

p ¼ 31=2, u3 ¼ ffiffiffiffiffiffiffi
3u2

p ¼ 31=2þ1=4; . . . .
The nth term is given by un ¼ 31=2þ1=4þ���þ1=2n�1

as can be proved by mathematical induction

(Chapter 1).

Clearly, unþ1 A un. Then the sequence is monotone increasing.

By Problem 1.14, Chapter 1, un @ 31 ¼ 3, i.e. un is bounded above. Hence, un is bounded (since a

lower bound is zero).

Thus, a limit exists, since the sequence is bounded and monotonic increasing.
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(b) Let x ¼ required limit. Since lim
n!1 unþ1 ¼ lim

n!1
ffiffiffiffiffiffiffi
3un

p
, we have x ¼ ffiffiffiffiffiffi

3x
p

and x ¼ 3. (The other

possibility, x ¼ 0, is excluded since un A 1:Þ
Another method: lim

n!1 31=2þ1=4þ���þ1=2n�1 ¼ lim
n!1 31�1=2n ¼ 3

limð1�1=2n Þ
n!1 ¼ 31 ¼ 3

2.17. Verify the validity of the entries in the following table.

Sequence Bounded

Monotonic

Increasing

Monotonic

Decreasing

Limit

Exists

2; 1:9; 1:8; 1:7; . . . ; 2 � ðn � 1Þ=10 . . . No No Yes No

1;�1; 1;�1; . . . ; ð�1Þn�1; . . . Yes No No No

1
2 ;� 1

3 ; 14 ;� 1
5 ; . . . ; ð�1Þn�1=ðn þ 1Þ; . . . Yes No No Yes (0)

:6; :66; :666; . . . ; 23 ð1 � 1=10nÞ; . . . Yes Yes No Yes (23)

�1;þ2;�3;þ4;�5; . . . ; ð�1Þnn; . . . No No No No

2.18. Prove that the sequence with the nth term un ¼ 1 þ 1

n

� �n

is monotonic, increasing, and bounded,

and thus a limit exists. The limit is denoted by the symbol e.

Note: lim
n!1 1 þ 1

n

� �n

¼ e, where e ffi 2:71828 . . . was introduced in the eighteenth century by

Leonhart Euler as the base for a system of logarithms in order to simplify certain differentiation
and integration formulas.

By the binomial theorem, if n is a positive integer (see Problem 1.95, Chapter 1),

ð1 þ xÞn ¼ 1 þ nx þ nðn � 1Þ
2!

x2 þ nðn � 1Þðn � 2Þ
3!

x3 þ � � � þ nðn � 1Þ � � � ðn � n þ 1Þ
n!

xn

Letting x ¼ 1=n,

un ¼ 1 þ 1

n

� �n

¼ 1 þ n
1

n
þ nðn � 1Þ

2!

1

n2
þ � � � þ nðn � 1Þ � � � ðn � n þ 1Þ

n!

1

nn

¼ 1 þ 1 þ 1

2!
1 � 1

n

� �
þ 1

3!
1 � 1

n

� �
1 � 2

n

� �

þ � � � þ 1

n!
1 � 1

n

� �
1 � 2

n

� �
� � � 1 � n � 1

n

� �

Since each term beyond the first two terms in the last expression is an increasing function of n, it follows that

the sequence un is a monotonic increasing sequence.
It is also clear that

1 þ 1

n

� �n

< 1 þ 1 þ 1

2!
þ 1

3!
þ � � � þ 1

n!
< 1 þ 1 þ 1

2
þ 1

22
þ � � � þ 1

2n�1
< 3

by Problem 1.14, Chapter 1.
Thus, un is bounded and monotonic increasing, and so has a limit which we denote by e. The value of

e ¼ 2:71828 . . . .

2.19. Prove that lim
x!1 1 þ 1

x

� �x

¼ e, where x ! 1 in any manner whatsoever (i.e., not necessarily along

the positive integers, as in Problem 2.18).

If n ¼ largest integer @ x, then n@ x@ n þ 1 and 1 þ 1

n þ 1

� �n

@ 1 þ 1

x

� �x

@ 1 þ 1

n

� �nþ1

.

Since lim
n!1 1 þ 1

n þ 1

� �n

¼ lim
n!1 1 þ 1

n þ 1

� �nþ1
,

1 þ 1

n þ 1

� �
¼ e



and lim
n!1 1 þ 1

n

� �nþ1

¼ lim
n!1 1 þ 1

n

� �n

1 þ 1

n

� �
¼ e

it follows that lim
x!1 1 þ 1

x

� �x

¼ e:

LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR

2.20. Find the (a) l.u.b., (b) g.l.b., (c) lim sup ðlimÞ, and (d) lim inf (limÞ for the sequence
2;�2; 1;�1; 1;�1; 1;�1; . . . .

(a) l:u:b: ¼ 2, since all terms are less than equal to 2, while at least one term (the 1st) is greater than 2 � �
for any � > 0.

(b) g:l:b: ¼ �2, since all terms are greater than or equal to �2, while at least one term (the 2nd) is less than

�2 þ � for any � > 0.

(c) lim sup or lim ¼ 1, since infinitely many terms of the sequence are greater than 1 � � for any � > 0
(namely, all 1’s in the sequence), while only a finite number of terms are greater than 1 þ � for any � > 0
(namely, the 1st term).

(d) lim inf or lim ¼ �1, since infinitely many terms of the sequence are less than �1 þ � for any � > 0
(namely, all �1’s in the sequence), while only a finite number of terms are less than �1 � � for any � > 0

(namely the 2nd term).

2.21. Find the (a) l.u.b., (b) g.l.b., (c) lim sup (lim), and (d) lim inf (lim) for the sequences in
Problem 2.17.

The results are shown in the following table.

Sequence l.u.b. g.l.b. lim sup or lim lim inf or lim

2; 1:9; 1:8; 1:7; . . . ; 2 � ðn � 1Þ=10 . . . 2 none �1 �1
1;�1; 1;�1; . . . ; ð�1Þn�1; . . . 1 �1 1 �1

1
2 ;� 1

3 ; 14 � 1
5 ; . . . ; ð�1Þn�1=ðn þ 1Þ; . . . 1

2 � 1
3 0 0

:6; :66; :666; . . . ; 23 ð1 � 1=10nÞ; . . . 2
3 6 2

3
2
3

�1;þ2;�3;þ4;�5; . . . ; ð�1Þnn; . . . none none þ1 �1

NESTED INTERVALS

2.22. Prove that to every set of nested intervals ½an; bn�, n ¼ 1; 2; 3; . . . ; there corresponds one and only
one real number.

By definition of nested intervals, anþ1 A an; bnþ1 @ bn; n ¼ 1; 2; 3; . . . and lim
n!1ðan � bnÞ ¼ 0.

Then a1 @ an @ bn @ b1, and the sequences fang and fbng are bounded and respectively monotonic
increasing and decreasing sequences and so converge to a and b.

To show that a ¼ b and thus prove the required result, we note that

b � a ¼ ðb � bnÞ þ ðbn � anÞ þ ðan � aÞ ð1Þ
jb � aj@ jb � bnj þ jbn � anj þ jan � aj ð2Þ

Now given any � > 0, we can find N such that for all n > N

jb � bnj < �=3; jbn � anj < �=3; jan � aj < �=3 ð3Þ
so that from (2), jb � aj < �. Since � is any positive number, we must have b � a ¼ 0 or a ¼ b.
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2.23. Prove the Bolzano–Weierstrass theorem (see Page 6).

Suppose the given bounded infinite set is contained in the finite interval ½a; b�. Divide this interval into

two equal intervals. Then at least one of these, denoted by ½a1; b1�, contains infinitely many points.
Dividing ½a1; b1� into two equal intervals, we obtain another interval, say, ½a2; b2�, containing infinitely
many points. Continuing this process, we obtain a set of intervals ½an; bn�, n ¼ 1; 2; 3; . . . ; each interval

contained in the preceding one and such that

b1 � a1 ¼ ðb � aÞ=2; b2 � a2 ¼ ðb1 � a1Þ=2 ¼ ðb � aÞ=22; . . . ; bn � an ¼ ðb � aÞ=2n

from which we see that lim
n!1ðbn � anÞ ¼ 0.

This set of nested intervals, by Problem 2.22, corresponds to a real number which represents a limit

point and so proves the theorem.

CAUCHY’S CONVERGENCE CRITERION

2.24. Prove Cauchy’s convergence criterion as stated on Page 25.

Necessity. Suppose the sequence fung converges to l. Then given any � > 0, we can find N such that

jup � lj < �=2 for all p > N and juq � lj < �=2 for all q > N

Then for both p > N and q > N, we have

jup � uqj ¼ jðup � lÞ þ ðl � uqÞj@ jup � lj þ jl � uqj < �=2 þ �=2 ¼ �

Sufficiency. Suppose jup � uqj < � for all p; q > N and any � > 0. Then all the numbers uN ; uNþ1; . . .
lie in a finite interval, i.e., the set is bounded and infinite. Hence, by the Bolzano–Weierstrass theorem there
is at least one limit point, say a.

If a is the only limit point, we have the desired proof and lim
n!1 un ¼ a.

Suppose there are two distinct limit points, say a and b, and suppose b > a (see Fig. 2-1). By definition
of limit points, we have

jup � aj < ðb � aÞ=3 for infinnitely many values of p ð1Þ
juq � bj < ðb � aÞ=3 for infinitely many values of q ð2Þ

Then since b � a ¼ ðb � uqÞ þ ðuq � upÞ þ ðup � aÞ, we have

jb � aj ¼ b � a@ jb � uqj þ jup � uqj þ jup � aj ð3Þ
Using (1) and (2) in (3), we see that jup � uqj > ðb � aÞ=3 for infinitely many values of p and q, thus

contradicting the hypothesis that jup � uqj < � for p; q > N and any � > 0. Hence, there is only one limit
point and the theorem is proved.

INFINITE SERIES

2.25. Prove that the infinite series (sometimes called the geometric series)

a þ ar þ ar2 þ � � � ¼
X1
n¼1

arn�1

(a) converges to a=ð1 � rÞ if jrj < 1, (b) diverges if jrjA 1.

Sn ¼ a þ ar þ ar2 þ � � � þ arn�1Let

rSn ¼ ar þ ar2 þ � � � þ arn�1 þ arnThen

ð1 � rÞSn ¼ a � arnSubtract,
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Sn ¼ að1 � rnÞ
1 � r

or

ðaÞ If jrj < 1; lim
n!1Sn ¼ lim

n!1
að1 � rnÞ
1 � r

¼ a

1 � r
by Problem 7:

(b) If jrj > 1, lim
n!1Sn does not exist (see Problem 44).

2.26. Prove that if a series converges, its nth term must necessarily approach zero.

Since Sn ¼ u1 þ u2 þ � � � þ un, Sn�1 ¼ u1 þ u2 þ � � � þ un�1 we have un ¼ Sn � Sn�1.

If the series converges to S, then

lim
n!1 un ¼ lim

n!1ðSn � Sn�1Þ ¼ lim
n!1Sn � lim

n!1Sn�1 ¼ S � S ¼ 0

2.27. Prove that the series 1 � 1 þ 1 � 1 þ 1 � 1 þ � � � ¼
X1
n¼1

ð�1Þn�1 diverges.

Method 1:

lim
n!1ð�1Þn 6¼ 0, in fact it doesn’t exist. Then by Problem 2.26 the series cannot converge, i.e., it diverges.

Method 2:

The sequence of partial sums is 1; 1 � 1; 1 � 1 þ 1; 1 � 1 þ 1 � 1; . . . i.e., 1; 0; 1; 0; 1; 0; 1; . . . . Since this
sequence has no limit, the series diverges.

MISCELLANEOUS PROBLEMS

2.28. If lim
n!1 un ¼ l, prove that lim

n!1
u1 þ u2 þ � � � þ un

n
¼ l.

Let un ¼ vn þ l. We must show that lim
n!1

v1 þ v2 þ � � � þ vn
n

¼ 0 if lim
n!1 vn ¼ 0. Now

v1 þ v2 þ � � � þ vn
n

¼ v1 þ v2 þ � � � þ vP
n

þ vPþ1 þ vpþ2 þ � � � þ vn
n

so that

v1 þ v2 þ � � � þ vn
n

����
����@ jv1 þ v2 þ � � � þ vPj

n
þ jvPþ1j þ jvPþ2j þ � � � þ jvnj

n
ð1Þ

Since lim
n!1 vn ¼ 0, we can choose P so that jvnj < �=2 for n > P. Then

jvPþ1j þ jvPþ2j þ � � � þ jvnj
n

<
�=2 þ �=2 þ � � � þ �=2

n
¼ ðn � PÞ�=2

n
<

�

2
ð2Þ

After choosing P we can choose N so that for n > N > P,

jv1 þ v2 þ � � � þ vPj
n

<
�

2
ð3Þ

Then using (2) and (3), (1) becomes

v1 þ v2 þ � � � þ vn
n

����
���� <

�

2
þ �

2
¼ � for n > N

thus proving the required result.

2.29. Prove that lim
n!1ð1 þ n þ n2Þ1=n ¼ 1.

Let ð1 þ n þ n2Þ1=n ¼ 1 þ un where un A 0. Now by the binomial theorem,
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1 þ n þ n2 ¼ ð1 þ unÞn ¼ 1 þ nun þ nðn � 1Þ
2!

u2n þ nðn � 1Þðn � 2Þ
3!

u3n þ � � � þ unn

Then 1 þ n þ n2 > 1 þ nðn � 1Þðn � 2Þ
3!

u3n or 0 < u3n <
6ðn2 þ nÞ

nðn � 1Þðn � 2Þ :

Hence, lim
n!1 u3n ¼ 0 and lim

n!1 un ¼ 0: Thus lim
n!1ð1 þ n þ n2Þ1=n ¼ lim

n!1ð1 þ unÞ ¼ 1:

2.30. Prove that lim
n!1

an

n!
¼ 0 for all constants a.

The result follows if we can prove that lim
n!1

jajn
n!

¼ 0 (see Problem 2.38). We can assume a 6¼ 0.

Let un ¼ jajn
n!

. Then
un
un�1

¼ jaj
n
. If n is large enough, say, n > 2jaj, and if we call N ¼ ½2jaj þ 1�, i.e., the

greatest integer@ 2jaj þ 1, then

uNþ1

uN
<

1

2
;
uNþ2

uNþ1

<
1

2
; . . . ;

un
un�1

<
1

2

Multiplying these inequalities yields
un
uN

< 1
2

� 	n�N
or un < 1

2

� 	n�N
uN :

Since lim
n!1

1

2

� �n�N

¼ 0 (using Problem 2.7), it follows that lim
n!1 un ¼ 0.

Supplementary Problems

SEQUENCES

2.31. Write the first four terms of each of the following sequences:

ðaÞ
ffiffiffi
n

p
n þ 1

� �
; ðbÞ ð�1Þnþ1

n!

( )
; ðcÞ ð2xÞn�1

ð2n � 1Þ5
( )

; ðdÞ ð�1Þnx2n�1

1 � 3 � 5 � � � ð2n � 1Þ

( )
; ðeÞ cos nx

x2 þ n2

� �
:

Ans: ðaÞ
ffiffiffi
1

p

2
;

ffiffiffi
2

p

3
;

ffiffiffi
3

p

4
;

ffiffiffi
4

p

5
ðcÞ 1

15
;
2x

35
;
4x2

55
;
8x3

75
ðeÞ cosx

x2 þ 12
;
cos 2x

x2 þ 22
;
cos 3x

x2 þ 32
;
cos 4x

x2 þ 42

ðbÞ 1

1!
;� 1

2!
;
1

3!
;� 1

4!
ðdÞ �x

1
;
x3

1 � 3 ;
�x5

1 � 3 � 5 ;
x7

1 � 3 � 5 � 7

2.32. Find a possible nth term for the sequences whose first 5 terms are indicated and find the 6th term:

ðaÞ �1

5
;
3

8
;
�5

11
;
7

14
;
�9

17
; . . . ðbÞ 1; 0; 1; 0; 1; . . . ðcÞ 2

3 ; 0; 34 ; 0; 45 ; . . .

Ans: ðaÞ ð�1Þnð2n � 1Þ
ð3n þ 2Þ ðbÞ 1 � ð�1Þn

2
ðcÞ ðn þ 3Þ

ðn þ 5Þ � 1 � ð�1Þn
2

2.33. The Fibonacci sequence is the sequence fung where unþ2 ¼ unþ1 þ un and u1 ¼ 1, u2 ¼ 1. (a) Find the first 6

terms of the sequence. (b) Show that the nth term is given by un ¼ ðan � bnÞ= ffiffiffi
5

p
, where a ¼ 1

2 ð1 þ ffiffiffi
5

p Þ,
b ¼ 1

2 ð1 � ffiffiffi
5

p Þ.
Ans. (a) 1; 1; 2; 3; 5; 8

LIMITS OF SEQUENCES

2.34. Using the definition of limit, prove that:
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ðaÞ lim
n!1

4 � 2n

3n þ 2
¼ �2

3
; ðbÞ lim

n!1 2�1=
ffiffi
n

p
¼ 1; ðcÞ lim

n!1
n4 þ 1

n2
¼ 1; ðdÞ lim

n!1
sin n

n
¼ 0:

2.35. Find the least positive integer N such that jð3n þ 2Þ=ðn � 1Þ � 3j < � for all n > N if (a) � ¼ :01,
(b) � ¼ :001, (c) � ¼ :0001.
Ans. (a) 502, (b) 5002, (c) 50,002

2.36. Using the definition of limit, prove that lim
n!1ð2n � 1Þ=ð3n þ 4Þ cannot be 1

2.

2.37. Prove that lim
n!1ð�1Þnn does not exist.

2.38. Prove that if lim
n!1 junj ¼ 0 then lim

n!1 un ¼ 0. Is the converse true?

2.39. If lim
n!1 un ¼ l, prove that (a) lim

n!1 cun ¼ cl where c is any constant, (b) lim
n!1 u2n ¼ l2, (c) lim

n!1 up
n ¼ l p

where p is a positive integer, (d) lim
n!1

ffiffiffiffiffi
un

p ¼
ffiffi
l

p
; l A 0.

2.40. Give a direct proof that lim
n!1 an=bn ¼ A=B if lim

n!1 an ¼ A and lim
n!1 bn ¼ B 6¼ 0.

2.41. Prove that (a) lim
n!1 31=n ¼ 1, (b) lim

n!1
2
3

� 	1=n¼ 1, (c) lim
n!1

3
4

� 	n¼ 0.

2.42. If r > 1, prove that lim
n!1 rn ¼ 1, carefully explaining the significance of this statement.

2.43. If jrj > 1, prove that lim
n!1 rn does not exist.

2.44. Evaluate each of the following, using theorems on limits:

ðaÞ lim
n!1

4 � 2n � 3n2

2n2 þ n
ðcÞ lim

n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n2 � 5n þ 4

p
2n � 7

ðeÞ lim
n!1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n

p
� nÞ

ðbÞ lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 � ffiffiffi

n
p Þð ffiffiffi

n
p þ 2Þ

8n � 4

3

r
ðdÞ lim

n!1
4 � 10n � 3 � 102n

3 � 10n�1 þ 2 � 102n�1
ð f Þ lim

n!1ð2n þ 3nÞ1=n

Ans: ðaÞ � 3=2; ðbÞ � 1=2; ðcÞ
ffiffiffi
3

p
=2; ðdÞ � 15; ðeÞ 1=2; ð f Þ 3

BOUNDED MONOTONIC SEQUENCES

2.45. Prove that the sequence with nth term un ¼ ffiffiffi
n

p
=ðn þ 1Þ (a) is monotonic decreasing, (b) is bounded below,

(c) is bounded above, (d) has a limit.

2.46. If un ¼ 1

1 þ n
þ 1

2 þ n
þ 1

3 þ n
þ � � � þ 1

n þ n
, prove that lim

n!1 un exists and lies between 0 and 1.

2.47. If unþ1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
un þ 1

p
, u1 ¼ 1, prove that lim

n!1 un ¼ 1
2 ð1 þ ffiffiffi

5
p Þ.

2.48. If unþ1 ¼ 1
2 ðun þ p=unÞ where p > 0 and u1 > 0, prove that lim

n!1 un ¼ ffiffiffi
p

p
. Show how this can be used to

determine
ffiffiffi
2

p
.

2.49. If un is monotonic increasing (or monotonic decreasing), prove that Sn=n, where Sn ¼ u1 þ u2 þ � � � þ un, is
also monotonic increasing (or monotonic decreasing).

LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR

2.50. Find the l.u.b., g.l.b., lim sup (lim), lim inf (lim) for each sequence:

(a) �1; 13 ;� 1
5 ; 17 ; . . . ; ð�1Þn=ð2n � 1Þ; . . . ðcÞ 1;�3; 5;�7; . . . ; ð�1Þn�1ð2n � 1Þ; . . .

(b) 2
3 ;� 3

4 ; 45 ;� 5
6 ; . . . ; ð�1Þnþ1ðn þ 1Þ=ðn þ 2Þ; . . . ðdÞ 1; 4; 1; 16; 1; 36; . . . ; n1þð�1Þn; . . .

36 SEQUENCES [CHAP. 2



Ans. (a) 1
3 ;�1; 0; 0 ðbÞ 1;�1; 1;�1 ðcÞ none, none, þ1, �1 (d) none, 1;þ1; 1

2.51. Prove that a bounded sequence fung is convergent if and only if lim un ¼ lim un.

INFINITE SERIES

2.52. Find the sum of the series
X1
n¼1

2
3

� 	n
. Ans. 2

2.53. Evaluate
X1
n¼1

ð�1Þn�1=5n. Ans. 1
6

2.54. Prove that
1

1 � 2 þ 1

2 � 3 þ 1

3 � 4 þ 1

4 � 5 þ � � � ¼
X1
n¼1

1

nðn þ 1Þ ¼ 1. Hint:
1

nðn þ 1Þ ¼ 1

n
� 1

n þ 1


 �

2.55. Prove that multiplication of each term of an infinite series by a constant (not zero) does not affect the

convergence or divergence.

2.56. Prove that the series 1 þ 1

2
þ 1

3
þ � � � þ 1

n
þ � � � diverges. Hint: Let Sn ¼ 1 þ 1

2
þ 1

3
þ � � � þ 1

n



. Then prove

that jS2n � Snj > 1
2, giving a contradiction with Cauchy’s convergence criterion.

�

MISCELLANEOUS PROBLEMS

2.57. If an @ un @ bn for all n > N, and lim
n!1 an ¼ lim

n!1 bn ¼ l, prove that lim
n!1 un ¼ l.

2.58. If lim
n!1 an ¼ lim

n!1 bn ¼ 0, and � is independent of n, prove that lim
n!1ðan cos n� þ bn sin n�Þ ¼ 0. Is the result

true when � depends on n?

2.59. Let un ¼ 1
2 f1 þ ð�1Þng, n ¼ 1; 2; 3; . . . . If Sn ¼ u1 þ u2 þ � � � þ un, prove that lim

n!1Sn=n ¼ 1
2.

2.60. Prove that (a) lim
n!1 n1=n ¼ 1, (b) lim

n!1ða þ nÞ p=n ¼ 1 where a and p are constants.

2.61. If lim
n!1 junþ1=unj ¼ jaj < 1, prove that lim

n!1 un ¼ 0.

2.62. If jaj < 1, prove that lim
n!1 npan ¼ 0 where the constant p > 0.

2.63. Prove that lim
2nn!

nn
¼ 0.

2.64. Prove that lim
n!1 n sin 1=n ¼ 1. Hint: Let the central angle, �, of a circle be measured in radians. Geome-

trically illustrate that sin � � � � tan �, 0 � � � �.
Let � ¼ 1=n. Observe that since n is restricted to positive integers, the angle is restricted to the first

quadrant.

2.65. If fung is the Fibonacci sequence (Problem 2.33), prove that lim
n!1 unþ1=un ¼ 1

2 ð1 þ ffiffiffi
5

p Þ.

2.66. Prove that the sequence un ¼ ð1 þ 1=nÞnþ1, n ¼ 1; 2; 3; . . . is a monotonic decreasing sequence whose limit

is e. [Hint: Show that un=un�1 @ 1:�

2.67. If an A bn for all n > N and lim
n!1 an ¼ A, lim

n!1 bn ¼ B, prove that AA B.

2.68. If junj@ jvnj and lim
n!1 vn ¼ 0, prove that lim

n!1 un ¼ 0.

2.69. Prove that lim
n!1

1

n
1 þ 1

2
þ 1

3
þ � � � þ 1

n

� �
¼ 0.
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2.70. Prove that ½an; bn�, where an ¼ ð1 þ 1=nÞn and bn ¼ ð1 þ 1=nÞnþ1, is a set of nested intervals defining the

number e.

2.71. Prove that every bounded monotonic (increasing or decreasing) sequence has a limit.

2.72. Let fung be a sequence such that unþ2 ¼ aunþ1 þ bun where a and b are constants. This is called a second
order difference equation for un. (a) Assuming a solution of the form un ¼ rn where r is a constant, prove

that r must satisfy the equation r2 � ar � b ¼ 0. (b) Use (a) to show that a solution of the difference
equation (called a general solution) is un ¼ Arn1 þ Brn2, where A and B are arbitrary constants and r1 and
r2 are the two solutions of r2 � ar � b ¼ 0 assumed different. (c) In case r1 ¼ r2 in (b), show that a (general)

solution is un ¼ ðA þ BnÞrn1.

2.73. Solve the following difference equations subject to the given conditions: (a) unþ2 ¼ unþ1 þ un, u1 ¼ 1,
u2 ¼ 1 (compare Prob. 34); (b) unþ2 ¼ 2unþ1 þ 3un, u1 ¼ 3, u2 ¼ 5; (c) unþ2 ¼ 4unþ1 � 4un, u1 ¼ 2, u2 ¼ 8.
Ans. (a) Same as in Prob. 34, (b) un ¼ 2ð3Þn�1 þ ð�1Þn�1 ðcÞ un ¼ n � 2n
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Functions, Limits, and
Continuity

FUNCTIONS

A function is composed of a domain set, a range set, and a rule of correspondence that assigns
exactly one element of the range to each element of the domain.

This definition of a function places no restrictions on the nature of the elements of the two sets.

However, in our early exploration of the calculus, these elements will be real numbers. The rule of
correspondence can take various forms, but in advanced calculus it most often is an equation or a set of

equations.

If the elements of the domain and range are represented by x and y, respectively, and f symbolizes
the function, then the rule of correspondence takes the form y ¼ f ðxÞ.

The distinction between f and f ðxÞ should be kept in mind. f denotes the function as defined in the
first paragraph. y and f ðxÞ are different symbols for the range (or image) values corresponding to
domain values x. However a ‘‘common practice’’ that provides an expediency in presentation is to read

f ðxÞ as, ‘‘the image of x with respect to the function f ’’ and then use it when referring to the function.
(For example, it is simpler to write sin x than ‘‘the sine function, the image value of which is sin x.’’)

This deviation from precise notation will appear in the text because of its value in exhibiting the ideas.

The domain variable x is called the independent variable. The variable y representing the corre-
sponding set of values in the range, is the dependent variable.

Note: There is nothing exclusive about the use of x, y, and f to represent domain, range, and
function. Many other letters will be employed.

There are many ways to relate the elements of two sets. [Not all of them correspond a unique range

value to a given domain value.] For example, given the equation y2 ¼ x, there are two choices of y for
each positive value of x. As another example, the pairs ða; bÞ, ða; cÞ, ða; dÞ, and ða; eÞ can be formed and

again the correspondence to a domain value is not unique. Because of such possibilities, some texts,
especially older ones, distinguish between multiple-valued and single-valued functions. This viewpoint

is not consistent with our definition or modern presentations. In order that there be no ambiguity, the
calculus and its applications require a single image associated with each domain value. A multiple-
valued rule of correspondence gives rise to a collection of functions (i.e., single-valued). Thus, the rule

y2 ¼ x is replaced by the pair of rules y ¼ x1=2 and y ¼ �x1=2 and the functions they generate through the
establishment of domains. (See the following section on graphs for pictorial illustrations.)

Copyright 2002, 1963 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



EXAMPLES. 1. If to each number in �1@ x@ 1 we associate a number y given by x2, then the interval

�1@ x@ 1 is the domain. The rule y ¼ x2 generates the range �1@ y@ 1. The totality
is a function f .

The functional image of x is given by y ¼ f ðxÞ ¼ x2. For example, f ð� 1
3Þ ¼ ð� 1

3Þ2 ¼ 1
9 is the

image of � 1
3 with respect to the function f .

2. The sequences of Chapter 2 may be interpreted as functions. For infinite sequences consider the

domain as the set of positive integers. The rule is the definition of un, and the range is generated

by this rule. To illustrate, let un ¼ 1
n with n ¼ 1; 2; . . . . Then the range contains the elements

1; 12 ; 13 ; 14 ; . . . . If the function is denoted by f , then we may write f ðnÞ ¼ 1
n.

As you read this chapter, reviewing Chapter 2 will be very useful, and in particular com-

paring the corresponding sections.

3. With each time t after the year 1800 we can associate a value P for the population of the United

States. The correspondence between P and t defines a function, say F , and we can write

P ¼ FðtÞ.
4. For the present, both the domain and the range of a function have been restricted to sets of real

numbers. Eventually this limitation will be removed. To get the flavor for greater generality,

think of a map of the world on a globe with circles of latitude and longitude as coordinate

curves. Assume there is a rule that corresponds this domain to a range that is a region of a

plane endowed with a rectangular Cartesian coordinate system. (Thus, a flat map usable for

navigation and other purposes is created.) The points of the domain are expressed as pairs of

numbers ð�; �Þ and those of the range by pairs ðx; yÞ. These sets and a rule of correspondence

constitute a function whose independent and dependent variables are not single real numbers;

rather, they are pairs of real numbers.

GRAPH OF A FUNCTION

A function f establishes a set of ordered pairs ðx; yÞ of real numbers. The plot of these pairs
ðx; f ðxÞÞ in a coordinate system is the graph of f . The result can be thought of as a pictorial representa-
tion of the function.

For example, the graphs of the functions described by y ¼ x2, �1@ x@ 1, and y2 ¼ x, 0@ x@ 1,
yA 0 appear in Fig. 3-1.

BOUNDED FUNCTIONS

If there is a constant M such that f ðxÞ@M for all x in an interval (or other set of numbers), we say

that f is bounded above in the interval (or the set) and call M an upper bound of the function.

If a constant m exists such that f ðxÞA m for all x in an interval, we say that f ðxÞ is bounded below in

the interval and call m a lower bound.
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If m@ f ðxÞ@M in an interval, we call f ðxÞ bounded. Frequencly, when we wish to indicate that a
function is bounded, we shall write j f ðxÞj < P.

EXAMPLES. 1. f ðxÞ ¼ 3 þ x is bounded in �1@ x@ 1. An upper bound is 4 (or any number greater than 4).
A lower bound is 2 (or any number less than 2).

2. f ðxÞ ¼ 1=x is not bounded in 0 < x < 4 since by choosing x sufficiently close to zero, f ðxÞ can be

made as large as we wish, so that there is no upper bound. However, a lower bound is given by
1
4 (or any number less than 1

4).

If f ðxÞ has an upper bound it has a least upper bound (l.u.b.); if it has a lower bound it has a greatest
lower bound (g.l.b.). (See Chapter 1 for these definitions.)

MONOTONIC FUNCTIONS

A function is called monotonic increasing in an interval if for any two points x1 and x2 in the interval
such that x1 < x2, f ðx1Þ@ f ðx2Þ. If f ðx1Þ < f ðx2Þ the function is called strictly increasing.

Similarly if f ðx1ÞA f ðx2Þ whenever x1 < x2, then f ðxÞ is monotonic decreasing; while if f ðx1Þ > f ðx2Þ,
it is strictly decreasing.

INVERSE FUNCTIONS. PRINCIPAL VALUES

Suppose y is the range variable of a function f with domain variable x. Furthermore, let the
correspondence between the domain and range values be one-to-one. Then a new function f �1, called
the inverse function of f , can be created by interchanging the domain and range of f . This information is
contained in the form x ¼ f �1ðyÞ.

As you work with the inverse function, it often is convenient to rename the domain variable as x and
use y to symbolize the images, then the notation is y ¼ f �1ðxÞ. In particular, this allows graphical
expression of the inverse function with its domain on the horizontal axis.

Note: f �1 does not mean f to the negative one power. When used with functions the notation f �1

always designates the inverse function to f .
If the domain and range elements of f are not in one-to-one correspondence (this would mean that

distinct domain elements have the same image), then a collection of one-to-one functions may be created.
Each of them is called a branch. It is often convenient to choose one of these branches, called the
principal branch, and denote it as the inverse function, f �1. The range values of f that compose the
principal branch, and hence the domain of f �1, are called the principal values. (As will be seen in the
section of elementary functions, it is common practice to specify these principal values for that class of
functions.)

EXAMPLE. Suppose f is generated by y ¼ sin x and the domain is �1@ x@1. Then there are an infinite
number of domain values that have the same image. (A finite portion of the graph is illustrated below in Fig. 3-2(a.)
In Fig. 3-2(b) the graph is rotated about a line at 458 so that the x-axis rotates into the y-axis. Then the variables are

interchanged so that the x-axis is once again the horizontal one. We see that the image of an x value is not unique.
Therefore, a set of principal values must be chosen to establish an inverse function. A choice of a branch is

accomplished by restricting the domain of the starting function, sinx. For example, choose ��

2
@ x@

�

2
.

Then there is a one-to-one correspondence between the elements of this domain and the images in �1@ x@ 1.

Thus, f �1 may be defined with this interval as its domain. This idea is illustrated in Fig. 3-2(c) and Fig. 3-2(d).
With the domain of f �1 represented on the horizontal axis and by the variable x, we write y ¼ sin�1 x, �1@ x@ 1.

If x ¼ � 1
2, then the corresponding range value is y ¼ � �

6
.

Note: In algebra, b�1 means
1

b
and the fact that bb�1 produces the identity element 1 is simply a rule of algebra

generalized from arithmetic. Use of a similar exponential notation for inverse functions is justified in that corre-
sponding algebraic characteristics are displayed by f �1½ f ðxÞ� ¼ x and f ½ f �1ðxÞ� ¼ x.
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MAXIMA AND MINIMA

The seventeenth-century development of the calculus was strongly motivated by questions concern-
ing extreme values of functions. Of most importance to the calculus and its applications were the
notions of local extrema, called relative maximums and relative minimums.

If the graph of a function were compared to a path over hills and through valleys, the local extrema
would be the high and low points along the way. This intuitive view is given mathematical precision by
the following definition.

Definition: If there exists an open interval ða; bÞ containing c such that f ðxÞ < f ðcÞ for all x other than c
in the interval, then f ðcÞ is a relative maximum of f . If f ðxÞ > f ðcÞ for all x in ða; bÞ other than c, then
f ðcÞ is a relative minimum of f . (See Fig. 3-3.)

Functions may have any number of relative extrema. On the other hand, they may have none, as in
the case of the strictly increasing and decreasing functions previously defined.

Definition: If c is in the domain of f and for all x in the domain of the function f ðxÞ@ f ðcÞ, then f ðcÞ is
an absolute maximum of the function f . If for all x in the domain f ðxÞA f ðcÞ then f ðcÞ is an absolute
minimum of f . (See Fig. 3-3.)

Note: If defined on closed intervals the strictly increasing and decreasing functions possess absolute
extrema.
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Absolute extrema are not necessarily unique. For example, if the graph of a function is a horizontal

line, then every point is an absolute maximum and an absolute minimum.

Note: A point of inflection also is represented in Fig. 3-3. There is an overlap with relative extrema in

representation of such points through derivatives that will be addressed in the problem set of Chapter 4.

TYPES OF FUNCTIONS

It is worth realizing that there is a fundamental pool of functions at the foundation of calculus and
advanced calculus. These are called elementary functions. Either they are generated from a real variable
x by the fundamental operations of algebra, including powers and roots, or they have relatively simple
geometric interpretations. As the title ‘‘elementary functions’’ suggests, there is a more general category
of functions (which, in fact, are dependent on the elementary ones). Some of these will be explored later
in the book. The elementary functions are described below.

1. Polynomial functions have the form

f ðxÞ ¼ a0x
n þ a1x

n�1 þ � � � þ an�1x þ an ð1Þ
where a0; . . . ; an are constants and n is a positive integer called the degree of the polynomial if
a0 6¼ 0.

The fundamental theorem of algebra states that in the field of complex numbers every
polynomial equation has at least one root. As a consequence of this theorem, it can be proved
that every nth degree polynomial has n roots in the complex field. When complex numbers are
admitted, the polynomial theoretically may be expressed as the product of n linear factors; with
our restriction to real numbers, it is possible that 2k of the roots may be complex. In this case,
the k factors generating them will be quadratic. (The corresponding roots are in complex
conjugate pairs.) The polynomial x3 � 5x2 þ 11x � 15 ¼ ðx � 3Þðx2 � 2x þ 5Þ illustrates this
thought.

2. Algebraic functions are functions y ¼ f ðxÞ satisfying an equation of the form

p0ðxÞyn þ p1ðxÞyn�1 þ � � � þ pn�1ðxÞy þ pnðxÞ ¼ 0 ð2Þ
where p0ðxÞ; . . . ; pnðxÞ are polynomials in x.

If the function can be expressed as the quotient of two polynomials, i.e., PðxÞ=QðxÞ where
PðxÞ and QðxÞ are polynomials, it is called a rational algebraic function; otherwise it is an
irrational algebraic function.

3. Transcendental functions are functions which are not algebraic, i.e., they do not satisfy equations
of the form (2).
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Note the analogy with real numbers, polynomials corresponding to integers, rational functions to

rational numbers, and so on.

TRANSCENDENTAL FUNCTIONS

The following are sometimes called elementary transcendental functions.

1. Exponential function: f ðxÞ ¼ ax, a 6¼ 0; 1. For properties, see Page 3.

2. Logarithmic function: f ðxÞ ¼ loga x, a 6¼ 0; 1. This and the exponential function are inverse
functions. If a ¼ e ¼ 2:71828 . . . ; called the natural base of logarithms, we write
f ðxÞ ¼ loge x ¼ ln x, called the natural logarithm of x. For properties, see Page 4.

3. Trigonometric functions (Also called circular functions because of their geometric interpreta-
tion with respect to the unit circle):

sin x; cos x; tan x ¼ sin x

cos x
; csc x ¼ 1

sin x
; sec x ¼ 1

cos x
; cot x ¼ 1

tan x
¼ cos x

sin x

The variable x is generally expressed in radians (� radians ¼ 1808). For real values of x,
sin x and cos x lie between �1 and 1 inclusive.

The following are some properties of these functions:

sin2 x þ cos2 x ¼ 1 1 þ tan2 x ¼ sec2 x 1 þ cot2 x ¼ csc2 x

sinðx � yÞ ¼ sin x cos y � cos x sin y sinð�xÞ ¼ � sin x

cosðx � yÞ ¼ cos x cos y � sin x sin y cosð�xÞ ¼ cos x

tanðx � yÞ ¼ tan x � tan y

1 � tan x tan y
tanð�xÞ ¼ � tan x

4. Inverse trigonometric functions. The following is a list of the inverse trigonometric functions
and their principal values:

ðaÞ y ¼ sin�1 x; ð��=2@ y@ �=2Þ ðdÞ y ¼ csc�1 x ¼ sin�1 1=x; ð��=2@ y@ �=2Þ
ðbÞ y ¼ cos�1 x; ð0@ y@ �Þ ðeÞ y ¼ sec�1 x ¼ cos�1 1=x; ð0@ y@ �Þ
ðcÞ y ¼ tan�1 x; ð��=2 < y < �=2Þ ð f Þ y ¼ cot�1 x ¼ �=2 � tan�1 x; ð0 < y < �Þ

5. Hyperbolic functions are defined in terms of exponential functions as follows. These functions
may be interpreted geometrically, much as the trigonometric functions but with respect to the
unit hyperbola.

ðaÞ sinh x ¼ ex � e�x

2
ðdÞ csch x ¼ 1

sinh x
¼ 2

ex � e�x

ðbÞ cosh x ¼ ex þ e�x

2
ðeÞ sech x ¼ 1

cosh x
¼ 2

ex þ e�x

ðcÞ tanh x ¼ sinh x

cosh x
¼ ex � e�x

ex þ e�x ð f Þ coth x ¼ cosh x

sinh x
¼ ex þ e�x

ex � e�x

The following are some properties of these functions:

cosh2 x � sinh2 x ¼ 1 1 � tanh2 x ¼ sech2 x coth2 x � 1 ¼ csch2 x

sinhðx � yÞ ¼ sinh x cosh y � cosh x sinh y sinhð�xÞ ¼ � sinh x

coshðx � yÞ ¼ cosh x cosh y � sinh x sinh y coshð�xÞ ¼ cosh x

tanhðx � yÞ ¼ tanh x � tanh y

1 � tanh x tanh y
tanhð�xÞ ¼ � tanh x
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6. Inverse hyperbolic functions. If x ¼ sinh y then y ¼ sinh�1 x is the inverse hyperbolic sine of x.
The following list gives the principal values of the inverse hyperbolic functions in terms of
natural logarithms and the domains for which they are real.

ðaÞ sinh�1 x ¼ lnðx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ; all x ðdÞ csch�1 x ¼ ln

1

x
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
jxj

 !
; x 6¼ 0

ðbÞ cosh�1 x ¼ lnðx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ; xA 1 ðeÞ sech�1x ¼ ln

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

x

 !
; 0 < x@ 1

ðcÞ tanh�1 x ¼ 1

2
ln

1 þ x

1 � x

� �
; jxj < 1 ð f Þ coth�1 x ¼ 1

2
ln

x þ 1

x � 1

� �
; jxj > 1

LIMITS OF FUNCTIONS

Let f ðxÞ be defined and single-valued for all values of x near x ¼ x0 with the possible exception of
x ¼ x0 itslef (i.e., in a deleted � neighborhood of x0). We say that the number l is the limit of f ðxÞ as x
approaches x0 and write lim

x!x0
f ðxÞ ¼ l if for any positive number � (however small) we can find some

positive number � (usually depending on �) such that j f ðxÞ � lj < � whenever 0 < jx � x0j < �. In such
case we also say that f ðxÞ approaches l as x approaches x0 and write f ðxÞ ! l as x ! x0.

In words, this means that we can make f ðxÞ arbitrarily close to l by choosing x sufficiently close to
x0.

EXAMPLE. Let f ðxÞ ¼ x2 if x 6¼ 2
0 if x ¼ 2

���� . Then as x gets closer to 2 (i.e., x approaches 2), f ðxÞ gets closer to 4. We

thus suspect that lim
x!2

f ðxÞ ¼ 4. To prove this we must see whether the above definition of limit (with l ¼ 4) is

satisfied. For this proof see Problem 3.10.

Note that lim
x!2

f ðxÞ 6¼ f ð2Þ, i.e., the limit of f ðxÞ as x ! 2 is not the same as the value of f ðxÞ at x ¼ 2 since

f ð2Þ ¼ 0 by definition. The limit would in fact be 4 even if f ðxÞ were not defined at x ¼ 2.

When the limit of a function exists it is unique, i.e., it is the only one (see Problem 3.17).

RIGHT- AND LEFT-HAND LIMITS

In the definition of limit no restriction was made as to how x should approach x0. It is sometimes
found convenient to restrict this approach. Considering x and x0 as points on the real axis where x0 is
fixed and x is moving, then x can approach x0 from the right or from the left. We indicate these
respective approaches by writing x ! x0þ and x ! x0�.

If lim
x!x0þ

f ðxÞ ¼ l1 and lim
x!x0�

f ðxÞ ¼ l2, we call l1 and l2, respectively, the right- and left-hand limits of

f at x0 and denote them by f ðx0þÞ or f ðx0 þ 0Þ and f ðx0�Þ or f ðx0 � 0Þ. The �; � definitions of limit of
f ðxÞ as x ! x0þ or x ! x0� are the same as those for x ! x0 except for the fact that values of x are
restricted to x > x0 or x < x0, respectively.

We have lim
x!x0

f ðxÞ ¼ l if and only if lim
x!x0þ

f ðxÞ ¼ lim
x!x0�

f ðxÞ ¼ l.

THEOREMS ON LIMITS

If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, then

1: lim
x!x0

ð f ðxÞ þ gðxÞÞ ¼ lim
x!x0

f ðxÞ þ lim
x!x0

gðxÞ ¼ A þ B
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2: lim
x!x0

ð f ðxÞ � gðxÞÞ ¼ lim
x!x0

f ðxÞ � lim
x!x0

gðxÞ ¼ A � B

3: lim
x!x0

ð f ðxÞgðxÞÞ ¼ lim
x!x0

f ðxÞ
� �

lim
x!x0

gðxÞ
� �

¼ AB

4: lim
x!x0

f ðxÞ
gðxÞ ¼

lim
x!x0

f ðxÞ
lim
x!x0

gðxÞ ¼ A

B
if B 6¼ 0

Similar results hold for right- and left-hand limits.

INFINITY

It sometimes happens that as x ! x0, f ðxÞ increases or decreases without bound. In such case it is
customary to write lim

x!x0
f ðxÞ ¼ þ1 or lim

x!x0
f ðxÞ ¼ �1, respectively. The symbols þ1 (also written

1) and �1 are read plus infinity (or infinity) and minus infinity, respectively, but it must be emphasized
that they are not numbers.

In precise language, we say that lim
x!x0

f ðxÞ ¼ 1 if for each positive number M we can find a positive

number � (depending onM in general) such that f ðxÞ > M whenever 0 < jx � x0j < �. Similarly, we say
that lim

x!x0
f ðxÞ ¼ �1 if for each positive number M we can find a positive number � such that

f ðxÞ < �M whenever 0 < jx � x0j < �. Analogous remarks apply in case x ! x0þ or x ! x0�.

Frequently we wish to examine the behavior of a function as x increases or decreases without bound.
In such cases it is customary to write x ! þ1 (or 1) or x ! �1, respectively.

We say that lim
x!þ1 f ðxÞ ¼ l, or f ðxÞ ! l as x ! þ1, if for any positive number � we can find a

positive number N (depending on � in general) such that j f ðxÞ � lj < � whenever x > N. A similar
definition can be formulated for lim

x!�1 f ðxÞ.

SPECIAL LIMITS

1. lim
x!0

sin x

x
¼ 1; lim

x!0

1 � cos x

x
¼ 0

2. lim
x!1 1 þ 1

x

� �x

¼ e, lim
x!0þ

ð1 þ xÞ1=x ¼ e

3. lim
x!0

ex � 1

x
¼ 1, lim

x!1

x � 1

ln x
¼ 1

CONTINUITY

Let f be defined for all values of x near x ¼ x0 as well as at x ¼ x0 (i.e., in a � neighborhood of x0).
The function f is called continuous at x ¼ x0 if lim

x!x0
f ðxÞ ¼ f ðx0Þ. Note that this implies three conditions

which must be met in order that f ðxÞ be continuous at x ¼ x0.

1. lim
x!x0

f ðxÞ ¼ l must exist.

2. f ðx0Þ must exist, i.e., f ðxÞ is defined at x0.

3. l ¼ f ðx0Þ.
In summary, lim

x!x0
f ðxÞ is the value suggested for f at x ¼ x0 by the behavior of f in arbitrarily small

neighborhoods of x0. If in fact this limit is the actual value, f ðx0Þ, of the function at x0, then f is
continuous there.

Equivalently, if f is continuous at x0, we can write this in the suggestive form lim
x!x0

f ðxÞ ¼ f ð lim
x!x0

xÞ.
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EXAMPLES. 1. If f ðxÞ ¼ x2; x 6¼ 2
0; x ¼ 2

�
then from the example on Page 45 lim

x!2
f ðxÞ ¼ 4. But f ð2Þ ¼ 0. Hence

lim
x!2

f ðxÞ 6¼ f ð2Þ and the function is not continuous at x ¼ 2.

2. If f ðxÞ ¼ x2 for all x, then lim
x!2

f ðxÞ ¼ f ð2Þ ¼ 4 and f ðxÞ is continuous at x ¼ 2.

Points where f fails to be continuous are called discontinuities of f and f is said to be discontinuous at
these points.

In constructing a graph of a continuous function the pencil need never leave the paper, while for a
discontinuous function this is not true since there is generally a jump taking place. This is of course
merely a characteristic property and not a definition of continuity or discontinuity.

Alternative to the above definition of continuity, we can define f as continuous at x ¼ x0 if for any
� > 0 we can find � > 0 such that j f ðxÞ � f ðx0Þj < � whenever jx � x0j < �. Note that this is simply the
definition of limit with l ¼ f ðx0Þ and removal of the restriction that x 6¼ x0.

RIGHT- AND LEFT-HAND CONTINUITY

If f is defined only for xA x0, the above definition does not apply. In such case we call f continuous
(on the right) at x ¼ x0 if lim

x!x0þ
f ðxÞ ¼ f ðx0Þ, i.e., if f ðx0þÞ ¼ f ðx0Þ. Similarly, f is continuous (on the left)

at x ¼ x0 if lim
x!x0�

f ðxÞ ¼ f ðx0Þ, i.e., f ðx0�Þ ¼ f ðx0Þ. Definitions in terms of � and � can be given.

CONTINUITY IN AN INTERVAL

A function f is said to be continuous in an interval if it is continuous at all points of the interval. In
particular, if f is defined in the closed interval a@ x@ b or ½a; b�, then f is continuous in the interval if
and only if lim

x!x0
f ðxÞ ¼ f ðx0Þ for a < x0 < b, lim

x!aþ f ðxÞ ¼ f ðaÞ and lim
x!b�

f ðxÞ ¼ f ðbÞ.

THEOREMS ON CONTINUITY

Theorem 1. If f and g are continuous at x ¼ x0, so also are the functions whose image values satisfy the

relations f ðxÞ þ gðxÞ, f ðxÞ � gðxÞ, f ðxÞgðxÞ and f ðxÞ
gðxÞ, the last only if gðx0Þ 6¼ 0. Similar results hold for

continuity in an interval.

Theorem 2. Functions described as follows are continuous in every finite interval: (a) all polynomials;
(b) sin x and cos x; (c) ax; a > 0

Theorem 3. Let the function f be continuous at the domain value x ¼ x0. Also suppose that a function
g, represented by z ¼ gðyÞ, is continuous at y0, where y ¼ f ðxÞ (i.e., the range value of f corresponding to
x0 is a domain value of g). Then a new function, called a composite function, f ðgÞ, represented by
z ¼ g½ f ðxÞ�, may be created which is continuous at its domain point x ¼ x0. [One says that a continuous
function of a continuous function is continuous.]

Theorem 4. If f ðxÞ is continuous in a closed interval, it is bounded in the interval.

Theorem 5. If f ðxÞ is continuous at x ¼ x0 and f ðx0Þ > 0 [or f ðx0Þ < 0], there exists an interval about
x ¼ x0 in which f ðxÞ > 0 [or f ðxÞ < 0].

Theorem 6. If a function f ðxÞ is continuous in an interval and either strictly increasing or strictly
decreasing, the inverse function f �1ðxÞ is single-valued, continuous, and either strictly increasing or
strictly decreasing.
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Theorem 7. If f ðxÞ is continuous in ½a; b� and if f ðaÞ ¼ A and f ðbÞ ¼ B, then corresponding to any
number C between A and B there exists at least one number c in ½a; b� such that f ðcÞ ¼ C. This is
sometimes called the intermediate value theorem.

Theorem 8. If f ðxÞ is continuous in ½a; b� and if f ðaÞ and f ðbÞ have opposite signs, there is at least one
number c for which f ðcÞ ¼ 0 where a < c < b. This is related to Theorem 7.

Theorem 9. If f ðxÞ is continuous in a closed interval, then f ðxÞ has a maximum value M for at least one
value of x in the interval and a minimum value m for at least one value of x in the interval. Further-
more, f ðxÞ assumes all values between m and M for one or more values of x in the interval.

Theorem 10. If f ðxÞ is continuous in a closed interval and if M and m are respectively the least upper
bound (l.u.b.) and greatest lower bound (g.l.b.) of f ðxÞ, there exists at least one value of x in the interval
for which f ðxÞ ¼ M or f ðxÞ ¼ m. This is related to Theorem 9.

PIECEWISE CONTINUITY

A function is called piecewise continuous in an interval a@ x@ b if the interval can be subdivided
into a finite number of intervals in each of which the function is continuous and has finite right- and left-
hand limits. Such a function has only a finite number of discontinuities. An example of a function
which is piecewise continuous in a@ x@ b is shown graphically in Fig. 3-4 below. This function has
discontinuities at x1, x2, x3, and x4.

UNIFORM CONTINUITY

Let f be continuous in an interval. Then by definition at each point x0 of the interval and for any

� > 0, we can find � > 0 (which will in general depend on both � and the particular point x0) such that

j f ðxÞ � f ðx0Þj < � whenever jx � x0j < �. If we can find � for each � which holds for all points of the

interval (i.e., if � depends only on � and not on x0), we say that f is uniformly continuous in the interval.

Alternatively, f is uniformly continuous in an interval if for any � > 0 we can find � > 0 such that

j f ðx1Þ � f ðx2Þj < � whenever jx1 � x2j < � where x1 and x2 are any two points in the interval.

Theorem. If f is continuous in a closed interval, it is uniformly continuous in the interval.
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Solved Problems

FUNCTIONS

3.1. Let f ðxÞ ¼ ðx � 2Þð8 � xÞ for 2@ x@ 8. (a) Find f ð6Þ and f ð�1Þ. (b) What is the domain of
definition of f ðxÞ? (c) Find f ð1 � 2tÞ and give the domain of definition. (d) Find f ½ f ð3Þ�,
f ½ f ð5Þ�. (e) Graph f ðxÞ.
(a) f ð6Þ ¼ ð6 � 2Þð8 � 6Þ ¼ 4 � 2 ¼ 8

f ð�1Þ is not defined since f ðxÞ is defined only for 2@ x@ 8.

(b) The set of all x such that 2@ x@ 8.

(c) f ð1 � 2tÞ ¼ fð1 � 2tÞ � 2gf8 � ð1 � 2tÞg ¼ �ð1 þ 2tÞð7 þ 2tÞ where t is such that 2@ 1 � 2t@ 8, i.e.,

�7=2@ t@ � 1=2.

(d) f ð3Þ ¼ ð3 � 2Þð8 � 3Þ ¼ 5,

f ½ f ð3Þ� ¼ f ð5Þ ¼ ð5 � 2Þð8 � 5Þ ¼ 9.
f ð5Þ ¼ 9 so that f ½ f ð5Þ� ¼ f ð9Þ is not defined.

(e) The following table shows f ðxÞ for various values of x.

Plot points ð2; 0Þ; ð3; 5Þ; ð4; 8Þ; ð5; 9Þ; ð6; 8Þ; ð7; 5Þ; ð8; 0Þ;
ð2:5; 2:75Þ; ð7:5; 2:75Þ.
These points are only a few of the infinitely many points

on the required graph shown in the adjoining Fig. 3-5. This

set of points defines a curve which is part of a parabola.

3.2. Let gðxÞ ¼ ðx � 2Þð8 � xÞ for 2 < x < 8. (a) Discuss the difference between the graph of gðxÞ and
that of f ðxÞ in Problem 3.1. (b) What is the l.u.b. and g.l.b. of gðxÞ? (c) Does gðxÞ attain its
l.u.b. and g.l.b. for any value of x in the domain of definition? (d) Answer parts (b) and (c) for
the function f ðxÞ of Problem 3.1.

(a) The graph of gðxÞ is the same as that in Problem 3.1 except that the two points ð2; 0Þ and ð8; 0Þ are
missing, since gðxÞ is not defined at x ¼ 2 and x ¼ 8.

(b) The l.u.b. of gðxÞ is 9. The g.l.b. of gðxÞ is 0.
(c) The l.u.b. of gðxÞ is attained for the value of x ¼ 5. The g.l.b. of gðxÞ is not attained, since there is no

value of x in the domain of definition such that gðxÞ ¼ 0.

(d) As in (b), the l.u.b. of f ðxÞ is 9 and the g.l.b. of f ðxÞ is 0. The l.u.b. of f ðxÞ is attained for the value
x ¼ 5 and the g.l.b. of f ðxÞ is attained at x ¼ 2 and x ¼ 8.

Note that a function, such as f ðxÞ, which is continuous in a closed interval attains its l.u.b. and g.l.b.
at some point of the interval. However, a function, such as gðxÞ, which is not continuous in a closed

interval need not attain its l.u.b. and g.l.b. See Problem 3.34.

3.3. Let f ðxÞ ¼ 1; if x is a rational number
0; if x is an irrational number

�
. (a) Find f ð23Þ, f ð�5Þ, f ð1:41423Þ, f ð ffiffiffi

2
p Þ,

(b) Construct a graph of f ðxÞ and explain why it is misleading by itself.

(a) f ð23Þ ¼ 1 since 2
3 is a rational number

f ð�5Þ ¼ 1 since �5 is a rational number
f ð1:41423Þ ¼ 1 since 1.41423 is a rational number
f ð ffiffiffi

2
p Þ ¼ 0 since

ffiffiffi
2

p
is an irrational number
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(b) The graph is shown in the adjoining Fig. 3-6. Because both the

sets of rational numbers and irrational numbers are dense, the
visual impression is that there are two images corresponding to
each domain value. In actuality, each domain value has only
one corresponding range value.

3.4. Referring to Problem 3.1: (a) Draw the graph with axes
interchanged, thus illustrating the two possible choices avail-
able for definition of f �1. (b) Solve for x in terms of y to
determine the equations describing the two branches, and then interchange the variables.

(a) The graph of y ¼ f ðxÞ is shown in Fig. 3-5 of Problem 3.1(a). By interchanging the axes (and the
variables), we obtain the graphical form of Fig. 3-7. This figure illustrates that there are two values of y
corresponding to each value of x, and hence two branches. Either may be employed to define f �1.

(b) We have y ¼ ðx � 2Þð8 � xÞ or x2 � 10x þ 16 þ y ¼ 0. The solu-

tion of this quadratic equation is

x ¼ 5 �
ffiffiffiffiffiffiffiffiffiffiffiffi
9 � y:

p
After interchanging variables

y ¼ 5 �
ffiffiffiffiffiffiffiffiffiffiffi
9 � x

p
:

In the graph, AP represents y ¼ 5 þ ffiffiffiffiffiffiffiffiffiffiffi
9 � x

p
, and BP designates

y ¼ 5 � ffiffiffiffiffiffiffiffiffiffiffi
9 � x

p
. Either branch may represent f �1.

Note: The point at which the two branches meet is called a
branch point.

3.5. (a) Prove that gðxÞ ¼ 5 þ ffiffiffiffiffiffiffiffiffiffiffi
9 � x

p
is strictly decreasing in 0@ x@ 9. (b) Is it monotonic

decreasing in this interval? (c) Does gðxÞ have a single-valued inverse?

(a) gðxÞ is strictly decreasing if gðx1Þ > gðx2Þ whenever x1 < x2. If x1 < x2 then 9 � x1 > 9 � x2,ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � x1

p
>

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � x2

p
, 5 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9 � x1
p

> 5 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 � x2

p
showing that gðxÞ is strictly decreasing.

(b) Yes, any strictly decreasing function is also monotonic decreasing, since if gðx1Þ > gðx2Þ it is also true
that gðx1ÞA gðx2Þ. However, if gðxÞ is monotonic decreasing, it is not necessarily strictly decreasing.

(c) If y ¼ 5 þ ffiffiffiffiffiffiffiffiffiffiffi
9 � x

p
, then y � 5 ¼ ffiffiffiffiffiffiffiffiffiffiffi

9 � x
p

or squaring, x ¼ �16 þ 10y � y2 ¼ ðy � 2Þð8 � yÞ and x is a
single-valued function of y, i.e., the inverse function is single-valued.

In general, any strictly decreasing (or increasing) function has a single-valued inverse (see Theorem
6, Page 47).

The results of this problem can be interpreted graphically using the figure of Problem 3.4.

3.6. Construct graphs for the functions (a) f ðxÞ ¼ x sin 1=x; x > 0
0; x ¼ 0

�
, (b) f ðxÞ ¼ ½x� ¼ greatest

integer @ x.

(a) The required graph is shown in Fig. 3-8. Since jx sin 1=xj@ jxj, the graph is included between y ¼ x
and y ¼ �x. Note that f ðxÞ ¼ 0 when sin 1=x ¼ 0 or 1=x ¼;m�, m ¼ 1; 2; 3; 4; . . . ; i.e., where
x ¼ 1=�; 1=2�; 1=3�; . . . . The curve oscillates infinitely often between x ¼ 1=� and x ¼ 0.

(b) The required graph is shown in Fig. 3-9. If 1@ x < 2, then ½x� ¼ 1. Thus ½1:8� ¼ 1, ½ ffiffiffi
2

p � ¼ 1,

½1:99999� ¼ 1. However, ½2� ¼ 2. Similarly for 2@ x < 3, ½x� ¼ 2, etc. Thus there are jumps at
the integers. The function is sometimes called the staircase function or step function.

3.7. (a) Construct the graph of f ðxÞ ¼ tan x. (b) Construct the graph of some of the infinite number
of branches available for a definition of tan�1 x. (c) Show graphically why the relationship of x
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to y is multivalued. (d) Indicate possible principal values for tan�1 x. (e) Using your choice,
evaluate tan�1ð�1Þ.
(a) The graph of f ðxÞ ¼ tan x appears in Fig. 3-10 below.

(b) The required graph is obtained by interchanging the x and y axes in the graph of (a). The result, with
axes oriented as usual, appears in Fig. 3-11 above.

(c) In Fig. 3-11 of (b), any vertical line meets the graph in infinitely many points. Thus, the relation of y to
x is multivalued and infinitely many branches are available for the purpose of defining tan�1 x.

(d) To define tan�1 x as a single-valued function, it is clear from the graph that we can only do so by

restricting its value to any of the following: ��=2 < tan�1 x < �=2; �=2 < tan�1 x < 3�=2, etc. We
shall agree to take the first as defining the principal value.

Note that no matter which branch is used to define tan�1 x, the resulting function is strictly
increasing.

(e) tan�1ð�1Þ ¼ ��=4 is the only value lying between ��=2 and �=2, i.e., it is the principal value according
to our choice in ðdÞ.

3.8. Show that f ðxÞ ¼
ffiffiffi
x

p þ 1

x þ 1
, x 6¼ �1, describes an irrational algebraic function.

If y ¼
ffiffiffi
x

p þ 1

x þ 1
then ðx þ 1Þy � 1 ¼ ffiffiffi

x
p

or squaring, ðx þ 1Þ2y2 � 2ðx þ 1Þy þ 1 � x ¼ 0, a polynomial

equation in y whose coefficients are polynomials in x. Thus f ðxÞ is an algebraic function. However, it is not
the quotient of two polynomials, so that it is an irrational algebraic function.
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3.9. If f ðxÞ ¼ cosh x ¼ 1
2 ðex þ e�xÞ, prove that we can choose as the principal value of the inverse

function, cosh�1 x ¼ lnðx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ, xA 1.

If y ¼ 1
2 ðex þ e�xÞ, e2x � 2yex þ 1 ¼ 0. Then using the quadratic formula, ex ¼ 2y �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4y2 � 4

p
2

¼
y �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
. Thus x ¼ lnðy �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
Þ.

Since y �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
¼ ðy �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
Þ y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
 !

¼ 1

y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p , we can also write

x ¼ � lnðy þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

q
Þ or cosh�1 y ¼ � lnðy þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

q
Þ

Choosing the þ sign as defining the principal value and replacing y by x, we have
cosh�1 x ¼ lnðx þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ. The choice xA 1 is made so that the inverse function is real.

LIMITS

3.10. If (a) f ðxÞ ¼ x2, (b) f ðxÞ ¼ x2; x 6¼ 2
0; x ¼ 2

�
, prove that lim

x!2
f ðxÞ ¼ 4.

(a) We must show that given any � > 0 we can find � > 0 (depending on � in general) such that jx2 � 4j < �
when 0 < jx � 2j < �.

Choose �@ 1 so that 0 < jx � 2j < 1 or 1 < x < 3, x 6¼ 2. Then jx2 � 4j ¼ jðx � 2Þðx þ 2Þj ¼
jx � 2jjx þ 2j < �jx þ 2j < 5�.

Take � as 1 or �=5, whichever is smaller. Then we have jx2 � 4j < � whenever 0 < jx � 2j < � and
the required result is proved.

It is of interest to consider some numerical values. If for example we wish to make jx2 � 4j < :05,
we can choose � ¼ �=5 ¼ :05=5 ¼ :01. To see that this is actually the case, note that if 0 < jx � 2j < :01
then 1:99 < x < 2:01 ðx 6¼ 2Þ and so 3:9601 < x2 < 4:0401, �:0399 < x2 � 4 < :0401 and certainly
jx2 � 4j < :05 ðx2 6¼ 4Þ. The fact that these inequalities also happen to hold at x ¼ 2 is merely coin-
cidental.

If we wish to make jx2 � 4j < 6, we can choose � ¼ 1 and this will be satisfied.

(b) There is no difference between the proof for this case and the proof in (a), since in both cases we exclude

x ¼ 2.

3.11. Prove that lim
x!1

2x4 � 6x3 þ x2 þ 3

x � 1
¼ �8.

We must show that for any � > 0 we can find � > 0 such that
2x4 � 6x3 þ x2 þ 3

x � 1
� ð�8Þ

�����
����� < � when

0 < jx � 1j < �. Since x 6¼ 1, we can write
2x4 � 6x3 þ x2 þ 3

x � 1
¼ ð2x3 � 4x2 � 3x � 3Þðx � 1Þ

x � 1
¼ 2x3 � 4x2�

3x � 3 on cancelling the common factor x � 1 6¼ 0.

Then we must show that for any � > 0, we can find � > 0 such that j2x3 � 4x2 � 3x þ 5j < � when
0 < jx � 1j < �. Choosing �@ 1, we have 0 < x < 2, x 6¼ 1.

Now j2x3 � 4x2 � 3x þ 5j ¼ jx � 1jj2x2 � 2x � 5j < �j2x2 � 2x � 5j < �ðj2x2j þ j2xj þ 5Þ < ð8 þ 4 þ 5Þ
� ¼ 17�. Taking � as the smaller of 1 and �=17, the required result follows.

3.12. Let f ðxÞ ¼
jx � 3j
x � 3

; x 6¼ 3

0; x ¼ 3

8<
: , (a) Graph the function. (b) Find lim

x!3þ
f ðxÞ. (c) Find

lim
x!3�

f ðxÞ. (d) Find lim
x!3

f ðxÞ.

(a) For x > 3,
jx � 3j
x � 3

¼ x � 3

x � 3
¼ 1.

For x < 3,
jx � 3j
x � 3

¼ �ðx � 3Þ
x � 3

¼ �1.
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Then the graph, shown in the adjoining Fig. 3-12,
consists of the lines y ¼ 1, x > 3; y ¼ �1, x < 3 and
the point ð3; 0Þ.

(b) As x ! 3 from the right, f ðxÞ ! 1, i.e., lim
x!3þ

f ðxÞ ¼ 1,

as seems clear from the graph. To prove this we must

show that given any � > 0, we can find � > 0 such that

j f ðxÞ � 1j < � whenever 0 < x � 1 < �.

Now since x > 1, f ðxÞ ¼ 1 and so the proof con-
sists in the triviality that j1 � 1j < � whenever
0 < x � 1 < �.

(c) As x ! 3 from the left, f ðxÞ ! �1, i.e.,

lim
x!3�

f ðxÞ ¼ �1. A proof can be formulated as in (b).

(d) Since lim
x!3þ

f ðxÞ 6¼ lim
x!3�

f ðxÞ, lim
x!3

f ðxÞ does not exist.

3.13. Prove that lim
x!0

x sin 1=x ¼ 0.

We must show that given any � > 0, we can find � > 0 such that jx sin 1=x � 0j < � when
0 < jx � 0j < �.

If 0 < jxj < �, then jx sin 1=xj ¼ jxjj sin 1=xj@ jxj < � since j sin 1=xj@ 1 for all x 6¼ 0.

Making the choice � ¼ �, we see that jx sin 1=xj < � when 0 < jxj < �, completing the proof.

3.14. Evaluate lim
x!0þ

2

1 þ e�1=x
.

As x ! 0þ we suspect that 1=x increases indefinitely, e1=x increases indefinitely, e�1=x approaches 0,
1 þ e�1=x approaches 1; thus the required limit is 2.

To prove this conjecture we must show that, given � > 0, we can find � > 0 such that

2

1 þ e�1=x
� 2

����
���� < � when 0 < x < �

2

1 þ e�1=x
� 2

����
���� ¼ 2 � 2 � 2e�1=x

1 þ e�1=x

�����
����� ¼ 2

e1=x þ 1
Now

Since the function on the right is smaller than 1 for all x > 0, any � > 0 will work when e 	 1. If

0 < � < 1, then
2

e1=x þ 1
< � when

e1=x þ 1

2
>

1

�
, e1=x >

2

�
� 1,

1

x
> ln

2

�
� 1

� �
; or 0 < x <

1

lnð2=� � 1Þ ¼ �.

3.15. Explain exactly what is meant by the statement lim
x!1

1

ðx � 1Þ4 ¼ 1 and prove the validity of this
statement.

The statement means that for each positive number M, we can find a positive number � (depending on

M in general) such that

1

ðx � 1Þ4 > 4 when 0 < jx � 1j < �

To prove this note that
1

ðx � 1Þ4 > M when 0 < ðx � 1Þ4 <
1

M
or 0 < jx � 1j <

1ffiffiffiffiffi
M4

p .

Choosing � ¼ 1=
ffiffiffiffiffi
M4

p
, the required results follows.

3.16. Present a geometric proof that lim
�!0

sin �

�
¼ 1.

Construct a circle with center at O and radius OA ¼ OD ¼ 1, as in Fig. 3-13 below. Choose point B on
OA extended and point C on OD so that lines BD and AC are perpendicular to OD.

It is geometrically evident that
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Area of triangle OAC < Area of sector OAD < Area of triangle OBD

1
2 sin � cos � < 1

2 � < 1
2 tan �i.e.,

Dividing by 1
2 sin �,

cos � <
�

sin �
<

1

cos �

cos � <
sin �

�
<

1

cos �
or

As � ! 0, cos � ! 1 and it follows that lim
�!0

sin �

�
¼ 1.

THEOREMS ON LIMITS

3.17. If lim
x!x0

f ðxÞ exists, prove that it must be unique.

We must show that if lim
x!x0

f ðxÞ ¼ l1 and lim
x!x0

f ðxÞ ¼ l2, then l1 ¼ l2.

By hypothesis, given any � > 0 we can find � > 0 such that

j f ðxÞ � l1j < �=2 when 0 < jx � x0j < �

j f ðxÞ � l2j < �=2 when 0 < jx � x0j < �

Then by the absolute value property 2 on Page 3,

jl1 � l2j ¼ jl1 � f ðxÞ þ f ðxÞ � l2j@ jl1 � f ðxÞj þ j f ðxÞ � l2j < �=2 þ �=2 ¼ �

i.e., jl1 � l2j is less than any positive number � (however small) and so must be zero. Thus l1 ¼ l2.

3.18. If lim
x!x0

gðxÞ ¼ B 6¼ 0, prove that there exists � > 0 such that

jgðxÞj > 1
2 jBj for 0 < jx � x0j < �

Since lim
x!x0

gðxÞ ¼ B, we can find � > 0 such that jgðxÞ � Bj < 1
2 jBj for 0 < jx � x0j < �.

Writing B ¼ B � gðxÞ þ gðxÞ, we have

jBj@ jB � gðxÞj þ jgðxÞj < 1
2 jBj þ jgðxÞj

i.e., jBj < 1
2 jBj þ jgðxÞj, from which jgðxÞj > 1

2 jBj.

3.19. Given lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, prove (a) lim
x!x0

½ f ðxÞ þ gðxÞ� ¼ A þ B, (b) lim
x!x0

f ðxÞgðxÞ ¼ AB, (c) lim
x!x0

1

gðxÞ ¼ 1

B
if B 6¼ 0, (d) lim

x!x0

f ðxÞ
gðxÞ ¼ A

B
if B 6¼ 0.

(a) We must show that for any � > 0 we can find � > 0 such that

j½ f ðxÞ þ gðxÞ� � ðA þ BÞj < � when 0 < jx � x0j < �

Using absolute value property 2, Page 3, we have

j½ f ðxÞ þ gðxÞ� � ðA þ BÞj ¼ j½ f ðxÞ � A� þ ½gðxÞ � B�j@ j f ðxÞ � Aj þ jgðxÞ � Bj ð1Þ
By hypothesis, given � > 0 we can find �1 > 0 and �2 > 0 such that

j f ðxÞ � Aj < �=2 when 0 < jx � x0j < �1 ð2Þ
jgðxÞ � Bj < �=2 when 0 < jx � x0j < �2 ð3Þ

Then from (1), (2), and (3),

j½ f ðxÞ þ gðxÞ� � ðA þ BÞj < �=2 þ �=2 ¼ � when 0 < jx � x0j < �

where � is chosen as the smaller of �1 and �2.

B

A

Ccos �

sin �

tan �

DO �

Fig. 3-13



(b) We have

j f ðxÞgðxÞ � ABj ¼ j f ðxÞ½gðxÞ � B� þ B½ f ðxÞ � A�j ð4Þ
@ j f ðxÞjjgðxÞ � Bj þ jBjj f ðxÞ � Aj
@ j f ðxÞjjgðxÞ � Bj þ ðjBj þ 1Þj f ðxÞ � Aj

Since lim
x!x0

f ðxÞ ¼ A, we can find �1 such j f ðxÞ � Aj < 1 for 0 < jx � x0j < �1, i.e.,

A � 1 < f ðxÞ < A þ 1, so that f ðxÞ is bounded, i.e., j f ðxÞj < P where P is a positive constant.

Since lim
x!x0

gðxÞ ¼ B, given � > 0 we can find �2 > 0 such that jgðxÞ � Bj < �=2P for

0 < jx � x0j < �2.

Since lim
x!x0

f ðxÞ ¼ A, given � > 0 we can find �3 > 0 such that j f ðxÞ � Aj <
�

2ðjBj þ 1Þ for

0 < jx � x0j < �2.

Using these in (4), we have

j f ðxÞgðxÞ � ABj < P � �

2P
þ ðjBj þ 1Þ � �

2ðjBj þ 1Þ ¼ �

for 0 < jx � x0j < � where � is the smaller of �1; �2; �3 and the proof is complete.

(c) We must show that for any � > 0 we can find � > 0 such that

1

gðxÞ � 1

B

����
���� ¼ jgðxÞ � Bj

jBjjgðxÞj < � when 0 < jx � x0j < � ð5Þ

By hypothesis, given � > 0 we can find �1 > 0 such that

jgðxÞ � Bj < 1
2B

2� when 0 < jx � x0j < �1

By Problem 3.18, since lim
x!x0

gðxÞ ¼ B 6¼ 0, we can find �2 > 0 such that

jgðxÞj > 1
2 jBj when 0 < jx � x0j < �2

Then if � is the smaller of �1 and �2, we can write

1

gðxÞ � 1

B

����
���� ¼ jgðxÞ � Bj

jBjjgðxÞj <
1
2B

2�

jBj � 12 jBj ¼ � whenever 0 < jx � x0j < �

and the required result is proved.

(d) From parts (b) and (c),

lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0
f ðxÞ � 1

gðxÞ ¼ lim
x!x0

f ðxÞ � lim
x!x0

1

gðxÞ ¼ A � 1
B

¼ A

B

This can also be proved directly (see Problem 3.69).

The above results can also be proved in the cases x ! x0þ, x ! x0�, x ! 1, x ! �1.

Note: In the proof of (a) we have used the results j f ðxÞ � Aj < �=2 and jgðxÞ � Bj < �=2, so that the final

result would come out to be j f ðxÞ þ gðxÞ � ðA þ BÞj < �. Of course the proof would be just as valid if we
had used 2� (or any other positive multiple of �) in place of �. A similar remark holds for the proofs of ðbÞ,
(c), and (d).

3.20. Evaluate each of the following, using theorems on limits.

ðaÞ lim
x!2

ðx2 � 6x þ 4Þ ¼ lim
x!2

x2 þ lim
x!2

ð�6xÞ þ lim
x!2

4

¼ ðlim
x!2

xÞðlim
x!2

xÞ þ ðlim
x!2

�6Þðlim
x!2

xÞ þ lim
x!2

4

¼ ð2Þð2Þ þ ð�6Þð2Þ þ 4 ¼ �4

In practice the intermediate steps are omitted.
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ðbÞ lim
x!�1

ðx þ 3Þð2x � 1Þ
x2 þ 3x � 2

¼
lim
x!�1

ðx þ 3Þ lim
x!�1

ð2x � 1Þ
lim
x!�1

ðx2 þ 3x � 2Þ ¼ 2 � ð�3Þ
�4

¼ 3

2

ðcÞ lim
x!1

2x4 � 3x2 þ 1

6x4 þ x3 � 3x
¼ lim

x!1

2 � 3

x2
þ 1

x4

6 þ 1

x
� 3

x3

¼
lim
x!1 2 þ lim

x!1
�3

x2
þ lim

x!1
1

x4

lim
x!1 6 þ lim

x!1
1

x
þ lim

x!1
�3

x3

¼ 2

6
¼ 1

3

by Problem 3.19.

ðdÞ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi
4 þ h

p � 2

h
¼ lim

h!0

ffiffiffiffiffiffiffiffiffiffiffi
4 þ h

p � 2

h
�
ffiffiffiffiffiffiffiffiffiffiffi
4 þ h

p þ 2ffiffiffiffiffiffiffiffiffiffiffi
4 þ h

p þ 2

¼ lim
h!0

4 þ h � 4

hð ffiffiffiffiffiffiffiffiffiffiffi
4 þ h

p þ 2Þ ¼ lim
h!0

1ffiffiffiffiffiffiffiffiffiffiffi
4 þ h

p þ 2
¼ 1

2 þ 2
¼ 1

4

ðeÞ lim
x!0þ

sinxffiffiffi
x

p ¼ lim
x!0þ

sinx

x
� ffiffiffi

x
p ¼ lim

x!0þ
sinx

x
� lim
x!0þ

ffiffiffi
x

p ¼ 1 � 0 ¼ 0:

Note that in (c), (d), and (e) if we use the theorems on limits indiscriminately we obtain the so

called indeterminate forms 1=1 and 0/0. To avoid such predicaments, note that in each case the form
of the limit is suitably modified. For other methods of evaluating limits, see Chapter 4.

CONTINUITY

(Assume that values at which continuity is to be demonstrated, are interior domain values unless
otherwise stated.)

3.21. Prove that f ðxÞ ¼ x2 is continuous at x ¼ 2.

Method 1: By Problem 3.10, lim
x!2

f ðxÞ ¼ f ð2Þ ¼ 4 and so f ðxÞ is continuous at x ¼ 2.

Method 2: We must show that given any � > 0, we can find � > 0 (depending on �) such that
j f ðxÞ � f ð2Þj ¼ jx2 � 4j < � when jx � 2j < �. The proof patterns that are given in Problem 3.10.

3.22. (a) Prove that f ðxÞ ¼ x sin 1=x; x 6¼ 0
5; x ¼ 0

�
is not continuous at x ¼ 0. (b) Can one redefine f ð0Þ

so that f ðxÞ is continuous at x ¼ 0?

(a) From Problem 3.13, lim
x!0

f ðxÞ ¼ 0. But this limit is not equal to f ð0Þ ¼ 5, so that f ðxÞ is discontinuous
at x ¼ 0.

(b) By redefining f ðxÞ so that f ð0Þ ¼ 0, the function becomes continuous. Because the function can be

made continuous at a point simply by redefining the function at the point, we call the point a removable
discontinuity.

3.23. Is the function f ðxÞ ¼ 2x4 � 6x3 þ x2 þ 3

x � 1
continuous at x ¼ 1?

f ð1Þ does not exist, so that f ðxÞ is not continuous at x ¼ 1. By redefining f ðxÞ so that f ð1Þ ¼ lim
x!1

f ðxÞ ¼ �8 (see Problem 3.11), it becomes continuous at x ¼ 1, i.e., x ¼ 1 is a removable discontinuity.

3.24. Prove that if f ðxÞ and gðxÞ are continuous at x ¼ x0, so also are (a) f ðxÞ þ gðxÞ, (b) f ðxÞgðxÞ,
(c)

f ðxÞ
gðxÞ if f ðx0Þ 6¼ 0.

56 FUNCTIONS, LIMITS, AND CONTINUITY [CHAP. 3



These results follow at once from the proofs given in Problem 3.19 by taking A ¼ f ðx0Þ and B ¼ gðx0Þ
and rewriting 0 < jx � x0j < � as jx � x0j < �, i.e., including x ¼ x0.

3.25. Prove that f ðxÞ ¼ x is continuous at any point x ¼ x0.

We must show that, given any � > 0, we can find � > 0 such that j f ðxÞ � f ðx0Þj ¼ jx � x0j < � when
jx � x0j < �. By choosing � ¼ �, the result follows at once.

3.26. Prove that f ðxÞ ¼ 2x3 þ x is continuous at any point x ¼ x0.

Since x is continuous at any point x ¼ x0 (Problem 3.25) so also is x � x ¼ x2, x2 � x ¼ x3, 2x3, and
finally 2x3 þ x, using the theorem (Problem 3.24) that sums and products of continuous functions are
continuous.

3.27. Prove that if f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
x � 5

p
for 5@ x@ 9, then f ðxÞ is continuous in this interval.

If x0 is any point such that 5 < x0 < 9, then lim
x!x0

f ðxÞ ¼ lim
x!x0

ffiffiffiffiffiffiffiffiffiffiffi
x � 5

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 � 5

p
¼ f ðx0Þ. Also,

lim
x!5þ

ffiffiffiffiffiffiffiffiffiffiffi
x � 5

p
¼ 0 ¼ f ð5Þ and lim

x!9�

ffiffiffiffiffiffiffiffiffiffiffi
x � 5

p
¼ 2 ¼ f ð9Þ. Thus the result follows.

Here we have used the result that lim
x!x0

ffiffiffiffiffiffiffiffiffi
f ðxÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
x!x0

f ðxÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffi
f ðx0Þ

p
if f ðxÞ is continuous at x0. An �, �

proof, directly from the definition, can also be employed.

3.28. For what values of x in the domain of definition is each of the following functions continuous?

(a) f ðxÞ ¼ x

x2 � 1
Ans. all x except x ¼ �1 (where the denominator is zero)

(b) f ðxÞ ¼ 1 þ cos x

3 þ sin x
Ans. all x

(c) f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 þ 44

p Ans. All x > �10

(d) f ðxÞ ¼ 10�1=ðx�3Þ2 Ans. all x 6¼ 3 (see Problem 3.55)

(e) f ðxÞ ¼ 10�1=ðx�3Þ2 ; x 6¼ 3
0; x ¼ 3

�
Ans. all x, since lim

x!3
f ðxÞ ¼ f ð3Þ

( f ) f ðxÞ ¼ x � jxj
x

If x > 0, f ðxÞ ¼ x � x

x
¼ 0. If x < 0, f ðxÞ ¼ x þ x

x
¼ 2. At x ¼ 0, f ðxÞ is undefined. Then f ðxÞ is

continuous for all x except x ¼ 0.

ðgÞ f ðxÞ ¼
x � jxj

x
; x < 0

2; x ¼ 0

8<
:

As in ð f Þ, f ðxÞ is continuous for x < 0. Then since

lim
x!0�

x � jxj
x

¼ lim
x!0�

x þ x

x
¼ lim

x!0�
2 ¼ 2 ¼ f ð0Þ

if follows that f ðxÞ is continuous (from the left) at x ¼ 0.
Thus, f ðxÞ is continuous for all x@ 0, i.e., everywhere in its domain of definition.

ðhÞ f ðxÞ ¼ x csc x ¼ x

sinx
: Ans: all x except 0;��;�2�; �3�; . . . :

(i) f ðxÞ ¼ x csc x, f ð0Þ ¼ 1. Since lim
x!0

x csc x ¼ lim
x!0

x

sin x
¼ 1 ¼ f ð0Þ, we see that f ðxÞ is continuous for all x

except ��;�2�;�3�; . . . [compare (h)].
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UNIFORM CONTINUITY

3.29. Prove that f ðxÞ ¼ x2 is uniformly continuous in 0 < x < 1.

Method 1: Using definition.
We must show that given any � > 0 we can find � > 0 such that jx2 � x20j < � when jx � x0j < �, where �

depends only on � and not on x0 where 0 < x0 < 1.
If x and x0 are any points in 0 < x < 1, then

jx2 � x20j ¼ jx þ x0jjx � x0j < j1 þ 1jjx � x0j ¼ 2jx � x0j
Thus if jx � x0j < � it follows that jx2 � x20j < 2�. Choosing � ¼ �=2, we see that jx2 � x20j < � when
jx � x0j < �, where � depends only on � and not on x0. Hence, f ðxÞ ¼ x2 is uniformly continuous in

0 < x < 1.

The above can be used to prove that f ðxÞ ¼ x2 is uniformly continuous in 0 @ x@1.

Method 2: The function f ðxÞ ¼ x2 is continuous in the closed interval 0@ x@ 1. Hence, by the theorem

on Page 48 is uniformly continuous in 0@ x@ 1 and thus in 0 < x < 1.

3.30. Prove that f ðxÞ ¼ 1=x is not uniformly continuous in 0 < x < 1.

Method 1: Suppose f ðxÞ is uniformly continuous in the given interval. Then for any � > 0 we should be
able to find �, say, between 0 and 1, such that j f ðxÞ � f ðx0Þj < � when jx � x0j < � for all x and x0 in the

interval.

Let x ¼ � and x0 ¼ �

1 þ �
: Then jx � x0j ¼ � � �

1 þ �

����
���� ¼ �

1 þ �
� < �:

However,
1

x
� 1

x0

����
���� ¼ 1

�
� 1 þ �

�

����
���� ¼ �

�
> � (since 0 < � < 1Þ:

Thus, we have a contradiction and it follows that f ðxÞ ¼ 1=x cannot be uniformly continuous in

0 < x < 1.

Method 2: Let x0 and x0 þ � be any two points in ð0; 1Þ. Then

j f ðx0Þ � f ðx0 þ �Þj ¼ 1

x0
� 1

x0 þ �

����
���� ¼ �

x0ðx0 þ �Þ
can be made larger than any positive number by choosing x0 sufficiently close to 0. Hence, the function
cannot be uniformly continuous.

MISCELLANEOUS PROBLEMS

3.31. If y ¼ f ðxÞ is continuous at x ¼ x0, and z ¼ gðyÞ is continuous at y ¼ y0 where y0 ¼ f ðx0Þ, prove
that z ¼ gf f ðxÞg is continuous at x ¼ x0.

Let hðxÞ ¼ gf f ðxÞg. Since by hypothesis f ðxÞ and gð yÞ are continuous at x0 and y0, respectively, we

have

lim
x!x0

f ðxÞ ¼ f ð lim
x!x0

xÞ ¼ f ðx0Þ
lim
y!y0

gðyÞ ¼ gð lim
y!y0

yÞ ¼ gðy0Þ ¼ gf f ðx0Þg

Then

lim
x!x0

hðxÞ ¼ lim
x!x0

gf f ðxÞg ¼ gf lim
x!x0

f ðxÞg ¼ gf f ðx0Þg ¼ hðx0Þ

which proves that hðxÞ ¼ gf f ðxÞg is continuous at x ¼ x0.

3.32. Prove Theorem 8, Page 48.
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Suppose that f ðaÞ < 0 and f ðbÞ > 0. Since f ðxÞ is continuous there must be an interval ða; a þ hÞ, h > 0,

for which f ðxÞ < 0. The set of points ða; a þ hÞ has an upper bound and so has a least upper bound which
we call c. Then f ðcÞ@ 0. Now we cannot have f ðcÞ < 0, because if f ðcÞ were negative we would be able to
find an interval about c (including values greater than c) for which f ðxÞ < 0; but since c is the least upper
bound, this is impossible, and so we must have f ðcÞ ¼ 0 as required.

If f ðaÞ > 0 and f ðbÞ < 0, a similar argument can be used.

3.33. (a) Given f ðxÞ ¼ 2x3 � 3x2 þ 7x � 10, evaluate f ð1Þ and f ð2Þ. (b) Prove that f ðxÞ ¼ 0 for some
real number x such that 1 < x < 2. (c) Show how to calculate the value of x in (b).

(a) f ð1Þ ¼ 2ð1Þ3 � 3ð1Þ2 þ 7ð1Þ � 10 ¼ �4, f ð2Þ ¼ 2ð2Þ3 � 3ð2Þ2 þ 7ð2Þ � 10 ¼ 8.

(b) If f ðxÞ is continuous in a@ x@ b and if f ðaÞ and f ðbÞ have opposite signs, then there is a value of x
between a and b such that f ðxÞ ¼ 0 (Problem 3.32).

To apply this theorem we need only realize that the given polynomial is continuous in 1@ x@ 2,

since we have already shown in (a) that f ð1Þ < 0 and f ð2Þ > 0. Thus there exists a number c between 1
and 2 such that f ðcÞ ¼ 0.

(c) f ð1:5Þ ¼ 2ð1:5Þ3 � 3ð1:5Þ2 þ 7ð1:5Þ � 10 ¼ 0:5. Then applying the theorem of (b) again, we see that the
required root lies between 1 and 1.5 and is ‘‘most likely’’ closer to 1.5 than to 1, since f ð1:5Þ ¼ 0:5 has a
value closer to 0 than f ð1Þ ¼ �4 (this is not always a valid conclusion but is worth pursuing in practice).

Thus we consider x ¼ 1:4. Since f ð1:4Þ ¼ 2ð1:4Þ3 � 3ð1:4Þ2 þ 7ð1:4Þ � 10 ¼ �0:592, we conclude
that there is a root between 1.4 and 1.5 which is most likely closer to 1.5 than to 1.4.

Continuing in this manner, we find that the root is 1.46 to 2 decimal places.

3.34. Prove Theorem 10, Page 48.

Given any � > 0, we can find x such that M � f ðxÞ < � by definition of the l.u.b. M.

Then
1

M � f ðxÞ >
1

�
, so that

1

M � f ðxÞ is not bounded and hence cannot be continuous in view of

Theorem 4, Page 47. However, if we suppose that f ðxÞ 6¼ M, then since M � f ðxÞ is continuous, by

hypothesis, we must have
1

M � f ðxÞ also continuous. In view of this contradiction, we must have

f ðxÞ ¼ M for at least one value of x in the interval.

Similarly, we can show that there exists an x in the interval such that f ðxÞ ¼ m (Problem 3.93).

Supplementary Problems

FUNCTIONS

3.35. Give the largest domain of definition for which each of the following rules of correspondence support the
construction of a function.

(a)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3 � xÞð2x þ 4Þp

, (b) ðx � 2Þ=ðx2 � 4Þ, (c)
ffiffiffiffiffiffiffiffiffiffiffiffi
sin 3x

p
, (d) log10ðx3 � 3x2 � 4x þ 12Þ.

Ans. (a) �2@ x@ 3, (b) all x 6¼ �2, (c) 2m�=3@ x@ ð2m þ 1Þ�=3, m ¼ 0;�1;�2; . . . ;
(d) x > 3, �2 < x < 2.

3.36. If f ðxÞ ¼ 3x þ 1

x � 2
, x 6¼ 2, find: (a)

5f ð�1Þ � 2f ð0Þ þ 3f ð5Þ
6

; (b) f f ð� 1
2Þg2; (c) f ð2x � 3Þ;

(d) f ðxÞ þ f ð4=xÞ, x 6¼ 0; (e)
f ðhÞ � f ð0Þ

h
, h 6¼ 0; ( f ) f ðf f ðxÞg.

Ans. (a) 61
18 (b) 1

25 (c)
6x � 8

2x � 5
, x 6¼ 0, 5

2, 2 (d) 5
2, x 6¼ 0; 2 (e)

7

2h � 4
, h 6¼ 0; 2

( f )
10x þ 1

x þ 5
, x 6¼ �5; 2
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3.37. If f ðxÞ ¼ 2x2, 0 < x@ 2, find (a) the l.u.b. and (b) the g.l.b. of f ðxÞ. Determine whether f ðxÞ attains its
l.u.b. and g.l.b.
Ans. (a) 8, (b) 0

3.38. Construct a graph for each of the following functions.

ðaÞ f ðxÞ ¼ jxj;�3@ x@ 3 ð f Þ x � ½x�
x

where ½x� ¼ greatest integer@ x

ðbÞ f ðxÞ ¼ 2 � jxj
x

;�2@ x@ 2 ðgÞ f ðxÞ ¼ cosh x

ðcÞ f ðxÞ ¼
0; x < 0
1
2 ; x ¼ 0

1; x > 0

8><
>: ðhÞ f ðxÞ ¼ sin x

x

ðdÞ f ðxÞ ¼ �x; �2@ x@ 0

x; 0@ x@ 2

�
ðiÞ f ðxÞ ¼ x

ðx � 1Þðx � 2Þðx � 3Þ

ðeÞ f ðxÞ ¼ x2 sin 1=x;x 6¼ 0 ð jÞ f ðxÞ ¼ sin2 x

x2

3.39. Construct graphs for (a) x2=a2 þ y2=b2 ¼ 1, (b) x2=a2 � y2=b2 ¼ 1, (c) y2 ¼ 2px, and (d) y ¼ 2ax � x2,
where a; b; p are given constants. In which cases when solved for y is there exactly one value of y assigned to
each value of x, thus making possible definitions of functions f , and enabling us to write y ¼ f ðxÞ? In which
cases must branches be defined?

3.40. (a) From the graph of y ¼ cos x construct the graph obtained by interchanging the variables, and from
which cos�1 x will result by choosing an appropriate branch. Indicate possible choices of a principal value

of cos�1 x. Using this choice, find cos�1ð1=2Þ � cos�1ð�1=2Þ. Does the value of this depend on the choice?
Explain.

3.41. Work parts (a) and (b) of Problem 40 for (a) y ¼ sec�1 x, (b) y ¼ cot�1 x.

3.42. Given the graph for y ¼ f ðxÞ, show how to obtain the graph for y ¼ f ðax þ bÞ, where a and b are given
constants. Illustrate the procedure by obtaining the graphs of

(a) y ¼ cos 3x; ðbÞ y ¼ sinð5x þ �=3Þ; ðcÞ y ¼ tanð�=6 � 2xÞ.

3.43. Construct graphs for (a) y ¼ e�jxj, (b) y ¼ ln jxj, (c) y ¼ e�jxj sinx.

3.44. Using the conventional principal values on Pages 44 and 45, evaluate:

(a) sin�1ð� ffiffiffi
3

p
=2Þ ( f ) sin�1 x þ cos�1 x;�1@ x@ 1

(b) tan�1ð1Þ � tan�1ð�1Þ (g) sin�1ðcos 2xÞ; 0@ x@ �=2

(c) cot�1ð1= ffiffiffi
3

p Þ � cot�1ð�1=
ffiffiffi
3

p Þ (h) sin�1ðcos 2xÞ; �=2@ x@ 3�=2

(d) cosh�1
ffiffiffi
2

p
(i) tanh ðcsch�1 3xÞ; x 6¼ 0

(e) e� coth�1ð25=7Þ ( j) cosð2 tan�1 x2Þ
Ans. (a) ��=3 (c) ��=3 (e) 3

4 (g) �=2 � 2x (i)
jxj

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9x2 þ 1

p ð jÞ 1 � x4

1 þ x4

(b) �=2 (d) lnð1 þ ffiffiffi
2

p Þ ( f ) �=2 (h) 2x � 3�=2

3.45. Evaluate (a) cosf� sinhðln 2Þg, (b) cosh�1fcothðln 3Þg.
Ans. (a) � ffiffiffi

2
p

=2; ðbÞ ln 2
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3.46. (a) Prove that tan�1 x þ cot�1 x ¼ �=2 if the conventional principal values on Page 44 are taken. (b) Is

tan�1 x þ tan�1ð1=xÞ ¼ �=2 also? Explain.

3.47. If f ðxÞ ¼ tan�1 x, prove that f ðxÞ þ f ðyÞ ¼ f
x þ y

1 � xy

� �
, discussing the case xy ¼ 1.

3.48. Prove that tan�1 a � tan�1 b ¼ cot�1 b � cot�1 a.

3.49. Prove the identities:
(a) 1 � tanh2 x ¼ sech2 x, (b) sin 3x ¼ 3 sin x � 4 sin3 x, (c) cos 3x ¼ 4 cos3 x � 3 cosx, (d) tanh 1

2 x ¼
ðsinh xÞ=ð1 þ cosh xÞ, (e) ln jcscx � cotxj ¼ ln j tan 1

2xj.

3.50. Find the relative and absolute maxima and minima of: (a) f ðxÞ ¼ ðsinxÞ=x, f ð0Þ ¼ 1; (b) f ðxÞ ¼ ðsin2 xÞ=
x2, f ð0Þ ¼ 1. Discuss the cases when f ð0Þ is undefined or f ð0Þ is defined but 6¼ 1.

LIMITS

3.51. Evaluate the following limits, first by using the definition and then using theorems on limits.

ðaÞ lim
x!3

ðx2 � 3x þ 2Þ; ðbÞ lim
x!�1

1

2x � 5
; ðcÞ lim

x!2

x2 � 4

x � 2
; ðdÞ lim

x!4

ffiffiffi
x

p � 2

4 � x
; ðeÞ lim

h!0

ð2 þ hÞ4 � 16

h
;

ð f Þ lim
x!1

ffiffiffi
x

p
x þ 1

:

Ans. ðaÞ 2; ðbÞ � 1
7 ; ðcÞ 4; ðdÞ � 1

4 ; ðeÞ 32; ð f Þ 1
2

3.52. Let f ðxÞ ¼
3x � 1; x < 0
0; x ¼ 0
2x þ 5; x > 0

8<
: : ðaÞ Construct a graph of f ðxÞ.

Evaluate (b) lim
x!2

f ðxÞ; ðcÞ lim
x!�3

f ðxÞ; ðdÞ lim
x!0þ

f ðxÞ; ðeÞ lim
x!0�

f ðxÞ; ð f Þ lim
x!0

f ðxÞ, justifying your

answer in each case.

Ans. (b) 9, (c) �10, (d) 5, (e) �1, ( f ) does not exist

3.53. Evaluate (a) lim
h!0þ

f ðhÞ � f ð0þÞ
h

and (b) lim
h!0�

f ðhÞ � f ð0�Þ
h

, where f ðxÞ is the function of Prob. 3.52.

Ans. (a) 2, (b) 3

3.54. (a) If f ðxÞ ¼ x2 cos 1=x, evaluate lim
x!0

f ðxÞ, justifying your answer. (b) Does your answer to (a) still remain

the same if we consider f ðxÞ ¼ x2 cos 1=x, x 6¼ 0, f ð0Þ ¼ 2? Explain.

3.55. Prove that lim
x!3

10�1=ðx�3Þ2 ¼ 0 using the definition.

3.56. Let f ðxÞ ¼ 1 þ 10�1=x

2 � 10�1=x
, x 6¼ 0, f ð0Þ ¼ 1

2. Evaluate (a) lim
x!0þ

f ðxÞ, (b) lim
x!0�

f ðxÞ, (c) lim
x!0

f ðxÞ, justifying
answers in all cases.
Ans. (a) 1

2, (b) �1; ðcÞ does not exist.

3.57. Find (a) lim
x!0þ

jxj
x

; ðbÞ lim
x!0�

jxj
x
. Illustrate your answers graphically.

Ans. (a) 1, (b) �1

3.58. If f ðxÞ is the function defined in Problem 3.56, does lim
x!0

f ðjxjÞ exist? Explain.

3.59. Explain exactly what is meant when one writes:

ðaÞ lim
x!3

2 � x

ðx � 3Þ2 ¼ �1; ðbÞ lim
x!0þ

ð1 � e1=xÞ ¼ �1; ðcÞ lim
x!1

2x þ 5

3x � 2
¼ 2

3
:
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3.60. Prove that (a) lim
x!1 10�x ¼ 0; ðbÞ lim

x!�1
cosx

x þ �
¼ 0:

3.61. Explain why (a) lim
x!1 sin x does not exist, (b) lim

x!1 e�x sinx does not exist.

3.62. If f ðxÞ ¼ 3x þ jxj
7x � 5jxj, evaluate (a) lim

x!1 f ðxÞ; ðbÞ lim
x!�1 f ðxÞ; ðcÞ lim

x!0þ
f ðxÞ; ðdÞ lim

x!0�
f ðxÞ;

ðeÞ lim
x!0

f ðxÞ.
Ans. (a) 2, (b) 1/6, (c) 2, (d) 1/6, (e) does not exist.

3.63. If ½x� ¼ largest integer@ x, evaluate (a) lim
x!2þ

fx � ½x�g; ðbÞ lim
x!2�

fx � ½x�g.
Ans. (a) 0, (b) 1

3.64. If lim
x!x0

f ðxÞ ¼ A, prove that (a) lim
x!x0

f f ðxÞg2 ¼ A2, (b) lim
x!x0

ffiffiffiffiffiffiffiffiffi
f ðxÞ3

p
¼

ffiffiffiffi
A

3
p

.

What generalizations of these do you suspect are true? Can you prove them?

3.65. If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, prove that

ðaÞ lim
x!x0

f f ðxÞ � gðxÞg ¼ A � B; ðbÞ lim
x!x0

faf ðxÞ þ bgðxÞg ¼ aA þ bB where a; b ¼ any constants.

3.66. If the limits of f ðxÞ, gðxÞ; and hðxÞ are A, B; and C respectively, prove that:

(a) lim
x!x0

f f ðxÞ þ gðxÞ þ hðxÞg ¼ A þ B þ C, (b) lim
x!x0

f ðxÞgðxÞhðxÞ ¼ ABC. Generalize these results.

3.67. Evaluate each of the following using the theorems on limits.

ðaÞ lim
x!1=2

2x2 � 1

ð3x þ 2Þð5x � 3Þ � 2 � 3x

x2 � 5x þ 3

( )
Ans: ðaÞ � 8=21

ðbÞ lim
x!1

ð3x � 1Þð2x þ 3Þ
ð5x � 3Þð4x þ 5Þ ðbÞ 3=10

ðcÞ lim
x!�1

3x

x � 1
� 2x

x þ 1

� �
ðcÞ 1

ðdÞ lim
x!1

1

x � 1

1

x þ 3
� 2x

3x þ 5

� �
ðdÞ 1=32

3.68. Evaluate lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi
8 þ h3

p � 2

h
. (Hint: Let 8 þ h ¼ x3Þ. Ans. 1/12

3.69. If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B 6¼ 0, prove directly that lim
x!x0

f ðxÞ
gðxÞ ¼ A

B
.

3.70. Given lim
x!0

sinx

x
¼ 1, evaluate:

ðaÞ lim
x!0

sin 3x

x
ðcÞ lim

x!0

1 � cos x

x2
ðeÞ lim

x!0

6x � sin 2x

2x þ 3 sin 4x
ðgÞ lim

x!0

1 � 2 cos x þ cos 2x

x2

ðbÞ lim
x!0

1 � cos x

x
ðdÞ lim

x!3
ðx � 3Þ csc�x ð f Þ lim

x!0

cos ax � cos bx

x2
ðhÞ lim

x!1

3 sin�x � sin 3�x

x3

Ans. (a) 3, (b) 0, (c) 1/2, (d) �1=�, (e) 2/7, ( f ) 1
2 ðb2 � a2Þ, (g) �1, (h) 4�3

3.71. If lim
x!0

ex � 1

x
¼ 1, prove that:

ðaÞ lim
x!0

e�ax � e�bx

x
¼ b � a; ðbÞ lim

x!0

ax � bx

x
¼ ln

a

b
; a; b > 0; ðcÞ lim

x!0

tanh ax

x
¼ a:
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3.72. Prove that lim
x!x0

f ðxÞ ¼ l if and only if lim
x!x0þ

f ðxÞ ¼ lim
x!x0�

f ðxÞ ¼ l.

CONTINUITY

In the following problems assume the largest possible domain unless otherwise stated.

3.73. Prove that f ðxÞ ¼ x2 � 3x þ 2 is continuous at x ¼ 4.

3.74. Prove that f ðxÞ ¼ 1=x is continuous (a) at x ¼ 2, (b) in 1@ x@ 3.

3.75. Investigate the continuity of each of the following functions at the indicated points:

ðaÞ f ðxÞ ¼ sinx

x
; x 6¼ 0; f ð0Þ ¼ 0; x ¼ 0 ðcÞ f ðxÞ ¼ x3 � 8

x2 � 4
; x 6¼ 2; f ð2Þ ¼ 3; x ¼ 2

ðbÞ f ðxÞ ¼ x � jxj; x ¼ 0 ðdÞ f ðxÞ ¼ sin�x; 0 < x < 1

lnx 1 < x < 2

�
; x ¼ 1:

Ans. (a) discontinuous, (b) continuous, (c) continuous, (d) discontinuous

3.76. If ½x� ¼ greatest integer@ x, investigate the continuity of f ðxÞ ¼ x � ½x� in the interval (a) 1 < x < 2,
(b) 1@ x@ 2.

3.77. Prove that f ðxÞ ¼ x3 is continuous in every finite interval.

3.78. If f ðxÞ=gðxÞ and gðxÞ are continuous at x ¼ x0, prove that f ðxÞ must be continuous at x ¼ x0.

3.79. Prove that f ðxÞ ¼ ðtan�1 xÞ=x, f ð0Þ ¼ 1 is continuous at x ¼ 0.

3.80. Prove that a polynomial is continuous in every finite interval.

3.81. If f ðxÞ and gðxÞ are polynomials, prove that f ðxÞ=gðxÞ is continuous at each point x ¼ x0 for which gðx0Þ 6¼ 0.

3.82. Give the points of discontinuity of each of the following functions.

ðaÞ f ðxÞ ¼ x

ðx � 2Þðx � 4Þ ðcÞ f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � 3Þð6 � xÞ

p
; 3@ x@ 6

ðbÞ f ðxÞ ¼ x2 sin 1=x; x 6¼ 0; f ð0Þ ¼ 0 ðdÞ f ðxÞ ¼ 1

1 þ 2 sinx
:

Ans. (a) x ¼ 2; 4, (b) none, (c) none, (d) x ¼ 7�=6 � 2m�; 11�=6 � 2m�;m ¼ 0; 1; 2; . . .

UNIFORM CONTINUITY

3.83. Prove that f ðxÞ ¼ x3 is uniformly continuous in (a) 0 < x < 2, (b) 0@ x@ 2, (c) any finite interval.

3.84. Prove that f ðxÞ ¼ x2 is not uniformly continuous in 0 < x < 1.

3.85. If a is a constant, prove that f ðxÞ ¼ 1=x2 is (a) continuous in a < x < 1 if aA 0, (b) uniformly
continuous in a < x < 1 if a > 0, (c) not uniformly continuous in 0 < x < 1.

3.86. If f ðxÞ and gðxÞ are uniformly continuous in the same interval, prove that (a) f ðxÞ � gðxÞ and (b) f ðxÞgðxÞ
are uniformly continuous in the interval. State and prove an analogous theorem for f ðxÞ=gðxÞ.

MISCELLANEOUS PROBLEMS

3.87. Give an ‘‘�; �’’ proof of the theorem of Problem 3.31.

3.88. (a) Prove that the equation tanx ¼ x has a real positive root in each of the intervals �=2 < x < 3�=2,
3�=2 < x < 5�=2, 5�=2 < x < 7�=2; . . . .
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(b) Illustrate the result in (a) graphically by constructing the graphs of y ¼ tanx and y ¼ x and locating

their points of intersection.
(c) Determine the value of the smallest positive root of tan x ¼ x.
Ans. ðcÞ 4.49 approximately

3.89. Prove that the only real solution of sinx ¼ x is x ¼ 0.

3.90. (a) Prove that cosx cosh x þ 1 ¼ 0 has infinitely many real roots.

(b) Prove that for large values of x the roots approximate those of cos x ¼ 0.

3.91. Prove that lim
x!0

x2 sinð1=xÞ
sinx

¼ 0.

3.92. Suppose f ðxÞ is continuous at x ¼ x0 and assume f ðx0Þ > 0. Prove that there exists an interval
ðx0 � h; x0 þ hÞ, where h > 0, in which f ðxÞ > 0. (See Theorem 5, page 47.) [Hint: Show that we can
make j f ðxÞ � f ðx0Þj < 1

2 f ðx0Þ. Then show that f ðxÞA f ðx0Þ � j f ðxÞ � f ðx0Þj > 1
2 f ðx0Þ > 0.]

3.93. (a) Prove Theorem 10, Page 48, for the greatest lower bound m (see Problem 3.34). (b) Prove Theorem 9,

Page 48, and explain its relationship to Theorem 10.
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65

Derivatives

THE CONCEPT AND DEFINITION OF A DERIVATIVE

Concepts that shape the course of mathematics are few and far between. The derivative, the
fundamental element of the differential calculus, is such a concept. That branch of mathematics called
analysis, of which advanced calculus is a part, is the end result. There were two problems that led to the
discovery of the derivative. The older one of defining and representing the tangent line to a curve at one
of its points had concerned early Greek philosophers. The other problem of representing the instanta-
neous velocity of an object whose motion was not constant was much more a problem of the seventeenth
century. At the end of that century, these problems and their relationship were resolved. As is usually
the case, many mathematicians contributed, but it was Isaac Newton and Gottfried Wilhelm Leibniz
who independently put together organized bodies of thought upon which others could build.

The tangent problem provides a visual interpretation of the derivative and can be brought to mind
no matter what the complexity of a particular application. It leads to the definition of the derivative as
the limit of a difference quotient in the following way. (See Fig. 4-1.)

Let Poðx0Þ be a point on the graph of y ¼ f ðxÞ. Let PðxÞ be a nearby point on this same graph of the

function f . Then the line through these two points is called a secant line. Its slope, ms, is the difference

quotient

ms ¼ f ðxÞ � f ðx0Þ
x � x0

¼ �y

�x

Fig. 4-1
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where �x and �y are called the increments in x and y, respectively. Also this slope may be written

ms ¼ f ðx0 þ hÞ � f ðx0Þ
h

where h ¼ x � x0 ¼ �x. See Fig. 4-2.

We can imagine a sequence of lines formed as h ! 0. It is the limiting line of this sequence that is
the natural one to be the tangent line to the graph at P0.

To make this mode of reasoning precise, the limit (when it exists), is formed as follows:

f 0ðxÞ ¼ lim
h!0

f ðx0 þ hÞ � f ðx0Þ
h

As indicated, this limit is given the name f 0ðx0Þ. It is called the derivative of the function f at its
domain value x0. If this limit can be formed at each point of a subdomain of the domain of f , then f is
said to be differentiable on that subdomain and a new function f 0 has been constructed.

This limit concept was not understood until the middle of the nineteenth century. A simple example
illustrates the conceptual problem that faced mathematicians from 1700 until that time. Let the graph
of f be the parabola y ¼ x2, then a little algebraic manipulation yields

ms ¼ 2x0h þ h2

h
¼ 2x0 þ h

Newton, Leibniz, and their contemporaries simply let h ¼ 0 and said that 2x0 was the slope of the
tangent line at P0. However, this raises the ghost of a 0

0 form in the middle term. True understanding of
the calculus is in the comprehension of how the introduction of something new (the derivative, i.e., the
limit of a difference quotient) resolves this dilemma.

Note 1: The creation of new functions from difference quotients is not limited to f 0. If, starting
with f 0, the limit of the difference quotient exists, then f 00 may be constructed and so on and so on.

Note 2: Since the continuity of a function is such a strong property, one might think that differ-
entiability followed. This is not necessarily true, as is illustrated in Fig. 4-3.

The following theorem puts the matter in proper perspective:

Theorem: If f is differentiable at a domain value, then it is continuous at that value.

As indicated above, the converse of this theorem is not true.
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RIGHT- AND LEFT-HAND DERIVATIVES

The status of the derivative at end points of the domain of f , and in other special circumstances, is
clarified by the following definitions.

The right-hand derivative of f ðxÞ at x ¼ x0 is defined as

f 0
þðx0Þ ¼ lim

h!0þ
f ðx0 þ hÞ � f ðx0Þ

h
ð3Þ

if this limit exists. Note that in this case hð¼ �xÞ is restricted only to positive values as it approaches
zero.

Similarly, the left-hand derivative of f ðxÞ at x ¼ x0 is defined as

f 0
�ðx0Þ ¼ lim

h!0�
f ðx0 þ hÞ � f ðx0Þ

h
ð4Þ

if this limit exists. In this case h is restricted to negative values as it approaches zero.
A function f has a derivative at x ¼ x0 if and only if f 0

þðx0Þ ¼ f 0
�ðx0Þ.

DIFFERENTIABILITY IN AN INTERVAL

If a function has a derivative at all points of an interval, it is said to be differentiable in the interval.
In particular if f is defined in the closed interval a@ x@ b, i.e. ½a; b�, then f is differentiable in the
interval if and only if f 0ðx0Þ exists for each x0 such that a < x0 < b and if f 0

þðaÞ and f 0
�ðbÞ both exist.

If a function has a continuous derivative, it is sometimes called continuously differentiable.

PIECEWISE DIFFERENTIABILITY

A function is called piecewise differentiable or piecewise smooth in an interval a@ x@ b if f 0ðxÞ is
piecewise continuous. An example of a piecewise continuous function is shown graphically on Page 48.

An equation for the tangent line to the curve y ¼ f ðxÞ at the point where x ¼ x0 is given by

y � f ðx0Þ ¼ f 0ðx0Þðx � x0Þ ð7Þ
The fact that a function can be continuous at a point and yet not be differentiable there is shown

graphically in Fig. 4-3. In this case there are two tangent lines at P represented by PM and PN. The
slopes of these tangent lines are f 0

�ðx0Þ and f 0
þðx0Þ respectively.

DIFFERENTIALS

Let �x ¼ dx be an increment given to x. Then

�y ¼ f ðx þ �xÞ � f ðxÞ ð8Þ
is called the increment in y ¼ f ðxÞ. If f ðxÞ is continuous and has a continuous first derivative in an
interval, then

�y ¼ f 0ðxÞ�x þ ��x ¼ f 0ðxÞdx þ dx ð9Þ
where � ! 0 as �x ! 0. The expression

dy ¼ f 0ðxÞdx ð10Þ
is called the differential of y or f(x) or the principal part of �y. Note that �y 6¼ dy in general. However
if �x ¼ dx is small, then dy is a close approximation of �y (see Problem 11). The quantity dx, called the
differential of x, and dy need not be small.
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Because of the definitions (8) and (10), we often write

dy

dx
¼ f 0ðxÞ ¼ lim

�x!0

f ðx þ �xÞ � f ðxÞ
�x

¼ lim
�x!0

�y

�x
ð11Þ

It is emphasized that dx and dy are not the limits of �x and �y as �x ! 0, since these limits are zero
whereas dx and dy are not necessarily zero. Instead, given dx we determine dy from (10), i.e., dy is a
dependent variable determined from the independent variable dx for a given x.

Geometrically, dy is represented in Fig. 4-1, for the particular value x ¼ x0, by the line segment SR,
whereas �y is represented by QR.

The geometric interpretation of the derivative as the slope of the tangent line to a curve at one of its
points is fundamental to its application. Also of importance is its use as representative of instantaneous
velocity in the construction of physical models. In particular, this physical viewpoint may be used to
introduce the notion of differentials.

Newton’s Second and First Laws of Motion imply that the path of an object is determined by the
forces acting on it, and that if those forces suddenly disappear, the object takes on the tangential
direction of the path at the point of release. Thus, the nature of the path in a small neighborhood
of the point of release becomes of interest. With this thought in mind, consider the following idea.

Suppose the graph of a function f is represented by y ¼ f ðxÞ. Let x ¼ x0 be a domain value at
which f 0 exists (i.e., the function is differentiable at that value). Construct a new linear function

dy ¼ f 0ðx0Þ dx
with dx as the (independent) domain variable and dy the range variable generated by this rule. This
linear function has the graphical interpretation illustrated in Fig. 4-4.

That is, a coordinate system may be constructed with its origin at P0 and the dx and dy axes parallel

to the x and y axes, respectively. In this system our linear equation is the equation of the tangent line to

the graph at P0. It is representative of the path in a small neighborhood of the point; and if the path is

that of an object, the linear equation represents its new path when all forces are released.

dx and dy are called differentials of x and y, respectively. Because the above linear equation is valid

at every point in the domain of f at which the function has a derivative, the subscript may be dropped

and we can write

dy ¼ f 0ðxÞ dx

The following important observations should be made.
dy

dx
¼ f 0ðxÞ ¼ lim

�x!0

f ðx þ �xÞ � f ðxÞ
�x

¼
lim

�x!0

�y

�x
, thus

dy

dx
is not the same thing as

�y

�x
.
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On the other hand, dy and �y are related. In particular, lim
�x!0

�y

�x
¼ f 0ðxÞ means that for any " > 0

there exists � > 0 such that �" <
�y

�x
� dy

dx
< " whenever j�xj < �. Now dx is an independent variable

and the axes of x and dx are parallel; therefore, dx may be chosen equal to �x. With this choice

�"�x < �y � dy < "�x

or

dy � "�x < �y < dy þ "�x

From this relation we see that dy is an approximation to �y in small neighborhoods of x. dy is called
the principal part of �y.

The representation of f 0 by
dy

dx
has an algebraic suggestiveness that is very appealing and will appear

in much of what follows. In fact, this notation was introduced by Leibniz (without the justification
provided by knowledge of the limit idea) and was the primary reason his approach to the calculus, rather
than Newton’s was followed.

THE DIFFERENTIATION OF COMPOSITE FUNCTIONS

Many functions are a composition of simpler ones. For example, if f and g have the rules of
correspondence u ¼ x3 and y ¼ sin u, respectively, then y ¼ sin x3 is the rule for a composite function
F ¼ gð f Þ. The domain of F is that subset of the domain of F whose corresponding range values are in
the domain of g. The rule of composite function differentiation is called the chain rule and is represented

by
dy

dx
¼ dy

du

du

dx
½F 0ðxÞ ¼ g 0ðuÞf 0ðxÞ�.

In the example

dy

dx

 dðsin x3Þ

dx
¼ cos x3ð3x2dxÞ

The importance of the chain rule cannot be too greatly stressed. Its proper application is essential
in the differentiation of functions, and it plays a fundamental role in changing the variable of integration,
as well as in changing variables in mathematical models involving differential equations.

IMPLICIT DIFFERENTIATION

The rule of correspondence for a function may not be explicit. For example, the rule y ¼ f ðxÞ is
implicit to the equation x2 þ 4xy5 þ 7xy þ 8 ¼ 0. Furthermore, there is no reason to believe that this
equation can be solved for y in terms of x. However, assuming a common domain (described by the
independent variable x) the left-hand member of the equation can be construed as a composition of
functions and differentiated accordingly. (The rules of differentiation are listed below for your review.)

In this example, differentiation with respect to x yields

2x þ 4 y5 þ 5xy4
dy

dx

� �
þ 7 y þ x

dy

dx

� �
¼ 0

Observe that this equation can be solved for
dy

dx
as a function of x and y (but not of x alone).
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RULES FOR DIFFERENTIATION

If f , g; and h are differentiable functions, the following differentiation rules are valid.

1:
d

dx
f f ðxÞ þ gðxÞg ¼ d

dx
f ðxÞ þ d

dx
gðxÞ ¼ f 0ðxÞ þ g 0ðxÞ (Addition Rule)

2:
d

dx
f f ðxÞ � gðxÞg ¼ d

dx
f ðxÞ � d

dx
gðxÞ ¼ f 0ðxÞ � g 0ðxÞ

3:
d

dx
fC f ðxÞg ¼ C

d

dx
f ðxÞ ¼ C f 0ðxÞ where C is any constant

4:
d

dx
f f ðxÞgðxÞg ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ ¼ f ðxÞg 0ðxÞ þ gðxÞ f 0ðxÞ (Product Rule)

5:
d

dx

f ðxÞ
gðxÞ

� �
¼

gðxÞ d

dx
f ðxÞ � f ðxÞ d

dx
gðxÞ

½gðxÞ�2 ¼ gðxÞ f 0ðxÞ � f ðxÞg 0ðxÞ
½gðxÞ�2 if gðxÞ 6¼ 0 (Quotient Rule)

6: If y ¼ f ðuÞ where u ¼ gðxÞ; then

dy

dx
¼ dy

du
� du
dx

¼ f 0ðuÞ du
dx

¼ f 0fgðxÞgg 0ðxÞ ð12Þ

Similarly if y ¼ f ðuÞ where u ¼ gðvÞ and v ¼ hðxÞ, then

dy

dx
¼ dy

du
� du
dv

� dv
dx

ð13Þ

The results (12) and (13) are often called chain rules for differentiation of composite functions.

7: If y ¼ f ðxÞ; and x ¼ f �1ðyÞ; then dy=dx and dx=dy are related by

dy

dx
¼ 1

dx=dy
ð14Þ

8: If x ¼ f ðtÞ and y ¼ gðtÞ; then

dy

dx
¼ dy=dt

dx=dt
¼ g 0ðtÞ

f 0ðtÞ ð15Þ

Similar rules can be formulated for differentials. For example,

df f ðxÞ þ gðxÞg ¼ d f ðxÞ þ dgðxÞ ¼ f 0ðxÞdx þ g 0ðxÞdx ¼ f f 0ðxÞ þ g 0ðxÞgdx

df f ðxÞgðxÞg ¼ f ðxÞdgðxÞ þ gðxÞd f ðxÞ ¼ f f ðxÞg 0ðxÞ þ gðxÞ f 0ðxÞgdx
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DERIVATIVES OF ELEMENTARY FUNCTIONS

In the following we assume that u is a differentiable function of x; if u ¼ x, du=dx ¼ 1. The inverse
functions are defined according to the principal values given in Chapter 3.

1.
d

dx
ðCÞ ¼ 0 16.

d

dx
cot�1 u ¼ � 1

1 þ u2
du

dx

2.
d

dx
un ¼ nun�1 du

dx
17.

d

dx
sec�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p du

dx

þ if u > 1
� if u < �1

�

3.
d

dx
sin u ¼ cos u

du

dx
18.

d

dx
csc�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 1

p du

dx

� if u > 1
þ if u < �1

�

4.
d

dx
cos u ¼ � sin u

du

dx
19.

d

dx
sinh u ¼ cosh u

du

dx

5.
d

dx
tan u ¼ sec2 u

du

dx
20.

d

dx
cosh u ¼ sinh u

du

dx

6.
d

dx
cot u ¼ �csc2 u

du

dx
21.

d

dx
tanh u ¼ sech2 u

du

dx

7.
d

dx
sec u ¼ sec u tan u

du

dx
22.

d

dx
coth u ¼ �csch2 u

du

dx

8.
d

dx
csc u ¼ �csc u cot u

du

dx
23.

d

dx
sech u ¼ �sech u tanh u

du

dx

9.
d

dx
loga u ¼ loga e

u

du

dx
a > 0; a 6¼ 1 24.

d

dx
csch u ¼ �csch u coth u

du

dx

10.
d

dx
loge u ¼ d

dx
ln u ¼ 1

u

du

dx
25.

d

dx
sinh�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ u2
p du

dx

11.
d

dx
au ¼ au ln a

du

dx
26.

d

dx
cosh�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

12.
d

dx
eu ¼ eu

du

dx
27.

d

dx
tanh�1 u ¼ 1

1 � u2
du

dx
; juj < 1

13.
d

dx
sin�1 u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2
p du

dx
28.

d

dx
coth�1 u ¼ 1

1 � u2
du

dx
; juj > 1

14.
d

dx
cos�1 u ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2
p du

dx
29.

d

dx
sech�1 u ¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p du

dx

15.
d

dx
tan�1 u ¼ 1

1 þ u2
du

dx
30.

d

dx
csch�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p du

dx

HIGHER ORDER DERIVATIVES

If f ðxÞ is differentiable in an interval, its derivative is given by f 0ðxÞ, y 0 or dy=dx, where y ¼ f ðxÞ. If

f 0ðxÞ is also differentiable in the interval, its derivative is denoted by f 00ðxÞ, y 00 or
d

dx

dy

dx

� �
¼ d2y

dx2
.

Similarly, the nth derivative of f ðxÞ, if it exists, is denoted by f ðnÞðxÞ, yðnÞ or
dny

dxn
, where n is called the

order of the derivative. Thus derivatives of the first, second, third, . . . orders are given by f 0ðxÞ, f 00ðxÞ,
f 000ðxÞ; . . . .

Computation of higher order derivatives follows by repeated application of the differentiation rules
given above.

CHAP. 4] DERIVATIVES 71



MEAN VALUE THEOREMS

These theorems are fundamental to the rigorous establishment of numerous theorems and formulas.

(See Fig. 4-5.)

1. Rolle’s theorem. If f ðxÞ is continuous in ½a; b� and differentiable in ða; bÞ and if f ðaÞ ¼ f ðbÞ ¼ 0,
then there exists a point � in ða; bÞ such that f 0ð�Þ ¼ 0.

Rolle’s theorem is employed in the proof of the mean value theorem. It then becomes a
special case of that theorem.

2. The mean value theorem. If f ðxÞ is continuous in ½a; b� and differentiable in ða; bÞ, then there
exists a point � in ða; bÞ such that

f ðbÞ � f ðaÞ
b � a

¼ f 0ð�Þ a < � < b ð16Þ

Rolle’s theorem is the special case of this where f ðaÞ ¼ f ðbÞ ¼ 0.
The result (16) can be written in various alternative forms; for example, if x and x0 are in

ða; bÞ, then
f ðxÞ ¼ f ðx0Þ þ f 0ð�Þðx � x0Þ � between x0 and x ð17Þ

We can also write (16) with b ¼ a þ h, in which case � ¼ a þ �h, where 0 < � < 1.
The mean value theorem is also called the law of the mean.

3. Cauchy’s generalized mean value theorem. If f ðxÞ and gðxÞ are continuous in ½a; b� and differ-
entiable in ða; bÞ, then there exists a point � in ða; bÞ such that

f ðbÞ � f ðaÞ
gðbÞ � gðaÞ ¼ f 0ð�Þ

g 0ð�Þ a < � < b ð18Þ

where we assume gðaÞ 6¼ gðbÞ and f 0ðxÞ, g 0ðxÞ are not simultaneously zero. Note that the special
case gðxÞ ¼ x yields (16).

L’HOSPITAL’S RULES

If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, where A and B are either both zero or both infinite, lim
x!x0

f ðxÞ
gðxÞ is

often called an indeterminate of the form 0/0 or 1=1, respectively, although such terminology is
somewhat misleading since there is usually nothing indeterminate involved. The following theorems,
called L’Hospital’s rules, facilitate evaluation of such limits.

1. If f ðxÞ and gðxÞ are differentiable in the interval ða; bÞ except possibly at a point x0 in this
interval, and if g 0ðxÞ 6¼ 0 for x 6¼ x0, then
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lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g 0ðxÞ ð19Þ

whenever the limit on the right can be found. In case f 0ðxÞ and g 0ðxÞ satisfy the same conditions
as f ðxÞ and gðxÞ given above, the process can be repeated.

2. If lim
x!x0

f ðxÞ ¼ 1 and lim
x!x0

gðxÞ ¼ 1, the result (19) is also valid.

These can be extended to cases where x ! 1 or �1, and to cases where x0 ¼ a or x0 ¼ b in which
only one sided limits, such as x ! aþ or x ! b�, are involved.

Limits represented by the so-called indeterminate forms 0 � 1, 10, 00, 11; and 1 � 1 can be
evaluated on replacing them by equivalent limits for which the above rules are applicable (see Problem
4.29).

APPLICATIONS

1. Relative Extrema and Points of Inflection
See Chapter 3 where relative extrema and points of inflection were described and a diagram is

presented. In this chapter such points are characterized by the variation of the tangent line, and
then by the derivative, which represents the slope of that line.

Assume that f has a derivative at each point of an open interval and that P1 is a point of the graph of
f associated with this interval. Let a varying tangent line to the graph move from left to right through
P1. If the point is a relative minimum, then the tangent line rotates counterclockwise. The slope is
negative to the left of P1 and positive to the right. At P1 the slope is zero. At a relative maximum a
similar analysis can be made except that the rotation is clockwise and the slope varies from positive to
negative. Because f 00 designates the change of f 0, we can state the following theorem. (See Fig. 4-6.)

Theorem. Assume that x1 is a number in an open set of the domain of f at which f 0 is continuous and
f 00 is defined. If f 0ðx1Þ ¼ 0 and f 00ðx1Þ 6¼ 0, then f ðx1Þ is a relative extreme of f . Specifically:

(a) If f 00ðx1Þ > 0, then f ðx1Þ is a relative minimum,

(b) If f 00ðx1Þ < 0; then f ðx1Þ is a relative maximum.

(The domain value x1 is called a critical value.)

This theorem may be generalized in the following way. Assume existence and continuity of
derivatives as needed and suppose that f 0ðx1Þ ¼ f 00ðx1Þ ¼ � � � f ð2p�1Þðx1Þ ¼ 0 and f ð2pÞðx1Þ 6¼ 0 ( p a posi-
tive integer). Then:

(a) f has a relative minimum at x1 if f ð2pÞðx1Þ > 0,

(b) f has a relative maximum at x1 if f ð2pÞðx1Þ < 0.
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(Notice that the order of differentiation in each succeeding case is two greater. The nature of the
intermediate possibilities is suggested in the next paragraph.)

It is possible that the slope of the tangent line to the graph of f is positive to the left of P1, zero at the
point, and again positive to the right. Then P1 is called a point of inflection. In the simplest case this
point of inflection is characterized by f 0ðx1Þ ¼ 0, f 00ðx1Þ ¼ 0, and f 000ðx1Þ 6¼ 0.

2. Particle motion
The fundamental theories of modern physics are relativity, electromagnetism, and quantum

mechanics. Yet Newtonian physics must be studied because it is basic to many of the concepts in
these other theories, and because it is most easily applied to many of the circumstances found in every-
day life. The simplest aspect of Newtonian mechanics is called kinematics, or the geometry of motion.
In this model of reality, objects are idealized as points and their paths are represented by curves. In the
simplest (one-dimensional) case, the curve is a straight line, and it is the speeding up and slowing down
of the object that is of importance. The calculus applies to the study in the following way.

If x represents the distance of a particle from the origin and t signifies time, then x ¼ f ðtÞ designates
the position of a particle at time t. Instantaneous velocity (or speed in the one-dimensional case) is

represented by
dx

dt
¼ lim

�t!0

f ðt þ �tÞ
�t

(the limiting case of the formula
change in distance

change in time
for speed when

the motion is constant). Furthermore, the instantaneous change in velocity is called acceleration and

represented by
d2x

dt2
.

Path, velocity, and acceleration of a particle will be represented in three dimensions in Chapter 7 on
vectors.

3. Newton’s method
It is difficult or impossible to solve algebraic equations of higher degree than two. In fact, it has been

proved that there are no general formulas representing the roots of algebraic equations of degree five and
higher in terms of radicals. However, the graph y ¼ f ðxÞ of an algebraic equation f ðxÞ ¼ 0 crosses the x-
axis at each single-valued real root. Thus, by trial and error, consecutive integers can be found between
which a root lies. Newton’s method is a systematic way of using tangents to obtain a better approx-
imation of a specific real root. The procedure is as follows. (See Fig. 4-7.)

Suppose that f has as many derivatives as required. Let r be a real root of f ðxÞ ¼ 0, i.e., f ðrÞ ¼ 0.
Let x0 be a value of x near r. For example, the integer preceding or following r. Let f 0ðx0Þ be the slope
of the graph of y ¼ f ðxÞ at P0½x0; f ðx0Þ�. Let Q1ðx1; 0Þ be the x-axis intercept of the tangent line at P0

then

0 � f ðx0Þ
x � x0

¼ f 0ðx0Þ
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where the two representations of the slope of the tangent line have been equated. The solution of this
relation for x1 is

x1 ¼ x0 � f ðx0Þ
f 0ðx0Þ

Starting with the tangent line to the graph at P1½x1; f ðx1Þ� and repeating the process, we get

x2 ¼ x1 � f ðx1Þ
f 0ðx1Þ

¼ x0 � f ðx0Þ
f 0ðx0Þ

� f ðx1Þ
f 0ðx1Þ

and in general

xn ¼ x0 �
Xn
k¼0

f ðxkÞ
f 0ðxkÞ

Under appropriate circumstances, the approximation xn to the root r can be made as good as
desired.

Note: Success with Newton’s method depends on the shape of the function’s graph in the neighbor-
hood of the root. There are various cases which have not been explored here.

Solved Problems

DERIVATIVES

4.1. (a) Let f ðxÞ ¼ 3 þ x

3 � x
, x 6¼ 3. Evaluate f 0ð2Þ from the definition.

f 0ð2Þ ¼ lim
h!0

f ð2 þ hÞ � f ð2Þ
h

¼ lim
h!0

1

h

5 þ h

1 � h
� 5

� �
¼ lim

h!0

1

h
� 6h

1 � h
¼ lim

h!0

6

1 � h
¼ 6

Note: By using rules of differentiation we find

f 0ðxÞ ¼
ð3 � xÞ d

dx
ð3 þ xÞ � ð3 þ xÞ d

dx
ð3 � xÞ

ð3 � xÞ2 ¼ ð3 � xÞð1Þ � ð3 þ xÞð�1Þ
ð3 � xÞ2 ¼ 6

ð3 � xÞ2

at all points x where the derivative exists. Putting x ¼ 2, we find f 0ð2Þ ¼ 6. Although such rules are
often useful, one must be careful not to apply them indiscriminately (see Problem 4.5).

(b) Let f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x � 1

p
. Evaluate f 0ð5Þ from the definition.

f 0ð5Þ ¼ lim
h!0

f ð5 þ hÞ � f ð5Þ
h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2h

p � 3

h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2h

p � 3

h
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2h

p þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2h

p þ 3
¼ lim

h!0

9 þ 2h � 9

hð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2h

p þ 3Þ ¼ lim
h!0

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 þ 2h

p þ 3
¼ 1

3

By using rules of differentiation we find f 0ðxÞ ¼ d

dx
ð2x � 1Þ1=2 ¼ 1

2 ð2x � 1Þ�1=2 d

dx
ð2x � 1Þ ¼

ð2x � 1Þ�1=2. Then f 0ð5Þ ¼ 9�1=2 ¼ 1
3.

4.2. (a) Show directly from definition that the derivative of f ðxÞ ¼ x3 is 3x2.

(b) Show from definition that
d

dx

ffiffiffi
x

p Þ ¼ 1

2
ffiffiffi
x

p .
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ðaÞ f ðx þ hÞ � f ðxÞ
h

¼ 1

h
½ðx þ hÞ3 � x3�

¼ 1

h
½x3 þ 3x2h þ 3xh2 þ h3� � x3� ¼ 3x2 þ 3xh þ h2

Then

f 0ðxÞ ¼ lim
h!0

f ðx þ hÞ � f ðxÞ
h

¼ 3x2

ðbÞ lim
h!0

f ðx þ hÞ � f ðxÞ
h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi
x þ h

p � ffiffiffi
x

p
h

The result follows by multiplying numerator and denominator by
ffiffiffiffiffiffiffiffiffiffiffi
x þ h

p � ffiffiffi
x

p
and then letting h ! 0.

4.3. If f ðxÞ has a derivative at x ¼ x0, prove that f ðxÞ must be continuous at x ¼ x0.

f ðx0 þ hÞ � f ðx0Þ ¼ f ðx0 þ hÞ � f ðx0Þ
h

� h; h 6¼ 0

lim
h!0

f ðx0 þ hÞ � f ðx0Þ ¼ lim
h!0

f ðx0 þ hÞ � f ðx0Þ
h

� lim
h!0

h ¼ f 0ðx0Þ � 0 ¼ 0Then

since f 0ðx0Þ exists by hypothesis. Thus

lim
h!0

f ðx0 þ hÞ � f ðx0Þ ¼ 0 or lim
h!0

f ðx0 þ hÞ ¼ f ðx0Þ

showing that f ðxÞ is continuous at x ¼ x0.

4.4. Let f ðxÞ ¼ x sin 1=x; x 6¼ 0
0; x ¼ 0

�
.

(a) Is f ðxÞ continuous at x ¼ 0? (b) Does f ðxÞ have a derivative at x ¼ 0?

(a) By Problem 3.22(b) of Chapter 3, f ðxÞ is continuous at x ¼ 0.

ðbÞ f 0ð0Þ ¼ lim
h!0

f ð0 þ hÞ � f ð0Þ
h

¼ lim
h!0

f ðhÞ � f ð0Þ
h

¼ lim
h!0

h sin 1=h � 0

h
¼ lim

h!0
sin

1

h

which does not exist.

This example shows that even though a function is continuous at a point, it need not have a
derivative at the point, i.e., the converse of the theorem in Problem 4.3 is not necessarily true.

It is possible to construct a function which is continuous at every point of an interval but has a
derivative nowhere.

4.5. Let f ðxÞ ¼ x2 sin 1=x; x 6¼ 0
0; x ¼ 0

�
.

(a) Is f ðxÞ differentiable at x ¼ 0? (b) Is f 0ðxÞ continuous at x ¼ 0?

ðaÞ f 0ð0Þ ¼ lim
h!0

f ðhÞ � f ð0Þ
h

¼ lim
h!0

h2 sin 1=h � 0

h
¼ lim

h!0
h sin

1

h
¼ 0

by Problem 3.13, Chapter 3. Then f ðxÞ has a derivative (is differentiable) at x ¼ 0 and its value is 0.

(b) From elementary calculus differentiation rules, if x 6¼ 0,

f 0ðxÞ ¼ d

dx
x2 sin

1

x

� �
¼ x2

d

dx
sin

1

x

� �
þ sin

1

x

� �
d

dx
ðx2Þ

¼ x2 cos
1

x

� �
� 1

x2

� �
þ sin

1

x

� �
ð2xÞ ¼ � cos

1

x
þ 2x sin

1

x
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Since lim
x!0

f 0ðxÞ ¼ lim
x!0

� cos
1

x
þ 2x sin

1

x

� �
does not exist (because lim

x!0
cos 1=x does not exist), f 0ðxÞ

cannot be continuous at x ¼ 0 in spite of the fact that f 0ð0Þ exists.
This shows that we cannot calculate f 0ð0Þ in this case by simply calculating f 0ðxÞ and putting x ¼ 0,

as is frequently supposed in elementary calculus. It is only when the derivative of a function is
continuous at a point that this procedure gives the right answer. This happens to be true for most

functions arising in elementary calculus.

4.6. Present an ‘‘�; �’’ definition of the derivative of f ðxÞ at x ¼ x0.

f ðxÞ has a derivative f 0ðx0Þ at x ¼ x0 if, given any � > 0, we can find � > 0 such that

f ðx0 þ hÞ � f ðx0Þ
h

� f 0ðx0Þ
����

���� < � when 0 < jhj < �

RIGHT- AND LEFT-HAND DERIVATIVES

4.7. Let f ðxÞ ¼ jxj. (a) Calculate the right-hand derivatives of f ðxÞ at x ¼ 0. (b) Calculate the left-
hand derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the
conclusions in (a), (b), and (c) from a graph.

ðaÞ f 0
þð0Þ ¼ lim

h!0þ
f ðhÞ � f ð0Þ

h
¼ lim

h!0þ
jhj � 0

h
¼ lim

h!0þ
h

h
¼ 1

since jhj ¼ h for h > 0.

ðbÞ f 0
�ð0Þ ¼ lim

h!0�
f ðhÞ � f ð0Þ

h
¼ lim

h!0�
jhj � 0

h
¼ lim

h!0�
�h

h
¼ �1

since jhj ¼ �h for h < 0.

(c) No. The derivative at 0 does not exist if the right and
left hand derivatives are unequal.

(d) The required graph is shown in the adjoining Fig. 4-8.
Note that the slopes of the lines y ¼ x and y ¼ �x are 1 and �1 respectively, representing the right and

left hand derivatives at x ¼ 0. However, the derivative at x ¼ 0 does not exist.

4.8. Prove that f ðxÞ ¼ x2 is differentiable in 0@ x@ 1.

Let x0 be any value such that 0 < x0 < 1. Then

f 0ðx0Þ ¼ lim
h!0

f ðx0 þ hÞ � f ðx0Þ
h

¼ lim
h!0

ðx0 þ hÞ2 � x20
h

¼ lim
h!0

ð2x0 þ hÞ ¼ 2x0

At the end point x ¼ 0,

f 0
þð0Þ ¼ lim

h!0þ
f ð0 þ hÞ � f ð0Þ

h
¼ lim

h!0þ
h2 � 0

h
¼ lim

h!0þ
h ¼ 0

At the end point x ¼ 1,

f 0
�ð1Þ ¼ lim

h!0�
f ð1 þ hÞ � f ð1Þ

h
¼ lim

h!0�
ð1 þ hÞ2 � 1

h
¼ lim

h!0�
ð2 þ hÞ ¼ 2

Then f ðxÞ is differentiable in 0@ x@ 1. We may write f 0ðxÞ ¼ 2x for any x in this interval. It is
customary to write f 0

þð0Þ ¼ f 0ð0Þ and f 0
�ð1Þ ¼ f 0ð1Þ in this case.
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4.9. Find an equation for the tangent line to y ¼ x2 at the point where (a) x ¼ 1=3; ðbÞ x ¼ 1.

(a) From Problem 4.8, f 0ðx0Þ ¼ 2x0 so that f 0ð1=3Þ ¼ 2=3. Then the equation of the tangent line is

y � f ðx0Þ ¼ f 0ðx0Þðx � x0Þ or y � 1
9 ¼ 2

3 ðx � 1
3Þ; i:e:; y ¼ 2

3 x � 1
9

(b) As in part (a), y � f ð1Þ ¼ f 0ð1Þðx � 1Þ or y � 1 ¼ 2ðx � 1Þ, i.e., y ¼ 2x � 1.

DIFFERENTIALS

4.10. If y ¼ f ðxÞ ¼ x3 � 6x, find (a) �y; ðbÞ dy; ðcÞ �y � dy.

ðaÞ �y ¼ f ðx þ �xÞ � f ðxÞ ¼ fðx þ �xÞ3 � 6ðx þ �xÞg � fx3 � 6xg
¼ x3 þ 3x2�x þ 3xð�xÞ2 þ ð�xÞ3 � 6x � 6�x � x3 þ 6x

¼ ð3x2 � 6Þ�x þ 3xð�xÞ2 þ ð�xÞ3

(b) dy ¼ principal part of �y ¼ ð3x2 � 6Þ�x ¼ ð3x2 � 6Þdx, since by definition �x ¼ dx.

Note that f 0ðxÞ ¼ 3x2 � 6 and dy ¼ ð3x2 � 6Þdx, i.e., dy=dx ¼ 3x2 � 6. It must be emphasized that

dy and dx are not necessarily small.

(c) From (a) and (b), �y � dy ¼ 3xð�xÞ2 þ ð�xÞ3 ¼ ��x, where � ¼ 3x�x þ ð�xÞ2.
Note that � ! 0 as �x ! 0, i.e.,

�y � dy

�x
! 0 as �x ! 0. Hence �y � dy is an infinitesimal of

higher order than �x (see Problem 4.83).

In case �x is small, dy and �y are approximately equal.

4.11. Evaluate
ffiffiffiffiffi
253

p
approximately by use of differentials.

If �x is small, �y ¼ f ðx þ �xÞ � f ðxÞ ¼ f 0ðxÞ�x approximately.

Let f ðxÞ ¼ ffiffiffi
x3

p
. Then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x þ �x3

p � ffiffiffi
x3

p � 1
3x

�2=3�x (where � denotes approximately equal to).

If x ¼ 27 and �x ¼ �2, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 � 2

3
p

�
ffiffiffiffiffi
27

3
p

� 1
3 ð27Þ�2=3ð�2Þ; i.e.,

ffiffiffiffiffi
253

p � 3 � �2=27

Then
ffiffiffiffiffi
253

p � 3 � 2=27 or 2.926.

If is interesting to observe that ð2:926Þ3 ¼ 25:05, so that the approximation is fairly good.

DIFFERENTIATION RULES: DIFFERENTIATION OF ELEMENTARY FUNCTIONS

4.12. Prove the formula
d

dx
f f ðxÞgðxÞg ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ, assuming f and g are differentiable.

By definition,

d

dx
f f ðxÞgðxÞg ¼ lim

�x!0

f ðx þ �xÞgðx þ �xÞ � f ðxÞgðxÞ
�x

¼ lim
�x!0

f ðx þ �xÞfgðx þ �xÞ � gðxÞg þ gðxÞf f ðx þ �xÞ � f ðxÞg
�x

¼ lim
�x!0

f ðx þ �xÞ gðx þ �xÞ � gðxÞ
�x

� �
þ lim

�x!0
gðxÞ f ðx þ �xÞ � f ðxÞ

�x

� �

¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ

Another method:

Let u ¼ f ðxÞ, v ¼ gðxÞ. Then �u ¼ f ðx þ �xÞ � f ðxÞ and �v ¼ gðx þ �xÞ � gðxÞ, i.e., f ðx þ �xÞ ¼
u þ �u, gðx þ �xÞ ¼ v þ �v. Thus
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d

dx
uv ¼ lim

�x!0

ðu þ �uÞðv þ �vÞ � uv

�x
¼ lim

�x!0

u�v þ v�u þ �u�v

�x

¼ lim
�x!0

u
�v

�x
þ v

�u

�x
þ �u

�x
�v

� �
¼ u

dv

dx
þ v

du

dx

where it is noted that �v ! 0 as �x ! 0, since v is supposed differentiable and thus continuous.

4.13. If y ¼ f ðuÞ where u ¼ gðxÞ, prove that
dy

dx
¼ dy

du
� du
dx

assuming that f and g are differentiable.

Let x be given an increment �x 6¼ 0. Then as a consequence u and y take on increments �u and �y

respectively, where

�y ¼ f ðu þ �uÞ � f ðuÞ; �u ¼ gðx þ �xÞ � gðxÞ ð1Þ
Note that as �x ! 0, �y ! 0 and �u ! 0.

If �u 6¼ 0, let us write � ¼ �y

�u
� dy

du
so that � ! 0 as �u ! 0 and

�y ¼ dy

du
�u þ ��u ð2Þ

If �u ¼ 0 for values of �x, then (1) shows that �y ¼ 0 for these values of �x. For such cases, we

define � ¼ 0.
It follows that in both cases, �u 6¼ 0 or �u ¼ 0, (2) holds. Dividing (2) by �x 6¼ 0 and taking the limit

as �x ! 0, we have

dy

dx
¼ lim

�x!0

�y

�x
¼ lim

�x!0

dy

du

�u

�x
þ �

�u

�x

� �
¼ dy

du
� lim

�x!0

�u

�x
þ lim

�x!0
� � lim

�x!0

�u

�x

¼ dy

du

du

dx
þ 0 � du

dx
¼ dy

du
� du
dx

ð3Þ

4.14. Given
d

dx
ðsin xÞ ¼ cos x and

d

dx
ðcos xÞ ¼ � sin x, derive the formulas

ðaÞ d

dx
ðtan xÞ ¼ sec2 x; ðbÞ d

dx
ðsin�1 xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p

ðaÞ d

dx
ðtanxÞ ¼ d

dx

sin x

cos x

� �
¼

cos x
d

dx
ðsin xÞ � sinx

d

dx
ðcos xÞ

cos2 x

¼ ðcos xÞðcos xÞ � ðsinxÞð� sin xÞ
cos2 x

¼ 1

cos2 x
¼2 x

(b) If y ¼ sin�1 x, then x ¼ sin y. Taking the derivative with respect to x,

1 ¼ cos y
dy

dx
or

dy

dx
¼ 1

cos y
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2 y

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p

We have supposed here that the principal value ��=2@ sin�1 x@ �=2, is chosen so that cos y is

positive, thus accounting for our writing cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2 y

q
rather than cos y ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � sin2 y

q
.

4.15. Derive the formula
d

dx
ðloga uÞ ¼ loga e

u

du

dx
ða > 0; a 6¼ 1Þ, where u is a differentiable function of x.

Consider y ¼ f ðuÞ ¼ loga u. By definition,

dy

du
¼ lim

�u!0

f ðu þ �uÞ � f ðuÞ
�u

¼ lim
�u!0

logaðu þ �uÞ � loga u

�u

¼ lim
�u!0

1

�u
loga

u þ �u

u

� �
¼ lim

�u!0

1

u
loga 1 þ �u

u

� �u=�u
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Since the logarithm is a continuous function, this can be written

1

u
loga lim

�u!0
1 þ �u

u

� �u=�u
( )

¼ 1

u
loga e

by Problem 2.19, Chapter 2, with x ¼ u=�u.

Then by Problem 4.13,
d

dx
ðloga uÞ ¼ loga e

u

du

dx
.

4.16. Calculate dy=dx if (a) xy3 � 3x2 ¼ xy þ 5, (b) exy þ y ln x ¼ cos 2x.

(a) Differentiate with respect to x, considering y as a function of x. (We sometimes say that y is an implicit
function of x, since we cannot solve explicitly for y in terms of x.) Then

d

dx
ðxy3Þ � d

dx
ð3x2Þ ¼ d

dx
ðxyÞ þ d

dx
ð5Þ or ðxÞð3y2y 0Þ þ ðy3Þð1Þ � 6x ¼ ðxÞðy 0Þ þ ðyÞð1Þ þ 0

where y 0 ¼ dy=dx. Solving, y 0 ¼ ð6x � y3 þ yÞ=ð3xy2 � xÞ.

ðbÞ d

dx
ðexyÞ þ d

dx
ðy ln xÞ ¼ d

dx
ðcos 2xÞ; exyðxy 0 þ yÞ þ y

x
þ ðlnxÞy 0 ¼ �2 sin 2x:

y 0 ¼ � 2x sin 2x þ xyexy þ y

x2exy þ x lnx
Solving;

4.17. If y ¼ coshðx2 � 3x þ 1Þ, find (a) dy=dx; ðbÞ d2y=dx2.

(a) Let y ¼ cosh u, where u ¼ x2 � 3x þ 1. Then dy=du ¼ sinh u, du=dx ¼ 2x � 3, and

dy

dx
¼ dy

du
� du
dx

¼ ðsinh uÞð2x � 3Þ ¼ ð2x � 3Þ sinhðx2 � 3x þ 1Þ

ðbÞ d2y

dx2
¼ d

dx

dy

dx

� �
¼ d

dx
sinh u

du

dx

� �
¼ sinh u

d2u

dx2
þ cosh u

du

dx

� �2

¼ ðsinh uÞð2Þ þ ðcosh uÞð2x � 3Þ2 ¼ 2 sinhðx2 � 3x þ 1Þ þ ð2x � 3Þ2 coshðx2 � 3x þ 1Þ

4.18. If x2y þ y3 ¼ 2, find (a) y 0; ðbÞ y 00 at the point ð1; 1Þ.
(a) Differentiating with respect to x, x2y 0 þ 2xy þ 3y2y 0 ¼ 0 and

y 0 ¼ �2xy

x2 þ 3xy2
¼ � 1

2
at ð1; 1Þ

ðbÞ y 00 ¼ d

dx
ðy 0Þ ¼ d

dx

�2xy

x2 þ 3y2

� �
¼ � ðx2 þ 3y2Þð2xy 0 þ 2yÞ � ð2xyÞð2x þ 6yy 0Þ

ðx2 þ 3y2Þ2

Substituting x ¼ 1, y ¼ 1; and y 0 ¼ � 1
2, we find y 00 ¼ � 3

8.

MEAN VALUE THEOREMS

4.19. Prove Rolle’s theorem.

Case 1: f ðxÞ 
 0 in ½a; b�. Then f 0ðxÞ ¼ 0 for all x in ða; bÞ.
Case 2: f ðxÞ 6
 0 in ½a; b�. Since f ðxÞ is continuous there are points at which f ðxÞ attains its maximum and

minimum values, denoted by M and m respectively (see Problem 3.34, Chapter 3).
Since f ðxÞ 6
 0, at least one of the values M;m is not zero. Suppose, for example, M 6¼ 0 and that

f ð�Þ ¼ M (see Fig. 4-9). For this case, f ð� þ hÞ@ f ð�Þ.
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If h > 0, then
f ð� þ hÞ � f ð�Þ

h
@ 0 and

lim
h!0þ

f ð� þ hÞ � f ð�Þ
h

@ 0 ð1Þ

If h < 0, then
f ð� þ hÞ � f ð�Þ

h
A 0 and

lim
h!0�

f ð� þ hÞ � f ð�Þ
h

A 0 ð2Þ

But by hypothesis f ðxÞ has a derivative at all points

in ða; bÞ. Then the right-hand derivative (1) must be
equal to the left-hand derivative (2). This can happen only if they are both equal to zero, in which case
f 0ð�Þ ¼ 0 as required.

A similar argument can be used in case M ¼ 0 and m 6¼ 0.

4.20. Prove the mean value theorem.

Define FðxÞ ¼ f ðxÞ � f ðaÞ � ðx � aÞ f ðbÞ � f ðaÞ
b � a

.

Then FðaÞ ¼ 0 and FðbÞ ¼ 0.

Also, if f ðxÞ satisfies the conditions on continuity and differentiability specified in Rolle’s theorem, then

FðxÞ satisfies them also.

Then applying Rolle’s theorem to the function FðxÞ, we obtain

F 0ð�Þ ¼ f 0ð�Þ � f ðbÞ � f ðaÞ
b � a

¼ 0; a < � < b or f 0ð�Þ ¼ f ðbÞ � f ðaÞ
b � a

; a < � < b

4.21. Verify the mean value theorem for f ðxÞ ¼ 2x2 � 7x þ 10, a ¼ 2, b ¼ 5.

f ð2Þ ¼ 4, f ð5Þ ¼ 25, f 0ð�Þ ¼ 4� � 7. Then the mean value theorem states that 4� � 7 ¼ ð25 � 4Þ=ð5 � 2Þ
or � ¼ 3:5. Since 2 < � < 5, the theorem is verified.

4.22. If f 0ðxÞ ¼ 0 at all points of the interval ða; bÞ, prove that f ðxÞ must be a constant in the interval.

Let x1 < x2 be any two different points in ða; bÞ. By the mean value theorem for x1 < � < x2,

f ðx2Þ � f ðx1Þ
x2 � x1

¼ f 0ð�Þ ¼ 0

Thus, f ðx1Þ ¼ f ðx2Þ ¼ constant. From this it follows that if two functions have the same derivative at all

points of ða; bÞ, the functions can only differ by a constant.

4.23. If f 0ðxÞ > 0 at all points of the interval ða; bÞ, prove that f ðxÞ is strictly increasing.

Let x1 < x2 be any two different points in ða; bÞ. By the mean value theorem for x1 < � < x2,

f ðx2Þ � f ðx1Þ
x2 � x1

¼ f 0ð�Þ > 0

Then f ðx2Þ > f ðx1Þ for x2 > x1, and so f ðxÞ is strictly increasing.

4.24. (a) Prove that
b � a

1 þ b2
< tan�1 b � tan�1 a <

b � a

1 þ a2
if a < b.

(b) Show that
�

4
þ 3

25
< tan�1 4

3
<

�

4
þ 1

6
.

(a) Let f ðxÞ ¼ tan�1 x. Since f 0ðxÞ ¼ 1=ð1 þ x2Þ and f 0ð�Þ ¼ 1=ð1 þ �2Þ, we have by the mean value
theorem
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tan�1 b � tan�1 a

b � a
¼ 1

1 þ �2
a < � < b

Since � > a, 1=ð1 þ �2Þ < 1=ð1 þ a2Þ. Since � < b, 1=ð1 þ �2Þ > 1=ð1 þ b2Þ. Then

1

1 þ b2
<

tan�1 b � tan�1 a

b � a
<

1

1 þ a2

and the required result follows on multiplying by b � a.

(b) Let b ¼ 4=3 and a ¼ 1 in the result of part (a). Then since tan�1 1 ¼ �=4, we have

3

25
< tan�1 4

3
� tan�1 1 <

1

6
or

�

4
þ 3

25
< tan�1 4

3
<

�

4
þ 1

6

4.25. Prove Cauchy’s generalized mean value theorem.

Consider GðxÞ ¼ f ðxÞ � f ðaÞ � �fgðxÞ � gðaÞg, where � is a constant. Then GðxÞ satisfies the conditions
of Rolle’s theorem, provided f ðxÞ and gðxÞ satisfy the continuity and differentiability conditions of Rolle’s

theorem and if GðaÞ ¼ GðbÞ ¼ 0. Both latter conditions are satisfied if the constant � ¼ f ðbÞ � f ðaÞ
gðbÞ � gðaÞ.

Applying Rolle’s theorem, G 0ð�Þ ¼ 0 for a < � < b, we have

f 0ð�Þ � �g 0ð�Þ ¼ 0 or
f 0ð�Þ
g 0ð�Þ ¼ f ðbÞ � f ðaÞ

gðbÞ � gðaÞ ; a < � < b

as required.

L’HOSPITAL’S RULE

4.26. Prove L’Hospital’s rule for the case of the ‘‘indeterminate forms’’ (a) 0/0, (b) 1=1.

(a) We shall suppose that f ðxÞ and gðxÞ are differentiable in a < x < b and f ðx0Þ ¼ 0, gðx0Þ ¼ 0, where

a < x0 < b.
By Cauchy’s generalized mean value theorem (Problem 25),

f ðxÞ
gðxÞ ¼ f ðxÞ � f ðx0Þ

gðxÞ � gðx0Þ
¼ f 0ð�Þ

g 0ð�Þ x0 < � < x

Then

lim
x!x0þ

f ðxÞ
gðxÞ ¼ lim

x!x0þ
f 0ð�Þ
g 0ð�Þ ¼ lim

x!x0þ
f 0ðxÞ
g 0ðxÞ ¼ L

since as x ! x0þ, � ! x0þ.

Modification of the above procedure can be used to establish the result if x ! x0�, x ! x0,
x ! 1, x ! �1.

(b) We suppose that f ðxÞ and gðxÞ are differentiable in a < x < b, and lim
x!x0þ

f ðxÞ ¼ 1, lim
x!x0þ

gðxÞ ¼ 1
where a < x0 < b.

Assume x1 is such that a < x0 < x < x1 < b. By Cauchy’s generalized mean value theorem,

f ðxÞ � f ðx1Þ
gðxÞ � gðx1Þ

¼ f 0ð�Þ
g 0ð�Þ x < � < x1

Hence

f ðxÞ � f ðx1Þ
gðxÞ � gðx1Þ

¼ f ðxÞ
gðxÞ � 1 � f ðx1Þ=f ðxÞ

1 � gðx1Þ=gðxÞ
¼ f 0ð�Þ

g 0ð�Þ
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from which we see that

f ðxÞ
gðxÞ ¼ f 0ð�Þ

g 0ð�Þ � 1 � gðx1Þ=gðxÞ
1 � f ðx1Þ=f ðxÞ

ð1Þ

Let us now suppose that lim
x!x0þ

f 0ðxÞ
g 0ðxÞ ¼ L and write (1) as

f ðxÞ
gðxÞ ¼ f 0ð�Þ

g 0ð�Þ � L

� �
1 � gðx1Þ=gðxÞ
1 � f ðx1Þ=f ðxÞ
� �

þ L
1 � gðx1Þ=gðxÞ
1 � f ðx1Þ=f ðxÞ
� �

ð2Þ

We can choose x1 so close to x0 that j f 0ð�Þ=g 0ð�Þ � Lj < �. Keeping x1 fixed, we see that

lim
x!x0þ

1 � gðx1Þ=gðxÞ
1 � f ðx1Þ=f ðxÞ
� �

¼ 1 since lim
x!x0þ

f ðxÞ ¼ 1 and lim
x!x0

gðxÞ ¼ 1

Then taking the limit as x ! x0þ on both sides of (2), we see that, as required,

lim
x!x0þ

f ðxÞ
gðxÞ ¼ L ¼ lim

x!x0þ
f 0ðxÞ
g 0ðxÞ

Appropriate modifications of the above procedure establish the result if x ! x0�, x ! x0,
x ! 1, x ! �1.

4.27. Evaluate (a) lim
x!0

e2x � 1

x
ðbÞ lim

x!1

1 þ cos�x

x2 � 2x þ 1

All of these have the ‘‘indeterminate form’’ 0/0.

ðaÞ lim
x!0

e2x � 1

x
¼ lim

x!0

2e2x

1
¼ 2

ðbÞ lim
x!1

1 þ cos�x

x2 � 2x þ 1
¼ lim

x!1

�� sin�x

2x � 2
¼ lim

x!1

��2 cos�x

2
¼ �2

2

Note: Here L’Hospital’s rule is applied twice, since the first application again yields the ‘‘indeter-

minate form’’ 0/0 and the conditions for L’Hospital’s rule are satisfied once more.

4.28. Evaluate (a) lim
x!1

3x2 � x þ 5

5x2 þ 6x � 3
ðbÞ lim

x!1 x2e�x

All of these have or can be arranged to have the ‘‘indeterminate form’’ 1=1.

ðaÞ lim
x!1

3x2 � x þ 5

5x2 þ 6x � 3
¼ lim

x!1
6x � 1

10x þ 6
¼ lim

x!1
6

10
¼ 3

5

ðbÞ lim
x!1x2e�x ¼ lim

x!1
x2

ex
¼ lim

x!1
2x

ex
¼ lim

x!1
2

ex
¼ 0

4.29. Evaluate lim
x!0þ

x2 ln x.

lim
x!0þ

x2 lnx ¼ lim
x!0þ

lnx

1=x2
¼ lim

x!0þ
1=x

�2=x3
¼ lim

x!0þ
�x2

2
¼ 0

The given limit has the ‘‘indeterminate form’’ 0 � 1. In the second step the form is altered so as to give
the indeterminate form 1=1 and L’Hospital’s rule is then applied.

4.30. Find lim
x!0

ðcos xÞ1=x2 .
Since lim

x!0
cos x ¼ 1 and lim

x!0
1=x2 ¼ 1, the limit takes the ‘‘indeterminate form’’ 11.
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Let FðxÞ ¼ ðcos xÞ1=x2 . Then lnFðxÞ ¼ ðln cos xÞ=x2 to which L’Hospital’s rule can be applied. We

have

lim
x!0

ln cos x

x2
¼ lim

x!0

ð� sin xÞ=ðcosxÞ
2x

¼ lim
x!0

� sinx

2x cosx
¼ lim

x!0

� cos x

�2x sinx þ 2 cos x
¼ � 1

2

Thus, lim
x!0

lnFðxÞ ¼ � 1
2. But since the logarithm is a continuous function, lim

x!0
lnFðxÞ ¼ lnðlim

x!0
FðxÞÞ. Then

lnðlim
x!0

FðxÞÞ ¼ � 1
2 or lim

x!0
FðxÞ ¼ lim

x!0
ðcos xÞ1=x2 ¼ e�1=2

4.31. If FðxÞ ¼ ðe3x � 5xÞ1=x, find (a) lim
x!0

FðxÞ and (b) lim
x!0

FðxÞ.
The respective indeterminate forms in (a) and (b) are 10 and 11.

Let GðxÞ ¼ lnFðxÞ ¼ lnðe3x � 5xÞ
x

. Then lim
x!1GðxÞ and lim

x!0
GðxÞ assume the indeterminate forms 1=1

and 0/0 respectively, and L’Hospital’s rule applies. We have

ðaÞ lim
x!1

lnðe3x � 5xÞ
x

¼ lim
x!1

3e3x � 5

e3x � 5x
¼ lim

x!0

9e3x

3e3x � 5
¼ lim

x!1
27e3x

9e3x
¼ 3

Then, as in Problem 4.30, lim
x!1ðe3x � 5xÞ1=x ¼ e3.

ðbÞ lim
x!0

lnðe3x � 5xÞ
x

¼ lim
x!0

3e3x � 5

e3x � 5x
¼ �2 and lim

x!0
ðe3x � 5xÞ1=x ¼ e�2

4.32. Suppose the equation of motion of a particle is x ¼ sinðc1t þ c2Þ, where c1 and c2 are constants.
(Simple harmonic motion.) (a) Show that the acceleration of the particle is proportional to its
distance from the origin. (b) If c1 ¼ 1, c2 ¼ �, and t 	 0, determine the velocity and acceleration
at the end points and at the midpoint of the motion.

ðaÞ dx

dt
¼ c1 cosðc1t þ c2Þ;

d2x

dt2
¼ �c21 sinðc1t þ c2Þ ¼ �c21x:

This relation demonstrates the proportionality of acceleration and distance.

(b) The motion starts at 0 and moves to �1. Then it oscillates between this value and 1. The absolute value

of the velocity is zero at the end points, and that of the acceleration is maximum there. The particle

coasts through the origin (zero acceleration), while the absolute value of the velocity is maximum there.

4.33. Use Newton’s method to determine
ffiffiffi
3

p
to three decimal points of accuracy.ffiffiffi

3
p

is a solution of x2 � 3 ¼ 0, which lies between 1 and 2. Consider f ðxÞ ¼ x2 � 3 then f 0ðxÞ ¼ 2x.

The graph of f crosses the x-axis between 1 and 2. Let x0 ¼ 2. Then f ðx0Þ ¼ 1 and f 0ðx0Þ ¼ 1:75.

According to the Newton formula, x1 ¼ x0 � f ðx0Þ
f 0ðx0Þ

¼ 2 � :25 ¼ 1:75.

Then x2 ¼ x1 � f ðx1Þ
f 0ðx1Þ

¼ 1:732. To verify the three decimal point accuracy, note that ð1:732Þ2 ¼ 2:9998

and ð1:7333Þ2 ¼ 3:0033.
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MISCELLANEOUS PROBLEMS

4.34. If x ¼ gðtÞ and y ¼ f ðtÞ are twice differentiable, find (a) dy=dx; ðbÞ d2y=dx2.

(a) Letting primes denote derivatives with respect to t, we have

dy

dx
¼ dy=dt

dx=dt
¼ f 0ðtÞ

g 0ðtÞ if g 0ðtÞ 6¼ 0

ðbÞ d2y

dx2
¼ d

dx

dy

dx

� �
¼ d

dx

f 0ðtÞ
g 0ðtÞ
� �

¼
d

dt

f 0ðtÞ
g 0ðtÞ

� �
dx=dt

¼
d

dt

f 0ðtÞ
g 0ðtÞ

� �
g 0ðtÞ

¼ 1

g 0ðtÞ
g 0ðtÞf 00ðtÞ � f 0ðtÞg 00ðtÞ

½g 0ðtÞ�2
� �

¼ g 0ðtÞf 00ðtÞ � f 0ðtÞg 00ðtÞ
½g 0ðtÞ�3 if g 0ðtÞ 6¼ 0

4.35. Let f ðxÞ ¼ e�1=x2 ; x 6¼ 0
0; x ¼ 0

�
. Prove that (a) f 0ð0Þ ¼ 0; ðbÞ f 00ð0Þ ¼ 0.

ðaÞ f 0
þð0Þ ¼ lim

h!0þ
f ðhÞ � f ð0Þ

h
¼ lim

h!0þ
e�1=h2 � 0

h
¼ lim

h!0þ
e�1=h2

h

If h ¼ 1=u, using L’Hospital’s rule this limit equals

lim
u!1 ue�u2 ¼ lim

u!1 u=eu
2 ¼ lim

u!1 1=2ueu
2 ¼ 0

Similarly, replacing h ! 0þ by h ! 0� and u ! 1 by u ! �1, we find f 0
�ð0Þ ¼ 0. Thus

f 0
þð0Þ ¼ f 0

�ð0Þ ¼ 0, and so f 0ð0Þ ¼ 0.

ðbÞ f 00
þ ð0Þ ¼ lim

h!0þ
f 0ðhÞ � f 0ð0Þ

h
¼ lim

h!0þ
e�1=h2 � 2h�3 � 0

h
¼ lim

h!0þ
2e�1=h2

h4
¼ lim

u!1
2u4

eu
2 ¼ 0

by successive applications of L’Hospital’s rule.

Similarly, f 00
� ð0Þ ¼ 0 and so f 00ð0Þ ¼ 0.

In general, f ðnÞð0Þ ¼ 0 for n ¼ 1; 2; 3; . . .

4.36. Find the length of the longest ladder which can be carried around the corner of a corridor, whose
dimensions are indicated in the figure below, if it is assumed that the ladder is carried parallel to
the floor.

The length of the longest ladder is the same as the shortest
straight line segment AB [Fig. 4-10], which touches both outer

walls and the corner formed by the inner walls.

As seen from Fig. 4-10, the length of the ladder AB is

L ¼ a sec � þ b csc �

L is a minimum when

dL=d� ¼ a sec � tan � � b csc � cot � ¼ 0

a sin3 � ¼ b cos3 � or tan � ¼
ffiffiffiffiffiffiffiffi
b=a3

p
i.e.;

sec � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3 þ b2=3

p
a1=3

; csc � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3 þ b2=3

p
b1=3

Then

L ¼ a sec � þ b csc � ¼ ða2=3 þ b2=3Þ3=2so that

Although it is geometrically evident that this gives the minimum length, we can prove this analytically
by showing that d2L=d�2 for � ¼ tan�1

ffiffiffiffiffiffiffiffi
b=a3

p
is positive (see Problem 4.78).

CHAP. 4] DERIVATIVES 85

a

b

B

OA

a sec �

b csc �

�

�

Fig. 4-10



Supplementary Problems

DERIVATIVES

4.37. Use the definition to compute the derivatives of each of the following functions at the indicated point:
(a) ð3x � 4Þ=ð2x þ 3Þ;x ¼ 1; ðbÞ x3 � 3x2 þ 2x � 5;x ¼ 2; ðcÞ ffiffiffi

x
p

; x ¼ 4; ðdÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x � 43

p
; x ¼ 2:

Ans. (a) 17/25, (b) 2, (c) 1
4, (d) 1

2

4.38. Show from definition that (a)
d

dx
x4 ¼ 4x3; ðbÞ d

dx

3 þ x

3 � x
¼ 6

ð3 � xÞ2 ; x 6¼ 3

4.39. Let f ðxÞ ¼ x3 sin 1=x; x 6¼ 0
0; x ¼ 0

�
. Prove that (a) f ðxÞ is continuous at x ¼ 0, (b) f ðxÞ has a derivative at

x ¼ 0, (c) f 0ðxÞ is continuous at x ¼ 0.

4.40. Let f ðxÞ ¼ xe�1=x2 ; x 6¼ 0
0; x ¼ 0

�
. Determine whether f ðxÞ (a) is continuous at x ¼ 0, (b) has a derivative at

x ¼ 0:

Ans. (a) Yes; (b) Yes, 0

4.41. Give an alternative proof of the theorem in Problem 4.3, Page 76, using ‘‘�; � definitions’’.

4.42. If f ðxÞ ¼ ex, show that f 0ðx0Þ ¼ ex0 depends on the result lim
h!0

ðeh � 1Þ=h ¼ 1.

4.43. Use the results lim
h!0

ðsin hÞ=h ¼ 1, lim
h!0

ð1 � cos hÞ=h ¼ 0 to prove that if f ðxÞ ¼ sinx, f 0ðx0Þ ¼ cos x0.

RIGHT- AND LEFT-HAND DERIVATIVES

4.44. Let f ðxÞ ¼ xjxj. (a) Calculate the right-hand derivative of f ðxÞ at x ¼ 0. (b) Calculate the left-hand
derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the conclusions in ðaÞ,
(b), and (c) from a graph.
Ans. (a) 0; (b) 0; (c) Yes, 0

4.45. Discuss the (a) continuity and (b) differentiability of f ðxÞ ¼ xp sin 1=x, f ð0Þ ¼ 0, where p is any positive
number. What happens in case p is any real number?

4.46. Let f ðxÞ ¼ 2x � 3; 0@ x@ 2
x2 � 3; 2 < x@ 4

�
. Discuss the (a) continuity and (b) differentiability of f ðxÞ in

0@ x@ 4.

4.47. Prove that the derivative of f ðxÞ at x ¼ x0 exists if and only if f 0
þðx0Þ ¼ f 0

�ðx0Þ.

4.48. (a) Prove that f ðxÞ ¼ x3 � x2 þ 5x � 6 is differentiable in a@ x@ b, where a and b are any constants.
(b) Find equations for the tangent lines to the curve y ¼ x3 � x2 þ 5x � 6 at x ¼ 0 and x ¼ 1. Illustrate

by means of a graph. (c) Determine the point of intersection of the tangent lines in (b). (d) Find
f 0ðxÞ; f 00ðxÞ; f 000ðxÞ; f ðIVÞðxÞ; . . . .
Ans. (b) y ¼ 5x � 6; y ¼ 6x � 7; ðcÞ ð1;�1Þ; ðdÞ 3x2 � 2x þ 5; 6x � 2; 6; 0; 0; 0; . . .

4.49. If f ðxÞ ¼ x2jxj, discuss the existence of successive derivatives of f ðxÞ at x ¼ 0.

DIFFERENTIALS

4.50. If y ¼ f ðxÞ ¼ x þ 1=x, find (a) �y; ðbÞ dy; ðcÞ �y � dy; ðdÞ ð�y � dyÞ=�x; ðeÞ dy=dx.

Ans: ðaÞ �x � �x

xðx þ �xÞ ; ðbÞ 1 � 1

x2

� �
�x; ðcÞ ð�xÞ2

x2ðx þ �xÞ ; ðdÞ �x

x2ðx þ �xÞ ; ðeÞ 1 � 1

x2
:

Note: �x ¼ dx.
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4.51. If f ðxÞ ¼ x2 þ 3x, find (a) �y; ðbÞ dy; ðcÞ �y=�x; ðdÞ dy=dx; and (e) ð�y � dyÞ=�x, if x ¼ 1 and

�x ¼ :01.
Ans. (a) .0501, (b) .05, (c) 5.01, (d) 5, (e) .01

4.52. Using differentials, compute approximate values for each of the following: (a) sin 318; ðbÞ lnð1:12Þ,
(c)

ffiffiffiffiffi
365

p
.

Ans. (a) 0.515, (b) 0.12, (c) 2.0125

4.53. If y ¼ sinx, evaluate (a) �y; ðbÞ dy. (c) Prove that ð�y � dyÞ=�x ! 0 as �x ! 0.

DIFFERENTIATION RULES AND ELEMENTARY FUNCTIONS

4.54. Prove: (a)
d

dx
f f ðxÞ þ gðxÞg ¼ d

dx
f ðxÞ þ d

dx
gðxÞ; ðbÞ d

dx
f f ðxÞ � gðxÞg ¼ d

dx
f ðxÞ � d

dx
gðxÞ,

ðcÞ d

dx

f ðxÞ
gðxÞ

� �
¼ gðxÞ f 0ðxÞ � f ðxÞg 0ðxÞ

½gðxÞ�2 ; gðxÞ 6¼ 0:

4.55. Evaluate (a)
d

dx
fx3 lnðx2 � 2x þ 5Þg at x ¼ 1; ðbÞ d

dx
fsin2ð3x þ �=6Þg at x ¼ 0.

Ans. (a) 3 ln 4; ðbÞ 3
2

ffiffiffi
3

p

4.56. Derive the formulas: (a)
d

dx
au ¼ au ln a

du

dx
; a > 0; a 6¼ 1; ðbÞ d

dx
csc u ¼ �csc u cot u

du

dx
;

ðcÞ d

dx
tanh u ¼ sech2 u

du

dx
where u is a differentiable function of x:

4.57. Compute (a)
d

dx
tan�1 x; ðbÞ d

dx
csc�1 x; ðcÞ d

dx
sinh�1 x; ðdÞ d

dx
coth�1 x, paying attention to the

use of principal values.

4.58. If y ¼ xx, computer dy=dx. [Hint: Take logarithms before differentiating.]
Ans. xxð1 þ ln xÞ

4.59. If y ¼ flnð3x þ 2Þgsin�1ð2xþ:5Þ, find dy=dx at x ¼ 0:

Ans:
�

4 ln 2
þ 2 ln ln 2ffiffiffi

3
p

� �
ðln 2Þ�=6

4.60. If y ¼ f ðuÞ, where u ¼ gðvÞ and v ¼ hðxÞ, prove that dy
dx

¼ dy

du
� du
dv

� dv
dx

assuming f , g; and h are differentiable.

4.61. Calculate (a) dy=dx and (b) d2y=dx2 if xy � ln y ¼ 1.

Ans. (a) y2=ð1 � xyÞ; ðbÞ ð3y3 � 2xy4Þ=ð1 � xyÞ3 provided xy 6¼ 1

4.62. If y ¼ tanx, prove that y000 ¼ 2ð1 þ y2Þð1 þ 3y2Þ.

4.63. If x ¼ sec t and y ¼ tan t, evaluate (a) dy=dx; ðbÞ d2y=dx2; ðcÞ d3y=dx3, at t ¼ �=4.
Ans. (a)

ffiffiffi
2

p
; ðbÞ � 1; ðcÞ 3

ffiffiffi
2

p

4.64. Prove that
d2y

dx2
¼ � d2x

dy2

�
dx

dy

� �3

, stating precise conditions under which it holds.

4.65. Establish formulas (a) 7, (b) 18, and (c) 27, on Page 71.

MEAN VALUE THEOREMS

4.66. Let f ðxÞ ¼ 1 � ðx � 1Þ2=3, 0@ x@ 2. (a) Construct the graph of f ðxÞ. (b) Explain why Rolle’s theorem is
not applicable to this function, i.e., there is no value � for which f 0ð�Þ ¼ 0, 0 < � < 2.
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4.67. Verify Rolle’s theorem for f ðxÞ ¼ x2ð1 � xÞ2, 0@ x@ 1.

4.68. Prove that between any two real roots of ex sin x ¼ 1 there is at least one real root of ex cos x ¼ �1. [Hint:

Apply Rolle’s theorem to the function e�x � sin x:�
4.69. (a) If 0 < a < b, prove that ð1 � a=bÞ < ln b=a < ðb=a � 1Þ

(b) Use the result of (a) to show that 1
6 < ln 1:2 < 1

5.

4.70. Prove that ð�=6 þ ffiffiffi
3

p
=15Þ < sin�1 :6 < ð�=6 þ 1=8Þ by using the mean value theorem.

4.71. Show that the function FðxÞ in Problem 4.20(a) represents the difference in ordinants of curve ACB and line

AB at any point x in ða; bÞ.
4.72. (a) If f 0ðxÞ@ 0 at all points of ða; bÞ, prove that f ðxÞ is monotonic decreasing in ða; bÞ.

(b) Under what conditions is f ðxÞ strictly decreasing in ða; bÞ?
4.73. (a) Prove that ðsin xÞ=x is strictly decreasing in ð0; �=2Þ. (b) Prove that 0@ sinx@ 2x=� for

0@ x@ �=2.

4.74. (a) Prove that
sin b � sin a

cos a � cos b
¼ cot �, where � is between a and b.

(b) By placing a ¼ 0 and b ¼ x in (a), show that � ¼ x=2. Does the result hold if x < 0?

L’HOSPITAL’S RULE

4.75. Evaluate each of the following limits.

(a) lim
x!0

x � sinx

x3
(e) lim

x!0þ
x3 ln x (i) lim

x!0
ð1=x � csc xÞ (m) lim

x!1 x ln
x þ 3

x � 3

� �

(b) lim
x!0

e2x � 2ex þ 1

cos 3x � 2 cos 2x þ cosx
( f ) lim

x!0
ð3x � 2xÞ=x ( j) lim

x!0
xsin x (n) lim

x!0

sinx

x

� �1=x2

(c) lim
x!1þ

ðx2 � 1Þ tan�x=2 (g) lim
x!1ð1 � 3=xÞ2x ðkÞ lim

x!0
ð1=x2 � cot2 xÞ (o) lim

x!1ðx þ ex þ e2xÞ1=x

(d) lim
x!1x3e�2x (h) lim

x!1ð1 þ 2xÞ1=3x (l) lim
x!0

tan�1 x � sin�1 x

xð1 � cos xÞ (p) lim
x!0þ

ðsinxÞ1= lnx

Ans. (a) 1
6 ; ðbÞ � 1; ðcÞ � 4=�; ðdÞ 0; ðeÞ 0; ð f Þ ln 3=2; ðgÞ e�6; ðhÞ 1; ðiÞ 0; ð jÞ 1,

(k) 2
3 ; ðlÞ 1

3 ; ðmÞ 6; ðnÞ e�1=6; ðoÞ e2; ð pÞ e

MISCELLANEOUS PROBLEMS

4.76. Prove that

ffiffiffiffiffiffiffiffiffiffiffi
1 � x

1 þ x

r
<

lnð1 þ xÞ
sin�1 x

< 1 if 0 < x < 1.

4.77. If �f ðxÞ ¼ f ðx þ �xÞ � f ðxÞ, (a) Prove that �f�f ðxÞg ¼ �2f ðxÞ ¼ f ðx þ 2�xÞ � 2f ðx þ �xÞ þ f ðxÞ,
(b) derive an expression for �nf ðxÞ where n is any positive integer, (c) show that lim

�x!0

�nf ðxÞ
ð�xÞn ¼ f ðnÞðxÞ

if this limit exists.

4.78. Complete the analytic proof mentioned at the end of Problem 4.36.

4.79. Find the relative maximum and minima of f ðxÞ ¼ x2, x > 0.

Ans. f ðxÞ has a relative minimum when x ¼ e�1.

4.80. A train moves according to the rule x ¼ 5t3 þ 30t, where t and x are measured in hours and miles,
respectively. (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?

4.81. A stone thrown vertically upward has the law of motion x ¼ �16t2 þ 96t. (Assume that the stone is at

ground level at t ¼ 0, that t is measured in seconds, and that x is measured in feet.) (a) What is the height of
the stone at t ¼ 2 seconds? (b) To what height does the stone rise? (c) What is the initial velocity, and
what is the maximum speed attained?
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4.82. A particle travels with constant velocities v1 and v2 in mediums I and II,

respectively (see adjoining Fig. 4-11). Show that in order to go from point
P to point Q in the least time, it must follow path PAQ where A is such
that

ðsin �1Þ=ðsin �2Þ ¼ v1=v2

Note: This is Snell’s Law; a fundamental law of optics first discovered
experimentally and then derived mathematically.

4.83. A variable � is called an infinitesimal if it has zero as a limit. Given two
infinitesimals � and 	, we say that � is an infinitesimal of higher order (or the same order) if lim�=	 ¼ 0 (or

lim �=	 ¼ l 6¼ 0). Prove that as x ! 0, (a) sin2 2x and ð1 � cos 3xÞ are infinitesimals of the same order,
(b) ðx3 � sin3 xÞ is an infinitesimal of higher order than fx � lnð1 þ xÞ � 1 þ cos xg.

4.84. Why can we not use L’Hospital’s rule to prove that lim
x!0

x2 sin 1=x

sinx
¼ 0 (see Problem 3.91, Chap. 3)?

4.85. Can we use L’Hospital’s rule to evaluate the limit of the sequence un ¼ n3e�n2 , n ¼ 1; 2; 3; . . . ? Explain.

4.86 (1) Determine decimal approximations with at least three places of accuracy for each of the following
irrational numbers. (a)

ffiffiffi
2

p
; ðbÞ ffiffiffi

5
p

; ðcÞ 71=3

(2) The cubic equation x3 � 3x2 þ x � 4 ¼ 0 has a root between 3 and 4. Use Newton’s Method to
determine it to at least three places of accuracy.

4.87. Using successive applications of Newton’s method obtain the positive root of (a) x3 � 2x2 � 2x � 7 ¼ 0,
(b) 5 sin x ¼ 4x to 3 decimal places.
Ans. (a) 3.268, (b) 1.131

4.88. If D denotes the operator d=dx so that Dy 
 dy=dx while Dky 
 dky=dxk, prove Leibnitz’s formula

DnðuvÞ ¼ ðDnuÞv þ nC1ðDn�1uÞðDvÞ þ nC2ðDn�2uÞðD2vÞ þ � � � þ nCrðDn�ruÞðDrvÞ þ � � � þ uDnv

where nCr ¼ ðnrÞ are the binomial coefficients (see Problem 1.95, Chapter 1).

4.89. Prove that
dn

dxn
ðx2 sinxÞ ¼ fx2 � nðn � 1Þg sinðx þ n�=2Þ � 2nx cosðx þ n�=2Þ.

4.90. If f 0ðx0Þ ¼ f 00ðx0Þ ¼ � � � ¼ f ð2nÞðx0Þ ¼ 0 but f ð2nþ1Þðx0Þ 6¼ 0, discuss the behavior of f ðxÞ in the neighborhood
of x ¼ x0. The point x0 in such case is often called a point of inflection. This is a generalization of the
previously discussed case corresponding to n ¼ 1.

4.91. Let f ðxÞ be twice differentiable in ða; bÞ and suppose that f 0ðaÞ ¼ f 0ðbÞ ¼ 0. Prove that there exists at least

one point � in ða; bÞ such that j f 00ð�ÞjA 4

ðb � aÞ2 f f ðbÞ � f ðaÞg. Give a physical interpretation involving

velocity and acceration of a particle.
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90

Integrals

INTRODUCTION OF THE DEFINITE INTEGRAL

The geometric problems that motivated the development of the integral calculus (determination of
lengths, areas, and volumes) arose in the ancient civilizations of Northern Africa. Where solutions were
found, they related to concrete problems such as the measurement of a quantity of grain. Greek
philosophers took a more abstract approach. In fact, Eudoxus (around 400 B.C.) and Archimedes
(250 B.C.) formulated ideas of integration as we know it today.

Integral calculus developed independently, and without an obvious connection to differential
calculus. The calculus became a ‘‘whole’’ in the last part of the seventeenth century when Isaac Barrow,
Isaac Newton, and Gottfried Wilhelm Leibniz (with help from others) discovered that the integral of a
function could be found by asking what was differentiated to obtain that function.

The following introduction of integration is the usual one. It displays the concept geometrically and
then defines the integral in the nineteenth-century language of limits. This form of definition establishes
the basis for a wide variety of applications.

Consider the area of the region bound by y ¼ f ðxÞ, the x-axis, and the joining vertical segments
(ordinates) x ¼ a and x ¼ b. (See Fig. 5-1.)

y

a ξ1 ξ2
ξn _ 1

ξ3 ξnx1 x2 xn _ 2 xn _ 1 b
x

x3

y = f (x)

Fig. 5-1
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Subdivide the interval a@ x@ b into n sub-intervals by means of the points x1; x2; . . . ; xn�1 chosen
arbitrarily. In each of the new intervals ða; x1Þ; ðx1; x2Þ; . . . ; ðxn�1; bÞ choose points �1; �2; . . . ; �n
arbitrarily. Form the sum

f ð�1Þðx1 � aÞ þ f ð�2Þðx2 � x1Þ þ f ð�3Þðx3 � x2Þ þ � � � þ f ð�nÞðb � xn�1Þ ð1Þ
By writing x0 ¼ a, xn ¼ b; and xk � xk�1 ¼ �xk, this can be written

Xn
k¼1

f ð�kÞðxk � xk�1Þ ¼
Xn
k¼1

f ð�kÞ�xk ð2Þ

Geometrically, this sum represents the total area of all rectangles in the above figure.
We now let the number of subdivisions n increase in such a way that each �xk ! 0. If as a result

the sum (1) or (2) approaches a limit which does not depend on the mode of subdivision, we denote this
limit by ðb

a

f ðxÞ dx ¼ lim
n!1

Xn
k¼1

f ð�kÞ�xk ð3Þ

This is called the definite integral of f ðxÞ between a and b. In this symbol f ðxÞ dx is called the integrand,
and ½a; b� is called the range of integration. We call a and b the limits of integration, a being the lower
limit of integration and b the upper limit.

The limit (3) exists whenever f ðxÞ is continuous (or piecewise continuous) in a@ x@ b (see Problem
5.31). When this limit exists we say that f is Riemann integrable or simply integrable in ½a; b�.

The definition of the definite integral as the limit of a sum was established by Cauchy around 1825.
It was named for Riemann because he made extensive use of it in this 1850 exposition of integration.

Geometrically the value of this definite integral represents the area bounded by the curve y ¼ f ðxÞ,
the x-axis and the ordinates at x ¼ a and x ¼ b only if f ðxÞA 0. If f ðxÞ is sometimes positive and
sometimes negative, the definite integral represents the algebraic sum of the areas above and below the x-
axis, treating areas above the x-axis as positive and areas below the x-axis as negative.

MEASURE ZERO

A set of points on the x-axis is said to have measure zero if the sum of the lengths of intervals
enclosing all the points can be made arbitrary small (less than any given positive number �). We can
show (see Problem 5.6) that any countable set of points on the real axis has measure zero. In particular,
the set of rational numbers which is countable (see Problems 1.17 and 1.59, Chapter 1), has measure
zero.

An important theorem in the theory of Riemann integration is the following:

Theorem. If f ðxÞ is bounded in ½a; b�, then a necessary and sufficient condition for the existence ofÐ b
a f ðxÞ dx is that the set of discontinuities of f ðxÞ have measure zero.

PROPERTIES OF DEFINITE INTEGRALS

If f ðxÞ and gðxÞ are integrable in ½a; b� then

1.

ðb
a

f f ðxÞ � gðxÞg dx ¼
ðb
a

f ðxÞ dx �
ðb
a

gðxÞ dx

2.

ðb
a

A f ðxÞ dx ¼ A

ðb
a

f ðxÞ dx where A is any constant
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3.

ðb
a

f ðxÞ dx ¼
ðc
a

f ðxÞ dx þ
ðb
c

f ðxÞ dx provided f ðxÞ is integrable in ½a; c� and ½c; b�.

4.

ðb
a

f ðxÞ dx ¼ �
ða
b

f ðxÞ dx

5.

ða
a

f ðxÞ dx ¼ 0

6. If in a@ x@ b, m@ f ðxÞ@M where m and M are constants, then

mðb � aÞ@
ðb
a

f ðxÞ dx@Mðb � aÞ

7. If in a@ x@ b, f ðxÞ@ gðxÞ then
ðb
a

f ðxÞ dx@
ðb
a

gðxÞ dx

8.

ðb
a

f ðxÞ dx
�����

�����@
ðb
a

j f ðxÞj dx if a < b

MEAN VALUE THEOREMS FOR INTEGRALS

As in differential calculus the mean value theorems listed below are existence theorems. The first
one generalizes the idea of finding an arithmetic mean (i.e., an average value of a given set of values) to a
continuous function over an interval. The second mean value theorem is an extension of the first one
that defines a weighted average of a continuous function.

By analogy, consider determining the arithmetic mean (i.e., average value) of temperatures at noon
for a given week. This question is resolved by recording the 7 temperatures, adding them, and dividing
by 7. To generalize from the notion of arithmetic mean and ask for the average temperature for the
week is much more complicated because the spectrum of temperatures is now continuous. However, it
is reasonable to believe that there exists a time at which the average temperature takes place. The
manner in which the integral can be employed to resolve the question is suggested by the following
example.

Let f be continuous on the closed interval a@ x@ b. Assume the function is represented by the
correspondence y ¼ f ðxÞ, with f ðxÞ > 0. Insert points of equal subdivision, a ¼ x0; x1; . . . ; xn ¼ b.
Then all �xk ¼ xk � xk�1 are equal and each can be designated by �x. Observe that b � a ¼ n�x.
Let �k be the midpoint of the interval �xk and f ð�kÞ the value of f there. Then the average of these
functional values is

f ð�1Þ þ � � � þ f ð�nÞ
n

¼ ½ f ð�1Þ þ � � � þ f ð�nÞ��x

b � a
¼ 1

b � a

Xn
k¼1

f ð�
Þ��


This sum specifies the average value of the n functions at the midpoints of the intervals. However,
we may abstract the last member of the string of equalities (dropping the special conditions) and define

lim
n!1

1

b � a

Xn
k¼1

f ð�
Þ��
 ¼ 1

b � a

ðb
a

f ðxÞ dx

as the average value of f on ½a; b�.
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Of course, the question of for what value x ¼ � the average is attained is not answered; and, in fact,

in general, only existence not the value can be demonstrated. To see that there is a point x ¼ � such that

f ð�Þ represents the average value of f on ½a; b�, recall that a continuous function on a closed interval has

maximum and minimum values, M and m, respectively. Thus (think of the integral as representing the

area under the curve). (See Fig. 5-2.)

mðb � aÞ@
ðb
a

f ðxÞ dx@Mðb � aÞ

or

m@
1

b � a

ðb
a

f ðxÞ dx@M

Since f is a continuous function on a closed interval, there exists a point x ¼ � in ða; bÞ intermediate
to m and M such that

f ð�Þ ¼ 1

b � a

ðb
a

f ðxÞ dx

While this example is not a rigorous proof of the first mean value theorem, it motivates it and
provides an interpretation. (See Chapter 3, Theorem 10.)

1. First mean value theorem. If f ðxÞ is continuous in ½a; b�, there is a point � in ða; bÞ such that

ðb
a

f ðxÞ dx ¼ ðb � aÞ f ð�Þ ð4Þ

2. Generalized first mean value theorem. If f ðxÞ and gðxÞ are continuous in ½a; b�, and gðxÞ does not
change sign in the interval, then there is a point � in ða; bÞ such that

ðb
a

f ðxÞgðxÞ dx ¼ f ð�Þ
ðb
a

gðxÞ dx ð5Þ

This reduces to (4) if gðxÞ ¼ 1.
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CONNECTING INTEGRAL AND DIFFERENTIAL CALCULUS

In the late seventeenth century the key relationship between the derivative and the integral was
established. The connection which is embodied in the fundamental theorem of calculus was responsible
for the creation of a whole new branch of mathematics called analysis.

Definition: Any function F such that F 0ðxÞ ¼ f ðxÞ is called an antiderivative, primitive, or indefinite
integral of f .

The antiderivative of a function is not unique. This is clear from the observation that for any
constant c

ðFðxÞ þ cÞ 0 ¼ F 0ðxÞ ¼ f ðxÞ
The following theorem is an even stronger statement.

Theorem. Any two primitives (i.e., antiderivatives), F and G of f differ at most by a constant, i.e.,
FðxÞ � GðxÞ ¼ C.

(See the problem set for the proof of this theorem.)

EXAMPLE. If F 0ðxÞ ¼ x2, then FðxÞ ¼
ð
x2dx ¼ x3

3
þ c is an indefinite integral (antiderivative or primitive) of x2.

The indefinite integral (which is a function) may be expressed as a definite integral by writingð
f ðxÞ dx ¼

ðx
c

f ðtÞ dt

The functional character is expressed through the upper limit of the definite integral which appears
on the right-hand side of the equation.

This notation also emphasizes that the definite integral of a given function only depends on the limits
of integration, and thus any symbol may be used as the variable of integration. For this reason, that
variable is often called a dummy variable. The indefinite integral notation on the left depends on
continuity of f on a domain that is not described. One can visualize the definite integral on the
right by thinking of the dummy variable t as ranging over a subinterval ½c; x�. (There is nothing unique
about the letter t; any other convenient letter may represent the dummy variable.)

The previous terminology and explanation set the stage for the fundamental theorem. It is stated in
two parts. The first states that the antiderivative of f is a new function, the integrand of which is the
derivative of that function. Part two demonstrates how that primitive function (antiderivative) enables
us to evaluate definite integrals.

THE FUNDAMENTAL THEOREM OF THE CALCULUS

Part 1 Let f be integrable on a closed interval ½a; b�. Let c satisfy the condition a@ c@ b, and
define a new function

FðxÞ ¼
ðx
c

f ðtÞ dt if a@ x@ b

Then the derivative F 0ðxÞ exists at each point x in the open interval ða; bÞ, where f is continuous and
F 0ðxÞ ¼ f ðxÞ. (See Problem 5.10 for proof of this theorem.)

Part 2 As in Part 1, assume that f is integrable on the closed interval ½a; b� and continuous in the
open interval ða; bÞ. Let F be any antiderivative so that F 0ðxÞ ¼ f ðxÞ for each x in ða; bÞ. If a < c < b,
then for any x in ða; bÞ ðx

c

f ðtÞ dt ¼ FðxÞ � FðcÞ

94 INTEGRALS [CHAP. 5



If the open interval on which f is continuous includes a and b, then we may write

ðb
a

f ðxÞ dx ¼ FðbÞ � FðaÞ: (See Problem 5.11)

This is the usual form in which the theorem is used.

EXAMPLE. To evaluate

ð2
1

x2 dx we observe that F 0ðxÞ ¼ x2, FðxÞ ¼ x3

3
þ c and

ð2
1

x2 dx ¼ 23

3 þ c

 �

�
13

3 þ c

 �

¼ 7
3. Since c subtracts out of this evaluation it is convenient to exclude it and simply write

23

3
� 13

3
.

GENERALIZATION OF THE LIMITS OF INTEGRATION

The upper and lower limits of integration may be variables. For example:

ðcos x
sin x

t dt ¼ t2

2

" #cos x

sin x

¼ ðcos2 x � sin2 xÞ=2

In general, if F 0ðxÞ ¼ f ðxÞ then
ðvðxÞ
uðxÞ

f ðtÞ dt ¼ F ½vðxÞ� ¼ F ½uðxÞ�

CHANGE OF VARIABLE OF INTEGRATION

If a determination of
Ð
f ðxÞ dx is not immediately obvious in terms of elementary functions, useful

results may be obtained by changing the variable from x to t according to the transformation x ¼ gðtÞ.
(This change of integrand that follows is suggested by the differential relation dx ¼ g 0ðtÞ dt.) The funda-
mental theorem enabling us to do this is summarized in the statementð

f ðxÞ dx ¼
ð
f fgðtÞgg 0ðtÞ dt ð6Þ

where after obtaining the indefinite integral on the right we replace t by its value in terms of x, i.e.,
t ¼ g�1ðxÞ. This result is analogous to the chain rule for differentiation (see Page 69).

The corresponding theorem for definite integrals is

ðb
a

f ðxÞ dx ¼
ð	

�

f fgðtÞgg 0ðtÞ dt ð7Þ

where gð�Þ ¼ a and gð	Þ ¼ b, i.e., � ¼ g�1ðaÞ, 	 ¼ g�1ðbÞ. This result is certainly valid if f ðxÞ is con-
tinuous in ½a; b� and if gðtÞ is continuous and has a continuous derivative in �@ t@ 	.

INTEGRALS OF ELEMENTARY FUNCTIONS

The following results can be demonstrated by differentiating both sides to produce an identity. In
each case an arbitrary constant c (which has been omitted here) should be added.
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1.

ð
un du ¼ unþ1

n þ 1
n 6¼ �1 18.

ð
coth u du ¼ ln j sinh uj

2.

ð
du

u
¼ ln juj 19.

ð
sech u du ¼ tan�1ðsinh uÞ

3.

ð
sin u du ¼ � cos u 20.

ð
csch u du ¼ � coth�1ðcosh uÞ

4.

ð
cos u du ¼ sin u 21.

ð
sech2 u du ¼ tanh u

5.

ð
tan u du ¼ ln j sec uj 22.

ð
csch2 u du ¼ � coth u

¼ � ln j cos uj

6.

ð
cot u du ¼ ln j sin uj 23.

ð
sech u tanh u du ¼ �sech u

7.

ð
sec u du ¼ ln j sec u þ tan uj 24.

ð
csch u coth u du ¼ �csch u

¼ ln j tanðu=2 þ �=4Þj

8.

ð
csc u du ¼ ln jcsc u � cot uj 25.

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � u2
p ¼ sin�1 u

a
or � cos�1 u

a¼ ln j tan u=2j

9.

ð
sec2 u du ¼ tan u 26.

ð
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p ¼ ln ju þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
j

10.

ð
csc2 u du ¼ � cot u 27.

ð
du

u2 þ a2
¼ 1

a
tan�1 u

a
or � 1

a
cot�1 u

a

11.

ð
sec u tan u du ¼ sec u 28.

ð
du

u2 � a2
¼ 1

2a
ln

u � a

u þ a

����
����

12.

ð
csc u cot u du ¼ �csc u 29.

ð
du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p ¼ 1

a
ln

u

a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p
����

����
13.

ð
au du ¼ au

ln a
a > 0; a 6¼ 1 30.

ð
du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p ¼ 1

a
cos�1 a

u
or

1

a
sec�1 u

a

14.

ð
eu du ¼ eu 31.

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
du ¼ u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p

� a2

2
ln ju þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
j

15.

ð
sinh u du ¼ cosh u 32.

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p
du ¼ u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p
þ a2

2
sin�1 u

a

16.

ð
cosh u du ¼ sinh u 33.

ð
eau sin bu du ¼ eauða sin bu � b cos buÞ

a2 þ b2

17.

ð
tanh u du ¼ ln cosh u 34.

ð
eau cos bu du ¼ eauða cos bu þ b sin buÞ

a2 þ b2
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SPECIAL METHODS OF INTEGRATION

1. Integration by parts.

Let u and v be differentiable functions. According to the product rule for differentials

dðuvÞ ¼ u dv þ v du

Upon taking the antiderivative of both sides of the equation, we obtain

uv ¼
ð
u dv þ

ð
v du

This is the formula for integration by parts when written in the formð
u dv ¼ uv �

ð
v du or

ð
f ðxÞg 0ðxÞ dx ¼ f ðxÞgðxÞ �

ð
f 0ðxÞgðxÞ dx

where u ¼ f ðxÞ and v ¼ gðxÞ. The corresponding result for definite integrals over the interval
½a; b� is certainly valid if f ðxÞ and gðxÞ are continuous and have continuous derivatives in ½a; b�.
See Problems 5.17 to 5.19.

2. Partial fractions. Any rational function
PðxÞ
QðxÞ where PðxÞ and QðxÞ are polynomials, with the

degree of PðxÞ less than that of QðxÞ, can be written as the sum of rational functions having the

form
A

ðax þ bÞr,
Ax þ B

ðax2 þ bx þ cÞr where r ¼ 1; 2; 3; . . . which can always be integrated in terms of

elementary functions.

EXAMPLE 1.
3x � 2

ð4x � 3Þð2x þ 5Þ3 ¼ A

4x � 3
þ B

ð2x þ 5Þ3 þ C

ð2x þ 5Þ2 þ D

2x þ 5

EXAMPLE 2.
5x2 � x þ 2

ðx2 þ 2x þ 4Þ2ðx � 1Þ ¼ Ax þ B

ðx2 þ 2x þ 4Þ2 þ Cx þ D

x2 þ 2x þ 4
þ E

x � 1

The constants, A, B, C, etc., can be found by clearing of fractions and equating coefficients of like powers of x

on both sides of the equation or by using special methods (see Problem 5.20).

3. Rational functions of sin x and cos x can always be integrated in terms of elementary functions by
the substitution tan x=2 ¼ u (see Problem 5.21).

4. Special devices depending on the particular form of the integrand are often employed (see
Problems 5.22 and 5.23).

IMPROPER INTEGRALS

If the range of integration ½a; b� is not finite or if f ðxÞ is not defined or not bounded at one or more
points of ½a; b�, then the integral of f ðxÞ over this range is called an improper integral. By use of
appropriate limiting operations, we may define the integrals in such cases.

EXAMPLE 1.

ð1

0

dx

1 þ x2
¼ lim

M!1

ðM
0

dx

1 þ x2
¼ lim

M!1
tan�1 x

����
M

0

¼ lim
M!1

tan�1 M ¼ �=2

EXAMPLE 2.

ð1
0

dxffiffiffi
x

p ¼ lim
�!0þ

ð1
�

dxffiffiffi
x

p ¼ lim
�!0þ

2
ffiffiffi
x

p ����
1

�

¼ lim
�!0þ

ð2 � 2
ffiffiffi
�

p Þ ¼ 2

EXAMPLE 3.

ð1
0

dx

x
¼ lim

�!0þ

ð1
�

dx

x
¼ lim

�!0þ
lnx

����
1

�

¼ lim
�!0þ

ð� ln �Þ

Since this limit does not exist we say that the integral diverges (i.e., does not converge).
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For further examples, see Problems 5.29 and 5.74 through 5.76. For further discussion of improper

integrals, see Chapter 12.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

Numerical methods for evaluating definite integrals are available in case the integrals cannot be

evaluated exactly. The following special numerical methods are based on subdividing the interval ½a; b�
into n equal parts of length �x ¼ ðb � aÞ=n. For simplicity we denote f ða þ k�xÞ ¼ f ðxkÞ by yk, where

k ¼ 0; 1; 2; . . . ; n. The symbol � means ‘‘approximately equal.’’ In general, the approximation

improves as n increases.

1. Rectangular rule.ðb
a

f ðxÞ dx � �xfy0 þ y1 þ y2 þ � � � þ yn�1g or �xf y1 þ y2 þ y3 þ � � � þ yng ð8Þ

The geometric interpretation is evident from the figure on Page 90. When left endpoint
function values y0; y1; . . . ; yn�1 are used, the rule is called ‘‘the left-hand rule.’’ Similarly, when
right endpoint evaluations are employed, it is called ‘‘the right-hand rule.’’

2. Trapezoidal rule. ðb
a

f ðxÞ dx � �x

2
f y0 þ 2y1 þ 2y2 þ � � � þ 2yn�1 þ yng ð9Þ

This is obtained by taking the mean of the approximations in (8). Geometrically this
replaces the curve y ¼ f ðxÞ by a set of approximating line segments.

3. Simpson’s rule.ðb
a

f ðxÞ dx � �x

3
f y0 þ 4y1 þ 2y2 þ 4y3 þ 2y4 þ 4y5 þ � � � þ 2yn�2 þ 4yn�1 þ yng ð10Þ

The above formula is obtained by approximating the graph of y ¼ gðxÞ by a set of parabolic
arcs of the form y ¼ ax2 þ bx þ c. The correlation of two observations lead to 10. First,ðh

�h

½ax2 þ bx þ c� dx ¼ h

3
½2ah2 þ 6c�

The second observation is related to the fact that the vertical parabolas employed here are
determined by three nonlinear points. In particular, consider ð�h; y0Þ, ð0; y1Þ, ðh; y2Þ then
y0 ¼ að�hÞ2 þ bð�hÞ þ c, y1 ¼ c, y2 ¼ ah2 þ bh þ c. Consequently, y0 þ 4y1 þ y2 ¼ 2ah2 þ 6c.
Thus, this combination of ordinate values (corresponding to equally space domain values) yields
the area bound by the parabola, vertical segments, and the x-axis. Now these ordinates may be
interpreted as those of the function, f , whose integral is to be approximated. Then, as illu-
strated in Fig. 5-3:

Xn
k¼1

h

3
½yk�1 þ 4yk þ ykþ1� ¼ �x

3
½ y0 þ 4y1 þ 2y2 þ 4y3 þ 2y4 þ 4y5 þ � � � þ 2yn�2 þ 4yn�1 þ yn�

The Simpson rule is likely to give a better approximation than the others for smooth curves.

APPLICATIONS

The use of the integral as a limit of a sum enables us to solve many physical or geometrical problems

such as determination of areas, volumes, arc lengths, moments of intertia, centroids, etc.
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ARC LENGTH

As you walk a twisting mountain trail, it is possible to determine the distance covered by using a
pedometer. To create a geometric model of this event, it is necessary to describe the trail and a method
of measuring distance along it. The trail might be referred to as a path, but in more exacting geometric
terminology the word, curve is appropriate. That segment to be measured is an arc of the curve. The
arc is subject to the following restrictions:

1. It does not intersect itself (i.e., it is a simple arc).

2. There is a tangent line at each point.

3. The tangent line varies continuously over the arc.

These conditions are satisfied with a parametric representation x ¼ f ðtÞ; y ¼ gðtÞ; z ¼ hðtÞ; a@ t@ b,
where the functions f , g, and h have continuous derivatives that do not simultaneously vanish at any
point. This arc is in Euclidean three space and will be discussed in Chapter 10. In this introduction to
curves and their arc length, we let z ¼ 0, thereby restricting the discussion to the plane.

A careful examination of your walk would reveal movement on a sequence of straight segments,
each changed in direction from the previous one. This suggests that the length of the arc of a curve is
obtained as the limit of a sequence of lengths of polygonal approximations. (The polygonal approx-
imations are characterized by the number of divisions n ! 1 and no subdivision is bound from zero.
(See Fig. 5-4.)

Geometrically, the measurement of the kth segment of the arc, 0@ t@ s, is accomplished by

employing the Pythagorean theorem, and thus, the measure is defined by
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lim
n!1

Xn
k¼1

fð�xkÞ2 þ ð�ykÞ2g1=2

or equivalently

lim
n!1

Xn
k¼1

1 þ �yk
�xk

� �2
( )1=2

ð�xkÞ

where �xk ¼ xk � xk�1 and �yk ¼ yk � yk�1.
Thus, the length of the arc of a curve in rectangular Cartesian coordinates is

L ¼
ðb
a

f½ f 0ðtÞ2� þ ½g 0ðtÞ�2g1=2 dt ¼
ð

dx

dt

� �2

þ dy

dt

� �2
( )1=2

dt

(This form may be generalized to any number of dimensions.)
Upon changing the variable of integration from t to x we obtain the planar form

L ¼
ðf ðbÞ
f ðaÞ

1 þ dy

dx


 �2( )1=2

(This form is only appropriate in the plane.)
The generic differential formula ds2 ¼ dx2 þ dy2 is useful, in that various representations algebrai-

cally arise from it. For example,

ds

dt

expresses instantaneous speed.

AREA

Area was a motivating concept in introducing the integral. Since many applications of the integral
are geometrically interpretable in the context of area, an extended formula is listed and illustrated below.

Let f and g be continuous functions whose graphs intersect at the graphical points corresponding to
x ¼ a and x ¼ b, a < b. If gðxÞA f ðxÞ on ½a; b�, then the area bounded by f ðxÞ and gðxÞ is

A ¼
ðb
a

fgðxÞ � f ðxÞg dx

If the functions intersect in ða; bÞ, then the integral yields an algebraic sum. For example, if
gðxÞ ¼ sin x and f ðxÞ ¼ 0 then: ð2�

0

sin x dx ¼ cos x

����
2�

0

¼ 0

VOLUMES OF REVOLUTION

Disk Method

Assume that f is continuous on a closed interval a@ x@ b and that f ðxÞA 0. Then the solid
realized through the revolution of a plane region R (bound by f ðxÞ, the x-axis, and x ¼ a and x ¼ b)
about the x-axis has the volume

V ¼ �

ðb
a

½ f ðxÞ�2 dx
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This method of generating a volume is called the disk method because the cross sections of revolution

are circular disks. (See Fig. 5-5(a).)

EXAMPLE. A solid cone is generated by revolving the graph of y ¼ kx, k > 0 and 0@ x@ b, about the x-axis.

Its volume is

V ¼ �

ðb
0

k2x2 dx ¼ �
k3x3

3

����
b

0

¼ �
k3b3

3

Shell Method

Suppose f is a continuous function on ½a; b�, aA 0, satisfying the condition f ðxÞA 0. Let R be a
plane region bound by f ðxÞ, x ¼ a, x ¼ b, and the x-axis. The volume obtained by orbiting R about the
y-axis is

V ¼
ðb
a

2�x f ðxÞ dx

This method of generating a volume is called the shell method because of the cylindrical nature of the
vertical lines of revolution. (See Fig. 5-5(b).)

EXAMPLE. If the region bounded by y ¼ kx, 0@ x@ b and x ¼ b (with the same conditions as in the previous
example) is orbited about the y-axis the volume obtained is

V ¼ 2�

ðb
0

xðkxÞ dx ¼ 2�k
x3

3

����
b

0

¼ 2�k
b3

3

By comparing this example with that in the section on the disk method, it is clear that for the same
plane region the disk method and the shell method produce different solids and hence different volumes.

Moment of Inertia

Moment of inertia is an important physical concept that can be studied through its idealized geo-
metric form. This form is abstracted in the following way from the physical notions of kinetic energy,
K ¼ 1

2mv2, and angular velocity, v ¼ !r. (m represents mass and v signifies linear velocity). Upon
substituting for v

K ¼ 1
2m!2r2 ¼ 1

2 ðmr2Þ!2

When this form is compared to the original representation of kinetic energy, it is reasonable to
identify mr2 as rotational mass. It is this quantity, l ¼ mr2 that we call the moment of inertia.

Then in a purely geometric sense, we denote a plane region R described through continuous func-
tions f and g on ½a; b�, where a > 0 and f ðxÞ and gðxÞ intersect at a and b only. For simplicity, assume
gðxÞA f ðxÞ > 0. Then
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l ¼
ðb
a

x2½gðxÞ � f ðxÞ� dx

By idealizing the plane region, R, as a volume with uniform density one, the expression
½ f ðxÞ � gðxÞ� dx stands in for mass and r2 has the coordinate representation x2. (See Problem 5.25(b)
for more details.)

Solved Problems

DEFINITION OF A DEFINITE INTEGRAL

5.1. If f ðxÞ is continuous in ½a; b� prove that

lim
n!1

b � a

n

Xn
k¼1

f a þ kðb � aÞ
n

� �
¼
ðb
a

f ðxÞ dx

Since f ðxÞ is continuous, the limit exists independent of the mode of subdivision (see Problem 5.31).
Choose the subdivision of ½a; b� into n equal parts of equal length �x ¼ ðb � aÞ=n (see Fig. 5-1, Page 90). Let

�k ¼ a þ kðb � aÞ=n, k ¼ 1; 2; . . . ; n. Then

lim
n!1

Xn
k¼1

f ð�kÞ�xk ¼ lim
n!1

b � a

n

Xn
k¼1

f a þ kðb � aÞ
n

� �
¼
ðb
a

f ðxÞ dx

5.2. Express lim
n!1

1

n

Xn
k¼1

f
k

n

� �
as a definite integral.

Let a ¼ 0, b ¼ 1 in Problem 1. Then

lim
n!1

1

n

Xn
k¼1

f
k

n

� �
¼
ð1
0

f ðxÞ dx

5.3. (a) Express

ð1
0

x2 dx as a limit of a sum, and use the result to evaluate the given definite integral.

(b) Interpret the result geometrically.

(a) If f ðxÞ ¼ x2, then f ðk=nÞ ¼ ðk=nÞ2 ¼ k2=n2. Thus by Problem 5.2,

lim
n!1

1

n

Xn
k¼1

k2

n2
¼
ð1
0

x2 dx

This can be written, using Problem 1.29 of Chapter 1,ð1
0

x2 dx ¼ lim
n!1

1

n

12

n2
þ 22

n2
þ � � � þ n2

n2

 !
¼ lim

n!1
12 þ 22 þ � � � þ n2

n3

¼ lim
n!1

nðn þ 1Þð2n þ 1Þ
6n3

¼ lim
n!1

ð1 þ 1=nÞð2 þ 1=nÞ
6

¼ 1

3

which is the required limit.

Note: By using the fundamental theorem of the calculus, we observe thatÐ 1
0 x2 dx ¼ ðx3=3Þj10 ¼ 13=3 � 03=3 ¼ 1=3.

(b) The area bounded by the curve y ¼ x2, the x-axis and the line x ¼ 1 is equal to 1
3.
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5.4. Evaluate lim
n!1

1

n þ 1
þ 1

n þ 2
þ � � � þ 1

n þ n

� �
.

The required limit can be written

lim
n!1

1

n

1

1 þ 1=n
þ 1

1 þ 2=n
þ � � � þ 1

1 þ n=n

� �
¼ lim

n!1
1

n

Xn
k¼1

1

1 þ k=n

¼
ð1
0

dx

1 þ x
¼ lnð1 þ xÞj10 ¼ ln 2

using Problem 5.2 and the fundamental theorem of the calculus.

5.5. Prove that lim
n!1

1

n
sin

t

n
þ sin

2t

n
þ � � � þ sin

ðn � 1Þt
n

� �
¼ 1 � cos t

t
.

Let a ¼ 0; b ¼ t; f ðxÞ ¼ sin x in Problem 1. Then

lim
n!1

t

n

Xn
k¼1

sin
kt

n
¼
ðt
0

sinx dx ¼ 1 � cos t

and so

lim
n!1

1

n

Xn�1

k¼1

sin
kt

n
¼ 1 � cos t

t

using the fact that lim
n!1

sin t

n
¼ 0.

MEASURE ZERO

5.6. Prove that a countable point set has measure zero.

Let the point set be denoted by x1;x2;x3; x4; . . . and suppose that intervals of lengths less than
�=2; �=4; �=8; �=16; . . . respectively enclose the points, where � is any positive number. Then the sum of
the lengths of the intervals is less than �=2 þ �=4 þ �=8 þ � � � ¼ � (let a ¼ �=2 and r ¼ 1

2 in Problem 2.25(a) of

Chapter 2), showing that the set has measure zero.

PROPERTIES OF DEFINITE INTEGRALS

5.7. Prove that

ðb
a

f ðxÞ dx
�����

�����@
ðb
a

j f ðxÞj dx if a < b.

By absolute value property 2, Page 3,

Xn
k¼1

f ð�kÞ�xk

�����
�����@

Xn
k¼1

j f ð�kÞ�xkj ¼
Xn
k¼1

j f ð�kÞj�xk

Taking the limit as n ! 1 and each �xk ! 0, we have the required result.

5.8. Prove that lim
n!1

ð2�
0

sin nx

x2 þ n2
dx ¼ 0.

ð2�
0

sin nx

x2 þ n2
dx

����
����@

ð2�
0

sin nx

x2 þ n2

����
���� dx@

ð2�
0

dx

n2
¼ 2�

n2

Then lim
n!1

ð2�
0

sin nx

x2 þ n2
dx

����
���� ¼ 0, and so the required result follows.
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MEAN VALUE THEOREMS FOR INTEGRALS

5.9. Given the right triangle pictured in Fig. 5-6: (a) Find the
average value of h. (b) At what point does this average value
occur? (c) Determine the average value of

f ðxÞ ¼ sin�1 x; 0@ x@ 1
2. (Use integration by parts.)

(d) Determine the average value of f ðxÞ ¼ cos2 x; 0@ x@
�

2
.

(a) hðxÞ ¼ H

B
x. According to the mean value theorem for integrals,

the average value of the function h on the interval ½0;B� is

A ¼ 1

B

ðB
0

H

B
xdx ¼ H

2

(b) The point, �, at which the average value of h occurs may be obtained by equating f ð�Þ with that average

value, i.e.,
H

B
� ¼ H

2
. Thus, � ¼ B

2
.

FUNDAMENTAL THEOREM OF THE CALCULUS

5.10. If FðxÞ ¼
ðx
a

f ðtÞ dt where f ðxÞ is continuous in ½a; b�, prove that F 0ðxÞ ¼ f ðxÞ.

Fðx þ hÞ � FðxÞ
h

¼ 1

h

ðxþh

a

f ðtÞ dt �
ðx
a

f ðtÞ dt
� �

¼ 1

h

ðxþh

x

f ðtÞ dt

¼ f ð�Þ � between x and x þ h

by the first mean value theorem for integrals (Page 93).
Then if x is any point interior to ½a; b�,

F 0ðxÞ ¼ lim
h!0

Fðx þ hÞ � FðxÞ
h

¼ lim
h!0

f ð�Þ ¼ f ðxÞ

since f is continuous.
If x ¼ a or x ¼ b, we use right- or left-hand limits, respectively, and the result holds in these cases as

well.

5.11. Prove the fundamental theorem of the calculus, Part 2 (Pages 94 and 95).

By Problem 5.10, if FðxÞ is any function whose derivative is f ðxÞ, we can write

FðxÞ ¼
ðx
a

f ðtÞ dt þ c

where c is any constant (see last line of Problem 22, Chapter 4).

Since FðaÞ ¼ c, it follows that FðbÞ ¼
ðb
a

f ðtÞ dt þ FðaÞ or
ðb
a

f ðtÞ dt ¼ FðbÞ � FðaÞ.

5.12. If f ðxÞ is continuous in ½a; b�, prove that FðxÞ ¼
ðx
a

f ðtÞ dt is continuous in ½a; b�.

If x is any point interior to ½a; b�, then as in Problem 5.10,

lim
h!0

Fðx þ hÞ � FðxÞ ¼ lim
h!0

h f ð�Þ ¼ 0

and FðxÞ is continuous.
If x ¼ a and x ¼ b, we use right- and left-hand limits, respectively, to show that FðxÞ is continuous at

x ¼ a and x ¼ b.
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Another method:

By Problem 5.10 and Problem 4.3, Chapter 4, it follows that F 0ðxÞ exists and so FðxÞ must be con-
tinuous.

CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

5.13. Prove the result (7), Page 95, for changing the variable of integration.

Let FðxÞ ¼
ðx
a

f ðxÞ dx and GðtÞ ¼
ðt

�

f fgðtÞg g 0ðtÞ dt, where x ¼ gðtÞ.
Then dF ¼ f ðxÞ dx, dG ¼ f fgðtÞg g 0ðtÞ dt.
Since dx ¼ g 0ðtÞ dt, it follows that f ðxÞ dx ¼ f fgðtÞg g 0ðtÞ dt so that dFðxÞ ¼ dGðtÞ, from which

FðxÞ ¼ GðtÞ þ c.

Now when x ¼ a, t ¼ � or FðaÞ ¼ Gð�Þ þ c. But FðaÞ ¼ Gð�Þ ¼ 0, so that c ¼ 0. Hence FðxÞ ¼ GðtÞ.
Since x ¼ b when t ¼ 	, we have ðb

a

f ðxÞ dx ¼
ð	

�

f fgðtÞg g 0ðtÞ dt

as required.

5.14. Evaluate:

ðaÞ
ð
ðx þ 2Þ sinðx2 þ 4x � 6Þ dx ðcÞ

ð1
�1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx þ 2Þð3 � xÞp ðeÞ
ð1= ffiffi

2
p

0

x sin�1 x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x4

p dx

ðbÞ
ð
cotðln xÞ

x
dx ðdÞ

ð
2�x tanh 21�x dx ð f Þ

ð
x dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ x þ 1
p

(a) Method 1: Let x2 þ 4x � 6 ¼ u. Then ð2x þ 4Þ dx ¼ du, ðx þ 2Þ dx ¼ 1
2 du and the integral becomes

1

2

ð
sin u du ¼ � 1

2
cos u þ c ¼ � 1

2
cosðx2 þ 4x � 6Þ þ c

Method 2:ð
ðx þ 2Þ sinðx2 þ 4x � 6Þ dx ¼ 1

2

ð
sinðx2 þ 4x � 6Þdðx2 þ 4x � 6Þ ¼ � 1

2
cosðx2 þ 4x � 6Þ þ c

(b) Let ln x ¼ u. Then ðdxÞ=x ¼ du and the integral becomesð
cot u du ¼ ln j sin uj þ c ¼ ln j sinðlnxÞj þ c

ðcÞ Method 1:

ð
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx þ 2Þð3 � xÞp ¼

ð
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 þ x � x2
p ¼

ð
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 � ðx2 � xÞ
p ¼

ð
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25=4 � ðx � 1
2Þ2

q
Letting x � 1

2 ¼ u, this becomesð
duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25=4 � u2
p ¼ sin�1 u

5=2
þ c ¼ sin�1 2x � 1

5

� �
þ c

Then ð1
�1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx þ 2Þð3 � xÞp ¼ sin�1 2x � 1

5

� �����
1

�1

¼ sin�1 1

5

� �
� sin�1 � 3

5

� �

¼ sin�1 :2 þ sin�1 :6
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Method 2: Let x � 1
2 ¼ u as in Method 1. Now when x ¼ �1, u ¼ � 3

2; and when x ¼ 1, u ¼ 1
2. Thus

by Formula 25, Page 96.

ð1
�1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx þ 2Þð3 � xÞp ¼
ð1
�1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25=4 � ðx � 1

2Þ2
q ¼

ð1=2
�3=2

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25=4 � u2

p ¼ sin�1 u

5=2

����
1=2

�3=2

¼ sin1 :2 þ sin�1 :6

(d) Let 21�x ¼ u. Then �21�xðln 2Þdx ¼ du and 2�xdx ¼ � du

2 ln 2
, so that the integral becomes

� 1

2 ln 2

ð
tanh u du ¼ � 1

2 ln 2
ln cosh 21�x þ c

(e) Let sin�1 x2 ¼ u. Then du ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ðx2Þ2

q 2x dx ¼ 2x dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x4

p and the integral becomes

1

2

ð
u du ¼ 1

4
u2 þ c ¼ 1

4
ðsin�1 x2Þ2 þ c

Thus

ð1= ffiffi
2

p

0

x sin�1 x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x4

p dx ¼ 1

4
ðsin�1 x2Þ2

����
1=
ffiffi
2

p

0

¼ 1

4
sin�1 1

2

� �2

¼ �2

144
:

ð f Þ
ð

x dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x þ 1

p ¼ 1

2

ð
2x þ 1 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x þ 1

p dx ¼ 1

2

ð
2x þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x þ 1

p dx � 1

2

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x þ 1

p
¼ 1

2

ð
ðx2 þ x þ 1Þ�1=2dðx2 þ x þ 1Þ � 1

2

ð
dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx þ 1
2Þ2 þ 3

4

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x þ 1

p
� 1

2 ln jx þ 1
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx þ 1

2Þ2 þ 3
4

q
j þ c

5.15. Show that

ð2
1

dx

ðx2 � 2x þ 4Þ3=2 ¼ 1

6
.

Write the integral as

ð2
1

dx

½ðx � 1Þ2 þ 3�3=2. Let x � 1 ¼ ffiffiffi
3

p
tan u, dx ¼ ffiffiffi

3
p

sec2 u du. When x ¼ 1,

u ¼ tan�1 0 ¼ 0; when x ¼ 2, u ¼ tan�1 1=
ffiffiffi
3

p ¼ �=6. Then the integral becomes

ð�=6

0

ffiffiffi
3

p
sec2 u du

½3 þ 3 tan2 u�3=2 ¼
ð�=6

0

ffiffiffi
3

p
sec2 u du

½3 sec2 u�3=2 ¼ 1

3

ð�=6

0

cos u du ¼ 1

3
sin u

����
�=6

0

¼ 1

6

5.16. Determine

ðe2
e

dx

xðln xÞ3.

Let lnx ¼ y, ðdxÞ=x ¼ dy. When x ¼ e, y ¼ 1; when x ¼ e2, y ¼ 2. Then the integral becomes

ð2
1

dy

y3
¼ y�2

�2

����
2

1

¼ 3

8

5.17. Find

ð
xn ln x dx if (a) n 6¼ �1, (b) n ¼ �1.
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(a) Use integration by parts, letting u ¼ lnx, dv ¼ xn dx, so that du ¼ ðdxÞ=x, v ¼ xnþ1=ðn þ 1Þ. Thenð
xn lnx dx ¼

ð
u dv ¼ uv �

ð
v du ¼ xnþ1

n þ 1
ln x �

ð
xnþ1

n þ 1
� dx
x

¼ xnþ1

n þ 1
lnx � xnþ1

ðn þ 1Þ2 þ c

ðbÞ
ð
x�1 lnx dx ¼

ð
ln x dðlnxÞ ¼ 1

2
ðlnxÞ2 þ c:

5.18. Find

ð
3
ffiffiffiffiffiffiffiffi
2xþ1

p
dx.

Let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x þ 1

p ¼ y, 2x þ 1 ¼ y2. Then dx ¼ y dy and the integral becomes

ð
3y � y dy.

Integrate by parts, letting u ¼ y, dv ¼ 3y dy; then du ¼ dy, v ¼ 3y=ðln 3Þ, and we haveð
3y � y dy ¼

ð
u dv ¼ uv�

ð
v du ¼ y � 3y

ln 3
�
ð
3y

ln 3
dy ¼ y � 3y

ln 3
� 3y

ðln 3Þ2 þ c

5.19. Find

ð1
0

x lnðx þ 3Þ dx.

Let u ¼ lnðx þ 3Þ, dv ¼ x dx. Then du ¼ dx

x þ 3
, v ¼ x2

2
. Hence on integrating by parts,

ð
x lnðx þ 3Þ dx ¼ x2

2
lnðx þ 3Þ � 1

2

ð
x2 dx

x þ 3
¼ x2

2
lnðx þ 3Þ � 1

2

ð
x � 3 þ 9

x þ 3

� �
dx

¼ x2

2
lnðx þ 3Þ � 1

2

x2

2
� 3x þ 9 lnðx þ 3Þ

( )
þ c

ð1
0

x lnðx þ 3Þ dx ¼ 5

4
� 4 ln 4 þ 9

2
ln 3Then

5.20. Determine

ð
6 � x

ðx � 3Þð2x þ 5Þ dx.

Use the method of partial fractions. Let
6 � x

ðx � 3Þð2x þ 5Þ ¼ A

x � 3
þ B

2x þ 5
.

Method 1: To determine the constants A and B, multiply both sides by ðx � 3Þð2x þ 5Þ to obtain

6 � x ¼ Að2x þ 5Þ þ Bðx � 3Þ or 6 � x ¼ 5A � 3B þ ð2A þ BÞx ð1Þ
Since this is an identity, 5A � 3B ¼ 6, 2A þ B ¼ �1 and A ¼ 3=11, B ¼ �17=11. Thenð

6 � x

ðx � 3Þð2x þ 5Þ dx ¼
ð
3=11

x � 3
dx þ

ð�17=11

2x þ 5
dx ¼ 3

11
ln jx � 3j � 17

22
ln j2x þ 5j þ c

Method 2: Substitute suitable values for x in the identity (1). For example, letting x ¼ 3 and x ¼ �5=2 in
(1), we find at once A ¼ 3=11, B ¼ �17=11.

5.21. Evaluate

ð
dx

5 þ 3 cos x
by using the substitution tan x=2 ¼ u.

From Fig. 5-7 we see that

sinx=2 ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u2

p ; cos x=2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u2

p
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Then cosx ¼ cos2 x=2 � sin2 x=2 ¼ 1 � u2

1 þ u2
:

Also du ¼ 1

2
sec2 x=2 dx or dx ¼ 2 cos2 x=2 du ¼ 2 du

1 þ u2
:

Thus the integral becomes

ð
du

u2 þ 4
¼ 1

2
tan�1 u=2 þ c ¼ 1

2
tan�1 1

2
tanx=2

� �
þ c:

5.22. Evaluate

ð�

0

x sin x

1 þ cos2 x
dx.

Let x ¼ � � y. Then

I ¼
ð�

0

x sin x

1 þ cos2 x
dx ¼

ð�

0

ð� � yÞ sin y
1 þ cos2 y

dy ¼ �

ð�

0

sin y

1 þ cos2 y
dy �

ð�

0

y sin y

1 þ cos2 y
dy

¼ ��

ð�

0

dðcos yÞ
1 þ cos2 y

� I ¼ �� tan�1ðcos yÞj�0 � I ¼ �2=2 � I

i.e.; I ¼ �2=2 � I or I ¼ �2=4:

5.23. Prove that

ð�=2

0

ffiffiffiffiffiffiffiffiffiffi
sin x

p
ffiffiffiffiffiffiffiffiffiffi
sin x

p þ ffiffiffiffiffiffiffiffiffiffiffi
cos x

p dx ¼ �

4
.

Letting x ¼ �=2 � y, we have

I ¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi
sin x

p
ffiffiffiffiffiffiffiffiffiffi
sinx

p þ ffiffiffiffiffiffiffiffiffiffiffi
cos x

p dx ¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi
cos y

p
ffiffiffiffiffiffiffiffiffiffi
cos y

p þ ffiffiffiffiffiffiffiffiffi
sin y

p dy ¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffiffi
cos x

p
ffiffiffiffiffiffiffiffiffiffiffi
cos x

p þ ffiffiffiffiffiffiffiffiffiffi
sinx

p dx

Then

I þ I ¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi
sinx

p
ffiffiffiffiffiffiffiffiffiffi
sinx

p þ ffiffiffiffiffiffiffiffiffiffiffi
cos x

p dx þ
ð�=2

0

ffiffiffiffiffiffiffiffiffiffiffi
cos x

p
ffiffiffiffiffiffiffiffiffiffiffi
cosx

p þ ffiffiffiffiffiffiffiffiffiffi
sin x

p dx

¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi
sinx

p þ ffiffiffiffiffiffiffiffiffiffiffi
cos x

pffiffiffiffiffiffiffiffiffiffi
sinx

p þ ffiffiffiffiffiffiffiffiffiffiffi
cos x

p dx ¼
ð�=2

0

dx ¼ �

2

from which 2I ¼ �=2 and I ¼ �=4.
The same method can be used to prove that for all real values of m,ð�=2

0

sinm x

sinm x þ cosm x
dx ¼ �

4

(see Problem 5.89).

Note: This problem and Problem 5.22 show that some definite integrals can be evaluated without first
finding the corresponding indefinite integrals.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

5.24. Evaluate

ð1
0

dx

1 þ x2
approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, where the

interval ½0; 1� is divided into n ¼ 4 equal parts.

Let f ðxÞ ¼ 1=ð1 þ x2Þ. Using the notation on Page 98, we find �x ¼ ðb � aÞ=n ¼ ð1 � 0Þ=4 ¼ 0:25.
Then keeping 4 decimal places, we have: y0 ¼ f ð0Þ ¼ 1:0000, y1 ¼ f ð0:25Þ ¼ 0:9412, y2 ¼ f ð0:50Þ ¼ 0:8000,
y3 ¼ f ð0:75Þ ¼ 0:6400, y4 ¼ f ð1Þ ¼ 0:50000.

(a) The trapezoidal rule gives
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�x

2
fy0 þ 2y1 þ 2y2 þ 2y3 þ y4g ¼ 0:25

2
f1:0000 þ 2ð0:9412Þ þ 2ð0:8000Þ þ 2ð0:6400Þ þ 0:500g

¼ 0:7828:

(b) Simpson’s rule gives

�x

3
fy0 þ 4y1 þ 2y2 þ 4y3 þ y4g ¼ 0:25

3
f1:0000 þ 4ð0:9412Þ þ 2ð0:8000Þ þ 4ð0:6400Þ þ 0:5000g

¼ 0:7854:

The true value is �=4 � 0:7854:

APPLICATIONS (AREA, ARC LENGTH, VOLUME, MOMENT OF INTERTIA)

5.25. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane
bounded by y ¼ 4 � x2 and the x-axis.

(a) Subdivide the region into rectangles as in the figure on
Page 90. A typical rectangle is shown in the adjoining
Fig. 5-8. Then

Required area ¼ lim
n!1

Xn
k¼1

f ð�kÞ �xk

¼ lim
n!1

Xn
k¼1

ð4 � �2kÞ �xk

¼
ð2
�2

ð4 � x2Þ dx ¼ 32

3

(b) Assuming unit density, the moment of inertia about the y-
axis of the typical rectangle shown above is �2k f ð�kÞ �xk.

Then

Required moment of inertia ¼ lim
n!1

Xn
k¼1

�2k f ð�kÞ �xk ¼ lim
n!1

Xn
k¼1

�2kð4 � �2kÞ �xk

¼
ð2
�2

x2ð4 � x2Þ dx ¼ 128

15

5.26. Find the length of arc of the parabola y ¼ x2 from x ¼ 0 to x ¼ 1.

Required arc length ¼
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ðdy=dxÞ2

q
dx ¼

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð2xÞ2

q
dx

¼
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4x2

p
dx ¼ 1

2

ð2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u2

p
du

¼ 1
2 f12 u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u2

p
þ 1

2 lnðu þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ u2Þ

p
gj20 ¼ 1

2

ffiffiffi
5

p þ 1
4 lnð2 þ ffiffiffi

5
p Þ

5.27. (a) (Disk Method) Find the volume generated by revolving the region of Problem 5.25 about the
x-axis.

Required volume ¼ lim
n!1

Xn
k¼1

�y2k�xk ¼ �

ð2
�2

ð4 � x2Þ2 dx ¼ 512�=15:

(b) (Disk Method) Find the volume of the frustrum of a paraboloid obtained by revolving f ðxÞ ¼ ffiffiffiffiffiffi
kx

p
,

0 < a@ x@ b about the x-axis.
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V ¼ �

ðb
a

kx dx ¼ �k

2
ðb2 � a2Þ:

(c) (Shell Method) Find the volume obtained by orbiting the region of part (b) about the y-axis.
Compare this volume with that obtained in part (b).

V ¼ 2�

ðb
0

xðkxÞ dx ¼ 2�kb3=3

The solids generated by the two regions are different, as are the volumes.

MISCELLANEOUS PROBLEMS

5.28 If f ðxÞ and gðxÞ are continuous in ½a; b�, prove Schwarz’s inequality for integrals:ðb
a

f ðxÞ gðxÞ dx
� �2

@
ðb
a

f f ðxÞg2 dx
ðb
a

fgðxÞg2 dx

We have ðb
a

f f ðxÞ þ �gðxÞg2 dx ¼
ðb
a

f f ðxÞg2 dx þ 2�

ðb
a

f ðxÞ gðxÞ dx þ �2

ðb
a

fgðxÞg2 dxA 0

for all real values of �. Hence by Problem 1.13 of Chapter 1, using (1) with

A2 ¼
ðb
a

gðxÞg2 dx; B2 ¼
ðb
a

f f ðxÞg2 dx; C ¼
ðb
a

f ðxÞ gðxÞ dx

we find C2 @ A2B2, which gives the required result.

5.29. Prove that lim
M!1

ðM
0

dx

x4 þ 4
¼ �

8
.

We have x4 þ 4 ¼ x4 þ 4x2 þ 4 � 4x2 ¼ ðx2 þ 2Þ2 � ð2xÞ2 ¼ ðx2 þ 2 þ 2xÞðx2 þ 2 � 2xÞ:
According to the method of partial fractions, assume

1

x4 þ 4
¼ Ax þ B

x2 þ 2x þ 2
þ Cx þ D

x2 � 2x þ 2

Then 1 ¼ ðA þ CÞx3 þ ðB � 2A þ 2C þ DÞx2 þ ð2A � 2B þ 2C þ 2DÞx þ 2B þ 2D

so that A þ C ¼ 0, B � 2A þ 2C þ D ¼ 0, 2A � 2B þ 2C þ 2D ¼ 0, 2B þ 2D ¼ 1

Solving simultaneously, A ¼ 1
8, B ¼ 1

4, C ¼ � 1
8, D ¼ 1

4. Thusð
dx

x4 þ 4
¼ 1

8

ð
x þ 2

x2 þ 2x þ 2
dx � 1

8

ð
x � 2

x2 � 2x þ 2
dx

¼ 1

8

ð
x þ 1

ðx þ 1Þ2 þ 1
dx þ 1

8

ð
dx

ðx þ 1Þ2 þ 1
� 1

8

ð
x � 1

ðx � 1Þ2 þ 1
dx þ 1

8

ð
dx

ðx � 1Þ2 þ 1

¼ 1

16
lnðx2 þ 2x þ 2Þ þ 1

8
tan�1ðx þ 1Þ � 1

16
lnðx2 � 2x þ 2Þ þ 1

8
tan�1ðx � 1Þ þ C

Then

lim
M!1

ðM
0

dx

x4 þ 4
¼ lim

M!1
1

16
ln

M2 þ 2M þ 2

M2 � 2M þ 2

 !
þ 1

8
tan�1ðM þ 1Þ þ 1

8
tan�1ðM � 1Þ

( )
¼ �

8

We denote this limit by

ð1

0

dx

x4 þ 4
, called an improper integral of the first kind. Such integrals are considered

further in Chapter 12. See also Problem 5.74.
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5.30. Evaluate lim
x!0

Ð x
0 sin t3 dt

x4
.

The conditions of L’Hospital’s rule are satisfied, so that the required limit is

lim
x!0

d

dx

ðx
0

sin t3 dt

d

dx
ðx4Þ

¼ lim
x!0

sin x3

4x3
¼ lim

x!0

d

dx
ðsinx3Þ

d

dx
ð4x3Þ

¼ lim
x!0

3x2 cos x3

12x2
¼ 1

4

5.31. Prove that if f ðxÞ is continuous in ½a; b� then
ðb
a

f ðxÞ dx exists.

Let � ¼
Xn
k¼1

f ð�kÞ �xk, using the notation of Page 91. Since f ðxÞ is continuous we can find numbers Mk

and mk representing the l.u.b. and g.l.b. of f ðxÞ in the interval ½xk�1;xk�, i.e., such that mk @ f ðxÞ@Mk.
We then have

mðb � aÞ@ s ¼
Xn
k¼1

mk�xk @ � @
Xn
k¼1

Mk�xk ¼ S @Mðb � aÞ ð1Þ

where m andM are the g.l.b. and l.u.b. of f ðxÞ in ½a; b�. The sums s and S are sometimes called the lower and
upper sums, respectively.

Now choose a second mode of subdivision of ½a; b� and consider the corresponding lower and upper
sums denoted by s 0 and S 0 respectively. We have must

s 0 @ S and S 0 A s ð2Þ
To prove this we choose a third mode of subdivision obtained by using the division points of both the first
and second modes of subdivision and consider the corresponding lower and upper sums, denoted by t and T ,

respectively. By Problem 5.84, we have

s@ t@ T @ S 0 and s 0 @ t@ T @ S ð3Þ
which proves (2).

From (2) it is also clear that as the number of subdivisions is increased, the upper sums are monotonic

decreasing and the lower sums are monotonic increasing. Since according to (1) these sums are also
bounded, it follows that they have limiting values which we shall call �ss and S respectively. By Problem
5.85, �ss@ S. In order to prove that the integral exists, we must show that �ss ¼ S.

Since f ðxÞ is continuous in the closed interval ½a; b�, it is uniformly continuous. Then given any � > 0,

we can take each �xk so small that Mk � mk < �=ðb � aÞ. It follows that

S � s ¼
Xn
k¼1

ðMk � mkÞ�xk <
�

b � a

Xn
k¼1

�xk ¼ � ð4Þ

Now S � s ¼ ðS � SÞ þ ðS � �ssÞ þ ð�ss � sÞ and it follows that each term in parentheses is positive and so is less
than � by (4). In particular, since S � �ss is a definite number it must be zero, i.e., S ¼ �ss. Thus, the limits of

the upper and lower sums are equal and the proof is complete.

Supplementary Problems

DEFINITION OF A DEFINITE INTEGRAL

5.32. (a) Express

ð1
0

x3 dx as a limit of a sum. (b) Use the result of (a) to evaluate the given definite integral.

(c) Interpret the result geometrically.
Ans. (b) 1

4

5.33. Using the definition, evaluate (a)

ð2
0

ð3x þ 1Þ dx; ðbÞ
ð6
3

ðx2 � 4xÞ dx.
Ans. (a) 8, (b) 9
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5.34. Prove that lim
n!1

n

n2 þ 12
þ n

n2 þ 22
þ � � � þ n

n2 þ n2

� �
¼ �

4
.

5.35. Prove that lim
n!1

1 p þ 2 p þ 3 p þ � � � þ np

npþ1
¼ 1

p þ 1

� �
if p > �1.

5.36. Using the definition, prove that

ðb
a

ex dx ¼ eb � ea.

5.37. Work Problem 5.5 directly, using Problem 1.94 of Chapter 1.

5.38. Prove that lim
n!1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 12

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 22

p þ � � � þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ n2

p
( )

¼ lnð1 þ
ffiffiffi
2

p
Þ.

5.39. Prove that lim
n!1

Xn
k¼1

n

n2 þ k2x2
¼ tan�1 x

x
if x 6¼ 0.

PROPERTIES OF DEFINITE INTEGRALS

5.40. Prove (a) Property 2, (b) Property 3 on Pages 91 and 92.

5.41. If f ðxÞ is integrable in ða; cÞ and ðc; bÞ, prove that

ðb
a

f ðxÞ dx ¼
ðc
a

f ðxÞ dx þ
ðb
c

f ðxÞ dx.

5.42. If f ðxÞ and gðxÞ are integrable in ½a; b� and f ðxÞ@ gðxÞ, prove that

ðb
a

f ðxÞ dx@
ðb
a

gðxÞ dx.

5.43. Prove that 1 � cos xA x2=� for 0@ x@ �=2.

5.44. Prove that

ð1
0

cos nx

x þ 1
dx

����
����@ ln 2 for all n.

5.45. Prove that

ð ffiffi
3

p

1

e�x sinx

x2 þ 1
dx

�����
�����@ �

12e
.

MEAN VALUE THEOREMS FOR INTEGRALS

5.46. Prove the result (5), Page 92. [Hint: If m@ f ðxÞ@M, then mgðxÞ@ f ðxÞgðxÞ@MgðxÞ. Now integrate

and divide by

ðb
a

gðxÞ dx. Then apply Theorem 9 in Chapter 3.

5.47. Prove that there exist values �1 and �2 in 0@ x@ 1 such thatð1
0

sin�x

x2 þ 1
dx ¼ 2

�ð�21 þ 1Þ ¼ �

4
sin��2

Hint: Apply the first mean value theorem.

5.48. (a) Prove that there is a value � in 0@ x@ � such that

ð�

0

e�x cos x dx ¼ sin �. (b) Suppose a wedge in the

shape of a right triangle is idealized by the region bound by the x-axis, f ðxÞ ¼ x, and x ¼ L. Let the weight
distribution for the wedge be defined by WðxÞ ¼ x2 þ 1. Use the generalized mean value theorem to show

that the point at which the weighted value occurs is
3L

4

L2 þ 2

L2 þ 3
.
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CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

5.49. Evaluate: (a)

ð
x2esin x

3

cos x3 dx; ðbÞ
ð1
0

tan�1 t

1 þ t2
dt; ðcÞ

ð3
1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � x2

p ; ðdÞ
ð
csch2

ffiffiffi
u

pffiffiffi
u

p du,

(e)

ð2
�2

dx

16 � x2
.

Ans. (a) 1
3 e

sin x3 þ c; ðbÞ �2=32; ðcÞ �=3; ðdÞ � 2 coth
ffiffiffi
u

p þ c; ðeÞ 1
4 ln 3.

5.50. Show that (a)

ð1
0

dx

ð3 þ 2x � x2Þ3=2 ¼
ffiffiffi
3

p

12
; ðbÞ

ð
dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p

x
þ c.

5.51. Prove that (a)

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
du ¼ 1

2 u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
� 1

2 a
2 ln ju þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � a2

p
j

(b)

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p
du ¼ 1

2 u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p
þ 1

2 a
2 sin�1 u=a þ c; a > 0.

5.52. Find

ð
x dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 2x þ 5
p : Ans.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2x þ 5

p
� ln jx þ 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2x þ 5

p
j þ c.

5.53. Establish the validity of the method of integration by parts.

5.54. Evaluate (a)

ð�

0

x cos 3x dx; ðbÞ
ð
x3e�2x dx: Ans. (a) �2=9; ðbÞ � 1

3 e
�2xð4x3 þ 6x2 þ 6x þ 3Þ þ c

5.55. Show that (a)

ð1
0

x2 tan�1 x dx ¼ 1

12
� � 1

6
þ 1

6
ln 2

ðbÞ
ð2
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x þ 1

p
dx ¼ 5

ffiffiffi
7

p

4
þ 3

ffiffiffi
3

p

4
þ 3

8
ln

5 þ 2
ffiffiffi
7

p

2
ffiffiffi
3

p � 3

� �
.

5.56. (a) If u ¼ f ðxÞ and v ¼ gðxÞ have continuous nth derivatives, prove thatð
uvðnÞ dx ¼ uvðn�1Þ � u 0vðn�2Þ þ u 00vðn�3Þ � � � � � ð�1Þn

ð
uðnÞv dx

called generalized integration by parts. (b) What simplifications occur if uðnÞ ¼ 0? Discuss. (c) Use (a) to

evaluate

ð�

0

x4 sin x dx. Ans. (c) �4 � 12�2 þ 48

5.57. Show that

ð1
0

x dx

ðx þ 1Þ2ðx2 þ 1Þ ¼ � � 2

8
.

[Hint: Use partial fractions, i.e., assume
x

ðx þ 1Þ2ðx2 þ 1Þ ¼ A

ðx þ 1Þ2 þ B

x þ 1
þ Cx þ D

x2 þ 1
and find A;B;C;D.]

5.58. Prove that

ð�

0

dx

� � cosx
¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � 1
p ; � > 1.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

5.59. Evaluate

ð1
0

dx

1 þ x
approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, taking n ¼ 4.

Compare with the exact value, ln 2 ¼ 0:6931.

5.60. Using (a) the trapezoidal rule, (b) Simpson’s rule evaluate

ð�=2

0

sin2 x dx by obtaining the values of sin2 x

at x ¼ 08; 108; . . . ; 908 and compare with the exact value �=4.

5.61. Prove the (a) rectangular rule, (b) trapezoidal rule, i.e., (16) and (17) of Page 98.

5.62. Prove Simpson’s rule.
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5.63. Evaluate to 3 decimal places using numerical integration: (a)

ð2
1

dx

1 þ x2
; ðbÞ

ð1
0

cosh x2 dx.

Ans. (a) 0.322, (b) 1.105.

APPLICATIONS

5.64. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane bounded by

y ¼ sin x, 0@ x@ � and the x-axis, assuming unit density.
Ans. (a) 2, (b) �2 � 4

5.65. Find the moment of inertia about the x-axis of the region bounded by y ¼ x2 and y ¼ x, if the density is
proportional to the distance from the x-axis.

Ans. 1
8M, where M ¼ mass of the region.

5.66. (a) Show that the arc length of the catenary y ¼ cosh x from x ¼ 0 to x ¼ ln 2 is 3
4. (b) Show that the length

of arc of y ¼ x3=2, 2@ x@ 5 is 343
27 � 2

ffiffiffi
2

p
113=2.

5.67. Show that the length of one arc of the cycloid x ¼ að� � sin �Þ, y ¼ að1 � cos �Þ, ð0@ � @ 2�Þ is 8a.

5.68. Prove that the area bounded by the ellipse x2=a2 þ y2=b2 ¼ 1 is �ab.

5.69. (a) (Disk Method) Find the volume of the region obtained by revolving the curve y ¼ sinx, 0@ x@ �,
about the x-axis. Ans: ðaÞ �2=2
(b) (Disk Method) Show that the volume of the frustrum of a paraboloid obtained by revolving

f ðxÞ ¼ ffiffiffiffiffiffi
kx

p
, 0 < a@ x@ b, about the x-axis is �

ðb
a

kx dx ¼ �k

2
ðb2 � a2Þ. (c) Determine the volume

obtained by rotating the region bound by f ðxÞ ¼ 3, gðxÞ ¼ 5 � x2 on � ffiffiffi
2

p
@ x@

ffiffiffi
2

p
. (d) (Shell Method)

A spherical bead of radius a has a circular cylindrical hole of radius b, b < a, through the center. Find the
volume of the remaining solid by the shell method. (e) (Shell Method) Find the volume of a solid whose

outer boundary is a torus (i.e., the solid is generated by orbiting a circle ðx � aÞ2 þ y2 ¼ b2 about the y-axis
(a > b).

5.70. Prove that the centroid of the region bounded by y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
, �a@ x@ a and the x-axis is located at

ð0; 4a=3�Þ.

5.71. (a) If 
 ¼ f ð�Þ is the equation of a curve in polar coordinates, show that the area bounded by this curve and

the lines � ¼ �1 and � ¼ �2 is
1

2

ð�2

�1


2d�. (b) Find the area bounded by one loop of the lemniscate

2 ¼ a2 cos 2�.
Ans. (b) a2

5.72. (a) Prove that the arc length of the curve in Problem 5.71(a) is

ð�2

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 þ ðd
=d�Þ2

q
d�. (b) Find the length

of arc of the cardioid 
 ¼ að1 � cos�Þ.
Ans. (b) 8a

MISCELLANEOUS PROBLEMS

5.73. Establish the mean value theorem for derivatives from the first mean value theorem for integrals. [Hint: Let
f ðxÞ ¼ F 0ðxÞ in (4), Page 93.]

5.74. Prove that (a) lim
�!0þ

ð4��

0

dxffiffiffiffiffiffiffiffiffiffiffi
4 � x

p ¼ 4; ðbÞ lim
�!0þ

ð3
�

dxffiffiffi
x3

p ¼ 6; ðcÞ lim
�!0þ

ð1��

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p ¼ �

2
and give a geo-

metric interpretation of the results.

[These limits, denoted usually by

ð4
0

dxffiffiffiffiffiffiffiffiffiffiffi
4 � x

p ;

ð3
0

dxffiffiffi
x3

p and

ð1
0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p respectively, are called impro-

per integrals of the second kind (see Problem 5.29) since the integrands are not bounded in the range of
integration. For further discussion of improper integrals, see Chapter 12.]

5.75. Prove that (a) lim
M!1

ðM
0

x5e�x dx ¼ 4! ¼ 24; ðbÞ lim
�!0þ

ð2��

1

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2 � xÞp ¼ �

2
.
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5.76. Evaluate (a)

ð1

0

dx

1 þ x3
; ðbÞ

ð�=2

0

sin 2x

ðsinxÞ4=3 dx; ðcÞ
ð1

0

dx

x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p .

Ans. (a)
2�

3
ffiffiffi
3

p ðbÞ 3 ðcÞ does not exist

5.77. Evaluate lim
x!�=2

ex2=� � e�=4 þ Ð �=2
x esin t dt

1 þ cos 2x
. Ans. e=2�

5.78. Prove: (a)
d

dx

ðx3
x2

ðt2 þ t þ 1Þ dt ¼ 3x3 þ x5 � 2x3 þ 3x2 � 2x; ðb d

dx

ðx2
x

cos t2 dt ¼ 2x cosx4 � cos x2.

5.79. Prove that (a)

ð�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ sinx

p
dx ¼ 4; ðbÞ

ð�=2

0

dx

sinx þ cos x
¼

ffiffiffi
2

p
lnð

ffiffiffi
2

p
þ 1Þ.

5.80. Explain the fallacy: I ¼
ð1
�1

dx

1 þ x2
¼ �

ð1
�1

dy

1 þ y2
¼ �I , using the transformation x ¼ 1=y. Hence I ¼ 0.

But I ¼ tan�1ð1Þ � tan�1ð�1Þ ¼ �=4 � ð��=4Þ ¼ �=2. Thus �=2 ¼ 0.

5.81. Prove that

ð1=2
0

cos�xffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ x2

p dx@
1

4
tan�1 1

2
.

5.82. Evaluate lim
n!1

ffiffiffiffiffiffiffiffiffiffiffi
n þ 1

p þ ffiffiffiffiffiffiffiffiffiffiffi
n þ 2

p þ � � � þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n � 1

p

n3=2

( )
. Ans. 2

3 ð2
ffiffiffi
2

p � 1Þ

5.83. Prove that f ðxÞ ¼ 1 if x is irrational
0 if x is rational

�
is not Riemann integrable in ½0; 1�.

[Hint: In (2), Page 91, let �k, k ¼ 1; 2; 3; . . . ; n be first rational and then irrational points of subdivision and
examine the lower and upper sums of Problem 5.31.]

5.84. Prove the result (3) of Problem 5.31. [Hint: First consider the effect of only one additional point of

subdivision.]

5.85. In Problem 5.31, prove that �ss@ S. [Hint: Assume the contrary and obtain a contradiction.]

5.86. If f ðxÞ is sectionally continuous in ½a; b�, prove that

ðb
a

f ðxÞ dx exists. [Hint: Enclose each point of disconti-

nuity in an interval, noting that the sum of the lengths of such intervals can be made arbitrarily small. Then
consider the difference between the upper and lower sums.

5.87. If f ðxÞ ¼
2x 0 < x < 1
3 x ¼ 1
6x � 1 1 < x < 2

8<
: , find

ð2
0

f ðxÞ dx. Interpret the result graphically. Ans. 9

5.88. Evaluate

ð3
0

fx � ½x� þ 1
2g dx where ½x� denotes the greatest integer less than or equal to x. Interpret the result

graphically. Ans. 3

5.89. (a) Prove that

ð�=2

0

sinm x

sinm x þ cosm x
dx ¼ �

4
for all real values of m.

(b) Prove that

ð2�
0

dx

1 þ tan4 x
¼ �.

5.90. Prove that

ð�=2

0

sin x

x
dx exists.

5.91. Show that

ð0:5
0

tan�1 x

x
dx ¼ 0:4872 approximately.

5.92. Show that

ð�

0

x dx

1 þ cos2 x
¼ �2

2
ffiffiffi
2

p :


