CHAPTER 56

Double Integration Applied to Volume Under a Surface and the Area of a Curved Surface

Let z = f(x, y) or $z = f(\rho, \theta)$ define a surface.

The volume V under the surface, that is, the volume of a vertical column whose upper base is in the surface and whose lower base is in the xy plane, is given by the double integral

$$V = \iint_{R} z \, dA \tag{56.1}$$

where R is the region forming the lower base.

The area S of the portion R^* of the surface lying above the region R is given by the double integral

$$S = \iint_{R} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$
(56.2)

If the surface is given by x = f(y, z) and the region R lies in the yz plane, then

$$S = \iint_{R} \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} dA$$
(56.3)

If the surface is given by y = f(x, z) and the region R lies in the xz plane, then

$$S = \iint_{R} \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} dA$$
(56.4)

SOLVED PROBLEMS

1. Find the volume in the first octant between the planes z = 0 and z = x + y + 2, and inside the cylinder $x^2 + y^2 = 16$. From Fig. 56-1, it is evident that z = x + y + 2 is to be integrated over a quadrant of the circle $x^2 + y^2 = 16$ in the *xy* plane. Hence,

$$V = \iint_{R} z dA = \int_{0}^{4} \int_{0}^{\sqrt{16-x^{2}}} (x+y+2) dy \, dx = \int_{0}^{4} (x\sqrt{16-x^{2}}+8-\frac{1}{2}x^{2}+2\sqrt{16-x^{2}}) dx$$
$$= \left[-\frac{1}{3}(16-x^{2})^{3/2}+8x-\frac{x^{3}}{6}+x\sqrt{16-x^{2}}+16\sin^{-1}\frac{1}{4}x\right]_{0}^{4} = \left(\frac{128}{3}+8\pi\right) \text{ cubic units}$$

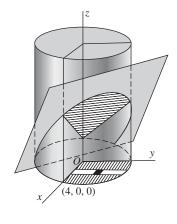


Fig. 56-1

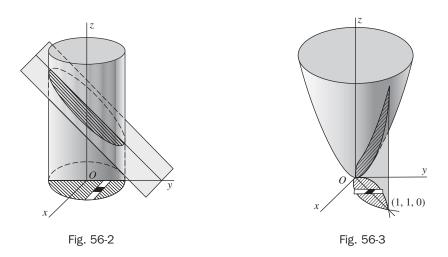
2. Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0. From Fig. 56-2, it is evident that z = 4 - y is to be integrated over the circle $x^2 + y^2 = 4$ in the *xy* plane. Hence,

$$V = \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} (4-y) dx \, dy = 2 \int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} (4-y) dx \, dy = 16\pi \text{ cubic units}$$

3. Find the volume bounded above by the paraboloid $x^2 + 4y^2 = z$, below by the plane z = 0, and laterally by the cylinders $y^2 = x$ and $x^2 = y$. (See Fig. 56-3.)

The required volume is obtained by integrating $z = x^2 + 4y^2$ over the region *R* common to the parabolas $y^2 = x$ and $x^2 = y$ in the *xy* plane. Hence,

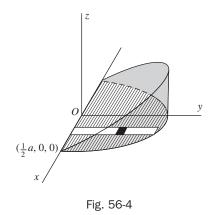
$$V = \int_0^1 \int_{x^2}^{\sqrt{x}} (x^2 + 4y^2) dy \, dx = \int_0^1 \left[x^2 y + \frac{4}{3} y^3 \right]_{x^2}^{\sqrt{x}} dx = \frac{3}{7} \text{ cubic units}$$



4. Find the volume of one of the wedges cut from the cylinder $4x^2 + y^2 = a^2$ by the planes z = 0 and z = my. (See Fig. 56-4.)

The volume is obtained by integrating z = my over half the ellipse $4x^2 + y^2 = a^2$. Hence,

$$V = 2 \int_0^{a/2} \int_0^{\sqrt{a^2 - 4x^2}} my \, dy \, dx = m \int_0^{a/2} [y^2]_0^{\sqrt{a^2 - 4x^2}} \, dx = \frac{ma^3}{3} \text{ cubic units}$$

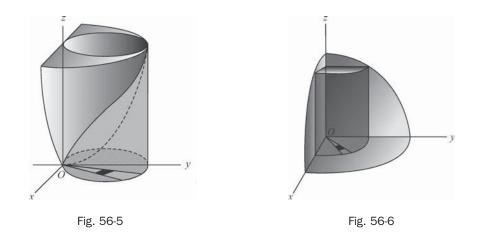


5. Find the volume bounded by the paraboloid $x^2 + y^2 = 4z$, the cylinder $x^2 + y^2 = 8y$, and the plane z = 0. (See Fig. 56-5.)

The required volume is obtained by integrating $z = \frac{1}{4}(x^2 + y^2)$ over the circle $x^2 + y^2 = 8y$. Using cylindrical coordinates (see Chapter 57), the volume is obtained by integrating $z = \frac{1}{4}\rho^2$ over the circle $\rho = 8 \sin \theta$. Then,

$$V = \iint_{R} z \, dA = \int_{0}^{\pi} \int_{0}^{8\sin\theta} z\rho \, d\rho \, d\theta = \frac{1}{4} \int_{0}^{\pi} \int_{0}^{8\sin\theta} \rho^{3} d\rho \, d\theta$$
$$= \frac{1}{16} \int_{0}^{\pi} [\rho^{4}]_{0}^{8\sin\theta} d\theta = 256 \int_{0}^{\pi} \sin^{4}\theta \, d\theta = 96\pi \text{ cubic units}$$

6. Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the axis of the hole being a diameter of the sphere. (See Fig. 56-6.)



From the figure, it is obvious that the required volume is eight times the volume in the first octant bounded by the cylinder $\rho^2 = a^2$, the sphere $\rho^2 + z^2 = 4a^2$, and the plane z = 0. The latter volume is obtained by integrating $z = \sqrt{4a^2 - \rho^2}$ over a quadrant of the circle $\rho = a$. Hence,

$$V = 8 \int_0^{\pi/2} \int_0^a \sqrt{4a^2 - \rho^2 \rho} \, d\rho \, d\theta = \frac{8}{3} \int_0^{\pi/2} (8a^3 - 3\sqrt{3}a^3) d\theta = \frac{4}{3} (8 - 3\sqrt{3})a^3 \pi \text{ cubic units}$$

7. Derive formula (56.2).

Consider a region R^* of area S on the surface z = f(x, y). Through the boundary of R^* pass a vertical cylinder (see Fig. 56-7) cutting the xy plane in the region R. Now divide R into n subregions R_1, \ldots, R_n of areas $\Delta A_1, \ldots, R_n$ of

 ΔA_n , and denote by ΔS_i , the area of the projection of ΔA_i on R^* . In that *i*th subregion of R^* , choose a point P_i and draw there the tangent plane to the surface. Let the area of the projection of R_i on this tangent plane be denoted by ΔT_i . We shall use ΔT_i as an approximation of the corresponding surface area ΔS_i .

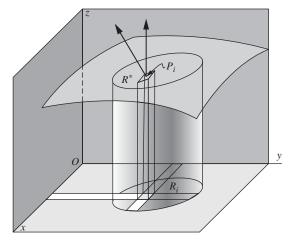


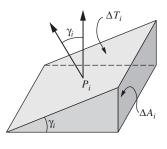
Fig. 56-7

Now the angle between the xy plane and the tangent plane at P_i is the angle γ_i between the z axis with direction numbers [0, 0, 1] and the normal, $\left[-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right] = \left[-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1\right]$, to the surface at P_i . Thus,

$$\cos \gamma_i = \frac{1}{\sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} + 1}$$

Then (see Fig. 56-8)

$$\Delta T_i \cos \gamma_i = \Delta A_i$$
 and $\Delta T_i = \sec \gamma_i \Delta A_i$



Hence, an approximation of *S* is $\sum_{i=1}^{n} \Delta T_i = \sum_{i=1}^{n} \sec \gamma_i \Delta A_i$, and

$$S = \lim_{n \to +\infty} \sum_{i=1}^{n} \sec \gamma_i \Delta A_i = \iint_R \sec \gamma \, dA = \iint_R \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \, dA$$

8. Find the area of the portion of the cone $x^2 + y^2 = 3z^2$ lying above the *xy* plane and inside the cylinder $x^2 + y^2 = 4y$. *Solution* 1: Refer to Fig. 56-9. The projection of the required area on the *xy* plane is the region *R* enclosed by the circle $x^2 + y^2 = 4y$. For the cone,

$$\frac{\partial z}{\partial x} = \frac{1}{3} \frac{x}{z} \text{ and } \frac{\partial z}{\partial y} = \frac{1}{3} \frac{y}{z}. \text{ So } 1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{9z^2 + x^2 + y^2}{9z^2} = \frac{12z^2}{9z^2} = \frac{4}{3}$$

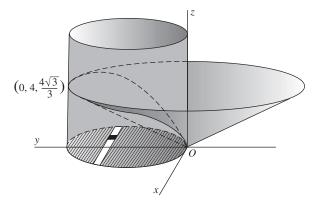


Fig. 56-9

$$S = \iint_{R} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA = \int_{0}^{4} \int_{-\sqrt{4y-y^{2}}}^{\sqrt{4y-y^{2}}} \frac{2}{\sqrt{3}} dx \, dy = 2\frac{2}{\sqrt{3}} \int_{0}^{4} \int_{0}^{\sqrt{4y-y^{2}}} dx \, dy$$
$$= \frac{4}{\sqrt{3}} \int_{0}^{4} \sqrt{4y - y^{2}} \, dy = \frac{8\sqrt{3}}{3} \pi \text{ square units}$$

Solution 2: Refer to Fig. 56-10. The projection of one-half the required area on the yz plane is the region R bounded by the line $y = \sqrt{3}z$ and the parabola $y = \frac{3}{4}z^2$, the latter having been obtained by eliminating x from the equations of the two surfaces. For the cone,

$$\frac{\partial x}{\partial y} = -\frac{y}{x} \quad \text{and} \quad \frac{\partial x}{\partial z} = \frac{3z}{x}. \quad \text{So} \quad 1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2 = \frac{x^2 + y^2 + 9z^2}{x^2} = \frac{12z^2}{x^2} = \frac{12z^2}{3z^2 - y^2}$$

Then

$$S = 2\int_{0}^{4} \int_{y/\sqrt{3}}^{2\sqrt{y}/\sqrt{3}} \frac{2\sqrt{3z}}{\sqrt{3z^{2} - y^{2}}} dz \, dy = \frac{4\sqrt{3}}{3} \int_{0}^{4} \left[\sqrt{3z^{2} - y^{2}}\right]_{y/\sqrt{3}}^{2\sqrt{y}/\sqrt{3}} dy = \frac{4\sqrt{3}}{3} \int_{0}^{4} \sqrt{4y - y^{2}} dy.$$

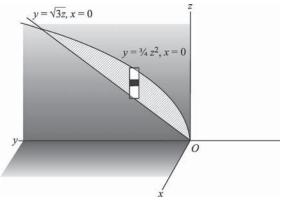


Fig. 56-10

Solution 3: Using polar coordinates in solution 1, we must integrate $\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \frac{2}{\sqrt{3}}$ over the region *R* enclosed by the circle $\rho = 4 \sin \theta$. Then,

$$S = \iint_{R} \frac{2}{\sqrt{3}} dA = \int_{0}^{\pi} \int_{0}^{4\sin\theta} \frac{2}{\sqrt{3}} \rho \, d\rho \, d\theta = \frac{1}{\sqrt{3}} \int_{0}^{\pi} [\rho^{2}]_{0}^{4\sin\theta} d\theta$$
$$= \frac{16}{\sqrt{3}} \int_{0}^{\pi} \sin^{2}\theta \, d\theta = \frac{8\sqrt{3}}{3}\pi \text{ square units}$$

9. Find the area of the portion of the cylinder x² + z² = 16 lying inside the cylinder x² + y² = 16.
 Fig. 56-11 shows one-eighth of the required area, its projection on the *xy* plane being a quadrant of the circle x² + y² = 16. For the cylinder x² + z² = 16,

$$\frac{\partial z}{\partial x} = -\frac{x}{z}$$
 and $\frac{\partial z}{\partial y} = 0$. So $1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \frac{x^2 + z^2}{z^2} = \frac{16}{16 - x^2}$.

Then

$$S = 8 \int_0^4 \int_0^{\sqrt{16-x^2}} \frac{4}{\sqrt{16-x^2}} \, dy \, dx = 32 \int_0^4 dx = 128 \text{ square units}$$

10. Find the area of the portion of the sphere $x^2 + y^2 + z^2 = 16$ outside the paraboloid $x^2 + y^2 + z = 16$.

Fig. 56-12 shows one-fourth of the required area, its projection on the yz plane being the region R bounded by the circle $y^2 + z^2 = 16$, the y and z axes, and the line z = 1. For the sphere,

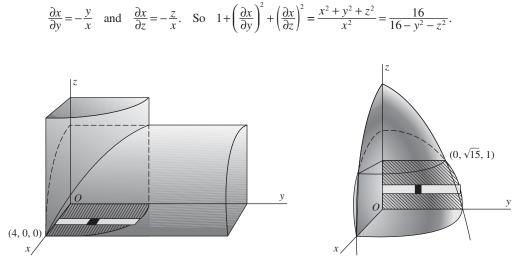


Fig. 56-12

Then

$$S = 4 \iint_{R} \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2} dA = 4 \int_0^1 \int_0^{\sqrt{16-z^2}} \frac{4}{\sqrt{16-y^2-z^2}} dy dz$$
$$= 16 \int_0^1 \left[\sin^{-1}\left(\frac{y}{\sqrt{16-z^2}}\right)\right]_0^{\sqrt{16-z^2}} dz = 16 \int_0^1 \frac{\pi}{2} dz = 8\pi \text{ square units}$$

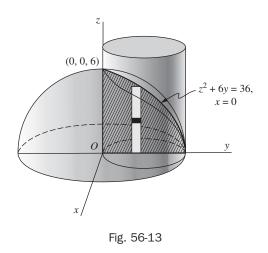
11. Find the area of the portion of the cylinder $x^2 + y^2 = 6y$ lying inside the sphere $x^2 + y^2 + z^2 = 36$.

Fig. 56-13 shows one-fourth of the required area. Its projection on the yz plane is the region R bounded by the z and y axes and the parabola $z^2 + 6y = 36$, the latter having been obtained by eliminating x from the equations of the two surfaces. For the cylinder,

$$\frac{\partial x}{\partial y} = \frac{3-y}{x}$$
 and $\frac{\partial x}{\partial z} = 0$. So $1 + \left(\frac{\partial x}{\partial y}\right)^2 + \left(\frac{\partial x}{\partial z}\right)^2 = \frac{x^2 + 9 - 6y + y^2}{x^2} = \frac{9}{6y - y^2}$

Then

$$S = 4 \int_0^6 \int_0^{\sqrt{36-6y}} \frac{3}{\sqrt{6y-y^2}} \, dz \, dy = 12 \int_0^6 \frac{\sqrt{6}}{\sqrt{y}} \, dy = 144 \text{ square units}$$



SUPPLEMENTARY PROBLEMS

- 12. Find the volume cut from $9x^2 + 4y^2 + 36z = 36$ by the plane z = 0.
 - Ans. 3π cubic units
- **13.** Find the volume under z = 3x and above the first-quadrant area bounded by x = 0, y = 0, x = 4, and $x^2 + y^2 = 25$. *Ans.* 98 cubic units
- 14. Find the volume in the first octant bounded by $x^2 + z = 9$, 3x + 4y = 24, x = 0, y = 0, and z = 0.
 - Ans. 1485/16 cubic units
- **15.** Find the volume in the first octant bounded by xy = 4z, y = x, and x = 4.

Ans. 8 cubic units

16. Find the volume in the first octant bounded by $x^2 + y^2 = 25$ and z = y.

17. Find the volume common to the cylinders $x^2 + y^2 = 16$ and $x^2 + z^2 = 16$.

Ans. 1024/3 cubic units

- **18.** Find the volume in the first octant inside $y^2 + z^2 = 9$ and outside $y^2 = 3x$. Ans. $27\pi/16$ cubic units
- **19.** Find the volume in the first octant bounded by $x^2 + z^2 = 16$ and x y = 0.

Ans. 64/3 cubic units

Ans. 125/3 cubic units

- **20.** Find the volume in front of x = 0 and common to $y^2 + z^2 = 4$ and $y^2 + z^2 + 2x = 16$.
 - Ans. 28π cubic units
- **21.** Find the volume inside $\rho = 2$ and outside the cone $z^2 = \rho^2$.
 - Ans. $32\pi/3$ cubic units
- **22.** Find the volume inside $y^2 + z^2 = 2$ and outside $x^2 y^2 z^2 = 2$.
 - Ans. $8\pi(4-\sqrt{2})/3$ cubic units
- **23.** Find the volume common to $\rho^2 + z^2 = a^2$ and $\rho = a \sin \theta$.
 - Ans. $2(3\pi 4)a^2/9$ cubic units
- 24. Find the volume inside $x^2 + y^2 = 9$, bounded below by $x^2 + y^2 + 4z = 16$ and above by z = 4.

Ans. $81\pi/8$ cubic units

25. Find the volume cut from the paraboloid $4x^2 + y^2 = 4z$ by the plane z - y = 2.

Ans. 9π cubic units

26. Find the volume generated by revolving the cardiod $\rho = 2(1 - \cos \theta)$ about the polar axis.

Ans. $V = 2\pi \iint y\rho \, d\rho \, d\theta = 64\pi/3$ cubic units

27. Find the volume generated by revolving a petal of $\rho = \sin 2\theta$ about either axis.

Ans. $32\pi/105$ cubic units

28. Find the area of the portion of the cone $x^2 + y^2 = z^2$ inside the vertical prism whose base is the triangle bounded by the lines y = x, x = 0, and y = 1 in the *xy* plane.

29. Find the area of the portion of the plane x + y + z = 6 inside the cylinder $x^2 + y^2 = 4$.

30. Find the area of the portion of the sphere $x^2 + y^2 + z^2 = 36$ inside the cylinder $x^2 + y^2 = 6y$.

Ans. $72(\pi - 2)$ square units

31. Find the area of the portion of the sphere $x^2 + y^2 + z^2 = 4z$ inside the paraboloid $x^2 + y^2 = z$.

Ans. 4π square units

Ans. $\frac{1}{2}\sqrt{2}$ square units

Ans. $4\sqrt{3}\pi$ square units

- **32.** Find the area of the portion of the sphere $x^2 + y^2 + z^2 = 25$ between the planes z = 2 and z = 4. *Ans.* 20π square units
- **33.** Find the area of the portion of the surface z = xy inside the cylinder $x^2 + y^2 = 1$. *Ans.* $2\pi(2\sqrt{2}-1)/3$ square units
- **34.** Find the area of the surface of the cone $x^2 + y^2 9z^2 = 0$ above the plane z = 0 and inside the cylinder $x^2 + y^2 = 6y$. *Ans.* $3\sqrt{10}\pi$ square units
- **35.** Find the area of that part of the sphere $x^2 + y^2 + z^2 = 25$ that is within the elliptic cylinder $2x^2 + y^2 = 25$. *Ans.* 50π square units
- **36.** Find the area of the surface of $x^2 + y^2 az = 0$ which lies directly above the lemniscate $4\rho^2 = a^2 \cos 2\theta$. Ans. $S = \frac{4}{a} \iint \sqrt{4\rho^2 + a^2} \rho \, d\rho \, d\theta = \frac{a^2}{3} \left(\frac{5}{3} - \frac{\pi}{4}\right)$ square units
- 37. Find the area of the surface of $x^2 + y^2 + z^2 = 4$ which lies directly above the cardioid $\rho = 1 \cos \theta$. Ans. $8[\pi - \sqrt{2} - \ln(\sqrt{2} + 1)]$ square units