Methods of Proof

Many laws in logic can be applied to proof in mathematics. There are many methods of proof deduced from laws of logic as follows.

- 1. Direct proof
- 3. Proof by cases
- 5. Proof by contradiction
- 7. Proving a statement in the form, $p \rightarrow (q \lor r)$. 8. Proof by counter example
- 9. Proof of existence

- 2. Proof statement $p \leftrightarrow q$
- 4. Proof by contrapositive
- 6. Prove by mathematical Induction

1. Direct proof : Proof that $p \rightarrow q$ is true.

Method: Accept that p is true and apply a sequence of logical implication until the result is q. Then , we can conclude that $p \rightarrow q$ is true.

Example 1 Prove that $\forall a \in I$ if a is even, then a^2 is even.

Proof: Let a be even. (p)

$$a=2k,\ k\in I$$
 (definition)

$$a^2 = (2k)^2$$
 (Theorem)

$$a^2 = 4k^2 = 2(2k^2)$$

$$2k^2 \in I$$
 (Theorem)

$$a^2$$
 is even (Definition). (q)

So, the statement if a is even, then $\,a^2\,$ is even is true.

Example 2: Prove that if a and b are odd, then a + b is even.

Solution: Given a and b are odd (p)

Let
$$a = 2k + 1$$
, $k = integer$
 $b = 2m + 1$, $m = integer$
 $\therefore a + b = (2k + 1) + (2m + 1)$
 $= 2k + 2m + 2$
 $= 2(k+m+1)$, $k + m + 1 = integer$

So, a + b is even (q)

Therefore , $p \rightarrow q$ is true.

That is the statement, if a and b are odd, then a + b is even, is true.

Exercises (direct proof)

Prove that

- 1. If a and b are odd, then a + b is even
- 2. If a and b are odd, then ab is odd.
- 3. If a and b are even, then ab is even
- 4. If a is odd, then a^2 is odd.
- 5. If x and y are positive real numbers and x < y, then $x^2 < y^2$.
- 6. If a, b, c and d are positive real numbers and a < b and c < d then ab < cd.

2. Proving statements $p \leftrightarrow q$

We can use logical equivalence $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ in proving $p \leftrightarrow q$ by proving $(p \rightarrow q) \land (q \rightarrow p)$.

Example 3: prove that a is even if and only if a + 1 is odd.

Solution: Let $p: a ext{ is even}$, $q: a+1 ext{ is odd}$.

To prove that $p \leftrightarrow q$ is true, we will prove that $p \rightarrow q$ is true and $q \rightarrow p$ is true.

1) To prove $p \rightarrow q$

Accept that a is even (p).

So,
$$a = 2k$$
, $k = any integers$
 $a + 1 = 2k + 1$

$$a + 1$$
 is odd (q)

therefore, $p \rightarrow q$ is true.

2) To prove $q \rightarrow p$

So,
$$a + 1 = 2k + 1$$
, $k = any integers$

$$a = 2k$$

so, a is even (p)

therefore $q \rightarrow p$ is true .

From 1) and 2), $p \leftrightarrow q$ is true.

That is a I even iff a + 1 is odd.

Example 4 From $\triangle ABC$ below, prove that $m(1) = m(2) \leftrightarrow AB = AC$.

Proof: Let
$$p: m(1) = m(2)$$

$$q: AB = AC$$

We will prove $(p \rightarrow q) \land (q \rightarrow p)$.

1) Prove $p \rightarrow q$

Assume
$$m(1) = m(2)$$

Consider ΔABC and ΔACB

$$\Delta ABC \cong \Delta ACB$$
 (ASA)

So, AB = AC (Congruence of
$$\Delta$$
)

That is
$$p \rightarrow q$$

2) To prove if AB = AC, then m(1) = m(2).

Given
$$AB = AC$$
 (p)

D is a mid – point of \overline{BC}

$$\triangle ABD \cong \triangle ACD$$
 (SSS)

$$\therefore p \rightarrow q$$
 is true.

From 1) and 2), $p \leftrightarrow q$ is true.

Exercise (prove $p \leftrightarrow q$)

Prove that

- 1. a is odd iff a + 1 is even
- 2. a is odd iff a^2 is odd.
- 3. a + 1 is even iff $a^2 + 1$ is even.
- 4. a is odd iff $a^2 1$ is even.
- 5. a + b is even iff a b is even.
- 6. a^2 is odd iff a + 2 is odd.

3. Proof by Cases

From logical equivalence $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$. To prove that $(p \lor q) \to r$ is true, we just prove that both $(p \to r)$ and $(q \to r)$ are true.

Example 5 Prove that $a^2 \ge 0$, $\forall a \in R$.

We split into two cases, $\ a \ge 0$ or $\ a < 0$.

Case I : Let
$$a \ge 0$$
 (p)

 $a.a \ge a.0$ (multiply both sides by $a \ge 0$)

$$a^2 \ge 0$$
 (r)

So, if $a \ge 0$ then $a^2 \ge 0$.

Case II: Let a < 0 (q)

 $a.a>a.0 \hspace{0.2cm} \mbox{(multiply both sides by} \hspace{0.2cm} a<0 \, \mbox{)}$

$$a^2 > 0$$
, $a^2 \ge 0$ (r)

So, if a < 0 then $a^2 \ge 0$.

From both cases, we conclude that if a > 0, (p) then $\ a^2 \geq 0$ (r) and

If a < 0, (q) then
$$a^2 > 0$$

So,
$$[\forall a \in R]$$
, $a^2 \ge 0$. $(p \lor q) \rightarrow r$.

Example 6 Prove that if a=0 or b=0 then ab=0.

Case I We Will prove that if a=0, then ab=0.

IF
$$a=0$$
 (p)

$$\therefore ab = 0.b = 0 \quad \text{(r)}$$

So, $p \rightarrow r$ is true.

Case II We Will prove that if b = 0, then ab = 0.

IF
$$b = 0$$
 (q)

$$\therefore ab = a.0 = 0$$
 (r)

So, $q \rightarrow r$ is true.

So, from case I and case II, we conclude that if a = 0 or b = 0 then ab = 0 (Proof by cases).

NOTE. Proof by cases can be extended to more than two cases as follows.

$$(p_1 \lor p_2 \lor \lor p_n) \rightarrow r \equiv (p_1 \rightarrow r) \land (p_2 \rightarrow r) \land ... \land (p_n \rightarrow r)$$

EXERCISES

Use proof by cases to prove the following.

- 1. If x is a real number, then |-x| = |x|.
- 2. If x is a real number, then $|x^2| = |x|^2$.
- 3. For every real number x, $x \le |x|$. 4. If x and y are real numbers, then $|xy| = |x| \cdot |y|$. Hint: One or both of x, y is zero or both are nonzero.
- 5. If a > 0, then |x| < a iff -a < x < a.
- 6. If a > 0, then |x| > a iff $x > a \lor x < -a$.
- 7. If x and y are real numbers, then $|x + y| \le |x| + |y|$.

4. Proof by contrapositive

From logical equivalence $p \to q \equiv \sim q \to \sim p$, if it is difficult

to prove that $p \rightarrow q$ is true, we prove $\sim q \rightarrow \sim p$ is true as follows.

Example 7 Prove that for any integer a ,if a^2 is even, then a is even .

Let $p:a^2$ is even, q:a is even

 $\text{ If } \ a \in I \ \text{ then a is even or odd.}$

 $\sim p:a^2$ is odd, $\sim q:a$ is odd

We will prove that $\sim q \rightarrow \sim p$ is true.

Assume a is odd. $(\sim q)$

$$\therefore a = (2k+1)^2 \ k \in I$$

$$a^2 = (2k+1)^2 = 4k^2 + 2k + 1 = 2(2k+1) + 1, (2k+1) \in I$$

So, a^2 is odd $(\sim p)$. Therefore, $\sim q \rightarrow \sim p$ (true).

So, $p \rightarrow q$ is true (by contrapositive). That is, if a^2 is even , then a is even.

Example 8 From figure below, prove that if $m(\angle A) = m(\angle B)$ (p) then $l_1 \parallel l_2$

Prove : By using contrapositive, we will prove that if $l_1 \not | l_2 (\sim q)$ then $m(\angle A) \neq m(\angle B) (\sim p).$

Assume $l_1 \not \mid l_2 \pmod{q}$. Therefore, l_1 and l_2 intersect at R.

In ΔPQR , $m(\angle A) > m(\angle B)$ (Then.)

So, $m(\angle A) \neq m(\angle B)$ (~ p). So, ~ q \rightarrow ~ p is true.

Therefore $q \rightarrow p$ is true.

That is if m(A) = m(B), then $l_1 \parallel l_2$.

5. Proof by contradiction

From tautology $[\sim p \to (q \land \sim q)] \to p$ (proof by contradiction), we use it as a way to prove that a statement p is true as the following.

Example 9: Prove that the sum of rational number X and irrational number Y is irrational.

Proof Let z = x + y and p: Z is irrational

Assume Z is rational ($\sim p$). So, z + (-y) = x (Theorem)

But z + (-y) is rational. (Theorem)

So, X is rational. (q)

But, X is irrational (given). ($\sim q$).

Therefore, $q \wedge \sim q$, a contradiction. That is $\, \sim p \, {\to} \, (q \wedge \sim q)$

So, p is true (by proof by contradiction). That is x+y is irrational.

Example 10 : Prove that for every $x > 0, x + \frac{1}{2} \ge 2$.

prove : Assume $x + \frac{1}{x} \not\ge 2 \quad (\sim p)$ So, $x + \frac{1}{x} < 2$

 $x^2 + 1 < 2x$ (multiply both sides by x)

 $x^2 - 2x + 1 < 0$

$$(x-1)^2 < 0$$
 (q)

a contradiction to the fact that

$$(x-1)^2 \ge 0$$
, for all real x $(\sim q)$

So,
$$x + \frac{1}{x} \ge 2$$
 (proof by contradiction)

Example 11 : prove that $(p \land q) \rightarrow p$ is a tautology.

Prove : Assume $(p \land q) \rightarrow p$ is not a tautology $(\sim p)$

So, there is a case where $\,(p\wedge q)\,$ is true and $\,p\,$ is false

So, there is a case

where p is true (r), q is true, p is not true $(\sim r)$. A contradiction

So, $(p \land q) \rightarrow p$ is a tautology.

Example 12 : Prove that in ΔABC , if AB = AC then $\,\hat{B}=\hat{C}\,.$

Given AB = AC (q)

Assume
$$\hat{B} \neq \hat{C}$$
 $(\sim p)$

Therefore $\hat{B}\!>\!\hat{C}$ or $\hat{B}\!<\!\hat{C}$

Implies AC > AB or AC < AB (~q)

A contradiction to given

So,
$$\hat{B} = \hat{C}$$
 (p)

Exercises: Use prove by contradiction to prove the following.

- 1. If x is irrational any $\ y \neq 0$ is rational, prove that xy is irrational.
- 2. If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$.
- 3. If x > 0, then $\frac{1}{x} > 0$. (use the theorem that 1 > 0)
- 4. If x < 0, then $\frac{1}{x} < 0$.
- 5. $\sqrt{2}$ is irrational. (The proof appears in many secondary math text book. Consult them.)

6. Prove by Mathematical Induction

Example 13 Statement concerning $n \in N$

1.
$$P(n): 1+2+3+...+n = \frac{n(n+1)}{2}, \forall n \in N$$

2.
$$P_1(n): 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n^2 + 1)(2n + 1)}{6}, \forall n \in \mathbb{N}$$

- 3. $R(n): z^n \le nz^n, n \in N$
- 4. S(n): Given n points on the plane where no three of which are on the same line, there will be $\frac{n(n-1)}{2}$ line segments joining those n points.

One way to prove statement of this type, $\forall n, P(n)$ is true by mathematical induction.

The following is the mathematical induction which mathematicians accept as an axiom

$$P(1) \land \forall [P(k) \rightarrow P(k+1)] \rightarrow \forall n[P(n)]$$

If we can prove 2 steps:

- 1) P(1) is true and
- 2) $\forall k[P(k) \to P(k+1)]$ is true , Then by Modus Ponens, we can deduce $\forall n[P(n)]$ is true.

Thus there were two steps in the proof $\forall n[P(n)];$

- 1. Basis Step: Prove P(1) is true.
- 2. Induction Step : Prove $\forall k[P(k) \rightarrow P(k+1)]$ is true.

That is, we prove P(1) and for every k, $P(k) \rightarrow P(k+1)$.

Then, we have an endless sequence of sentences.

The process becomes.

$$\begin{array}{cccc} P(1) & P(2) & P(3) \\ \underline{P(1) \rightarrow P(2)}, & \underline{P(2) \rightarrow P(3)}, & \underline{P(3) \rightarrow P(4)} & ... \text{ and so on,} \\ \vdots & P(2) & \vdots & P(3) & \vdots & P(4) \end{array}$$

producing the endless sequence

$$P(1), P(2), P(3), ... P(n), ...;$$
 That is, we have proved $\forall n[P(n)]$ is true.

Example 14 Use mathematical Induction to prove that

$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}, \forall n \in N.$$

Proof: Let
$$P(n): 1+2+3+...+n^2 = \frac{n(n+1)}{2}$$

Basis Step :
$$P(1)$$
 : $1 = \frac{1(1+1)}{2}$

 $\therefore P(1)$ is true.

Induction Step : Accept that $\,P(k)\,$ is true.

So, accept that $1+2+3+...+k=\frac{k(k+1)}{2}$ is true. add (k+1) both sides.

$$1+2+3+...+k+(k+1)=\frac{k(k+1)}{2}+(k+1)$$

$$=\frac{(k+1)[(k+1)+1]}{2} \ \text{is true} \ .$$

Therefore, P(k+1) is true.

So,
$$1+2+3+...+n = \frac{n(n+1)}{2}, \forall n \in N$$

Example 15 Prove that $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}, \forall n \in \mathbb{N}$.

Proof: Let
$$P(n): 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Basis Step :
$$P(1): 1^2 = \frac{1(1+1)(2+1)}{6}$$

1 = 1, So, P(1) is true.

Induction Step: accept that P(k) is true.

So, accept that
$$1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$$
 is true

Add $(k+1)^2$ both sides. So,

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)[(k+1) + 1][2(k+1) + 1]}{6}$$

$$= \frac{(k+1)[(k+1) + 1][2(k+1) + 1]}{6}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + k^{2} + (k+1)^{2} = \frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$$

 $\therefore P(k+1)$ is true.

So, we have prove 1) P(1) and 2) $P(k) \mathop{\rightarrow}\limits P(k+1), \forall k \in N$.

Therefore, $\ P(n)$ is true, $\forall n \in N$. (by Mathematical Induction).

Example 16 Prove that for any n points on the plane where no three of which are on the same line, there will be $\frac{n(n-1)}{2}$ line segments joining those n points.

Proof: Let P(n): for any n points on the plane where no three of which are on the same line, there will be $\frac{n(n-1)}{2}$ line segments joining those n points.

Basis Step :
$$P(1)$$
 : number of line segments $=\frac{(1)(1-1)}{2}=0$
So, $P(1)$ is true

Induction Step : Assume, for any $k \in N$

P(k): number of line segments = $\frac{k(k-1)}{2}$ is true.

Add one more point (P) satisfying the condition. So,

of line segments =
$$\frac{k(k-1)}{2} + k$$

$$= \frac{(k+1)(k)}{2}$$

So, p(k+1) is true.

That is $\forall n \in N, P(n)$ is true .

Note $\,:\, 3\,|\,n(n^2+2)\,$ means $\,n(n^2+2)\,$ can be divided by 3

3|12, 3|11, 5|75, 7|21, 7|20

Definition: $a \mid b \Leftrightarrow b = ka, k \in I$

Example 17: Prove that $3 \mid n(n^2 + 2), \forall n \in N$

Use mathematical induction .

Let
$$p(n): 3|n(n^2+2), n \in N$$

Basis Step :
$$p(1)$$
 : $3|1(1^2+2)$ or $3|3$ (True)

So, p(1) is true

Induction Step: accept that p(k) is true. That is $3 | k(k^2 + 2)$.

Consider
$$(k+1)[(k+1)^2 + 2] = (k+1)[k^2 + 2k + 3]$$

$$= k^3 + 2k^2 + 3k + k^2 + 2k + 3$$

$$= (k^3 + 2k) + 3k^2 + 3k + 3$$

$$= k(k^2 + 2) + 3(k^2 + k + 1)$$

$$3|k(k^2+2)$$
 and $3|3(k^2+k+1)$

So,
$$3(k+1)[(k+1)^2+2]$$

Therefore P(k+1) is true

That is P(n) is true for all n in N

EXERCISES

√Prove the following by mathematical induction.

- 1. $\forall n \in \mathbb{N}, 2^n > n$.
- 2. \forall ne N, $3^n > n$.

- 2. \forall $n \in \mathbb{N}$, 3 > n. 3. \forall $n \in \mathbb{N}$, $2 \le 2^n$ 4. \forall $n \in \mathbb{N}$, $2n \le 2^n$ Hint: Use Exercise 3. 5. \forall $n \in \mathbb{N}$, n < n+1. 6. \forall $n \in \mathbb{N}$, $2^{n-1} \le n!$ Hint: (k+1)! = (k+1)k!7. \forall $n \ge 4$, $2^n < n!$ Prove $2^n < n!$ false when $n \le 3$.
- 7. Proving a statement in the form, $p \rightarrow (q \lor r)$.

We use equivalence $p \to (q \lor r) \equiv (p \land \sim q) \to r$.

Example 18 Prove that if ab = 0, then a = 0 or b = 0.

Proof: let p:ab = 0, q:a = 0, and r:b = 0

Want to proof that $p \rightarrow (q \lor r)$ is true.

We will proof that its equivalent statement that $\ (p \wedge \sim q) \to r$ is true.

Assume 1)
$$ab=0$$
 (p)-----(1) And 2) $\sim q: a \neq 0$ ($\sim q$)

So,
$$\frac{1}{a}$$
 exists.

$$\frac{1}{a}(ab) = \frac{1}{a}(0)$$
 (Multiply (1) both side by $\frac{1}{a}$)

$$b = 0$$
 (r)

So, $(p \land \sim q) \rightarrow r$ is true.

Therefore, $p \! \to \! (q \vee r)$ is true.

8. Proof by counter example

From a tautology of quantified statements.

$$\sim \forall x[P(x)] \equiv \exists x[\sim P(x)]$$

We use it to prove that $\forall x[P(x)]$ is false by proving that $\exists x[\sim P(x)]$ is true.

Example 19: prove that the statement, all of prime numbers are odd, is false.

 $\mbox{Solution: Let} \quad U : \mbox{set of all prime numbers}$

and p(x) : x is odd, $x \in U$

So, $\forall x[P(x)]$: all prime numbers are odd

Consider [p(2)]: 2 is odd (F)

So, \sim [p(2)] is true. Therefore, $\exists x [\sim P(x)]$ is true

So, $\sim \forall x [P(x)]$ is true and $\, \forall x [P(x)] \,$ is false.

So, all prime numbers are odd is false.

Exercise

Disprove the followings by counter example.

- 1. The sum of two irrational numbers is an irrational number.
- 2. The product of irrational numbers is an irrational number.
- 3. The product of a rational number and an irrational number is an irrational numbers.
- 4. Each square matrix has an multiplicative inverse.
- 5. For all real numbers x , the equation $\sqrt{-x-15}=2$ has no solution.

9. Proof of Existence

From tautology of quantified statement, $p(a) \rightarrow \exists x[P(x)]$ (T)

That is when p(a) is true, then $\exists x[P(x)]$ is true.

Example 20: Prove that in the set of real numbers, there exist a number which itself is the inverse for addition.

Solution: Let P(a): a is itself inverse for addition

Want to prove that $\exists x[P(x)]$ is true.

Consider the number 0. It is true that 0 + 0 = 0.

So, 0 is itself inverse for addition.

Therefore, [P(0)] is true.

That is $\exists x[P(x)]$ is true.

Exercise

Prove the followings:

- 1. There is a real number x such that $5 + \sqrt{x+7} = x$.
- 2. There exists a positive integer $\,x\,$ such that $\,90\,{<}\,x^2\,{<}\,110$.
- 3. For any real number x, there exists a real number y such that x + y = 0.
- 4. There exits only one integer x such that x + 3 = 10.
- 5. For any real number y, there exists only one real number x such that x + y = y.