
CHAPTER 56

489

Double Integration Applied to 
Volume Under a Surface and the 

Area of a Curved Surface

Let z = f (x, y) or z = f (ρ, θ) define a surface.
The volume V under the surface, that is, the volume of a vertical column whose upper base is in the surface 

and whose lower base is in the xy plane, is given by the double integral

 V z dA
R

= ∫∫   (56.1)

where R is the region forming the lower base.
The area S of the portion R* of the surface lying above the region R is given by the double integral
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If the surface is given by x = f (y, z) and the region R lies in the yz plane, then
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If the surface is given by y = f (x, z) and the region R lies in the xz plane, then
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SOLVED PROBLEMS

1. Find the volume in the first octant between the planes z = 0 and z = x + y + 2, and inside the cylinder x2 + y2 = 16.
From Fig. 56-1, it is evident that z = x + y + 2 is to be integrated over a quadrant of the circle x2 + y2 = 16 in 

the xy plane. Hence,
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2. Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y + z = 4 and z = 0.
From Fig. 56-2, it is evident that z = 4 − y is to be integrated over the circle x2 + y2 = 4 in the xy plane. Hence,
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3. Find the volume bounded above by the paraboloid x2 + 4y2 = z, below by the plane z = 0, and laterally by the 
cylinders y2 = x and x2 = y. (See Fig. 56-3.)

The required volume is obtained by integrating z = x2 + 4y2 over the region R common to the parabolas y2 = x 
and x2 = y in the xy plane. Hence,
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    Fig. 56-2   Fig. 56-3

4. Find the volume of one of the wedges cut from the cylinder 4x2 + y2 = a2 by the planes z = 0 and z = my. (See
Fig. 56-4.)

The volume is obtained by integrating z = my over half the ellipse 4x2 + y2 = a2. Hence,
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5. Find the volume bounded by the paraboloid x2 + y2 = 4z, the cylinder x2 + y2 = 8y, and the plane z = 0. (See
Fig. 56-5.)

The required volume is obtained by integrating z x y= +1
4

2 2( )  over the circle x2 + y2 = 8y. Using cylindrical 
coordinates (see Chapter 57), the volume is obtained by integrating z = 1

4
2ρ  over the circle ρ = 8 sin θ. Then,
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6. Find the volume removed when a hole of radius a is bored through a sphere of radius 2a, the axis of the hole 
being a diameter of the sphere. (See Fig. 56-6.)

   

    Fig. 56-5   Fig. 56-6

From the figure, it is obvious that the required volume is eight times the volume in the first octant bounded 
by the cylinder ρ 2 = a2, the sphere ρ 2 + z2 = 4a2, and the plane z = 0. The latter volume is obtained by integrating 

z a= −4 2 2ρ  over a quadrant of the circle ρ = a. Hence,
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7. Derive formula (56.2).
Consider a region R∗ of area S on the surface z = f (x, y). Through the boundary of R∗ pass a vertical cylinder 

(see Fig. 56-7) cutting the xy plane in the region R. Now divide R into n subregions R1, . . . , Rn of areas Δ A1, . . . ,
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Δ  An, and denote by Δ Si, the area of the projection of Δ  Ai on R∗. In that ith subregion of R∗, choose a point Pi and 
draw there the tangent plane to the surface. Let the area of the projection of R

i
 on this tangent plane be denoted 

by Δ T
i
. We shall use Δ T

i
 as an approximation of the corresponding surface area Δ S

i
.
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Fig. 56-7

Now the angle between the xy plane and the tangent plane at Pi is the angle � i between the z axis with 
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Then (see Fig. 56-8)
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8. Find the area of the portion of the cone x2 + y2 = 3z2 lying above the xy plane and inside the cylinder x2 + y2 = 4y.
Solution 1: Refer to Fig. 56-9. The projection of the required area on the xy plane is the region R enclosed by 

the circle x2 + y2 = 4y. For the cone,
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Solution 2: Refer to Fig. 56-10. The projection of one-half the required area on the yz plane is the region R 
bounded by the line y z= 3  and the parabola y z= 3

4
2, the latter having been obtained by eliminating x from the 

equations of the two surfaces. For the cone,

∂
∂ = −x
y

y
x

   and   ∂
∂ =x
z

z
x

3 .   So    1
9 12 12

2 2 2 2 2

2

2

2+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟ + ∂

∂( ) = + + = =x
y

x
z

x y z
x

z
x

zz
z y

2

2 23 − .  

Then S z
z y

dz dy z y
y

y

y
=

−
= −∫∫2 2 3

3
4 3

3 3
2 23

2 3

0

4
2 2

3

2

/

/

/
[ ] yy dy y y dy/ .3

0

4
2

0

44 3
3 4∫ ∫= −

 

Fig. 56-10

Solution 3: Using polar coordinates in solution 1, we must integrate 1 2
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9. Find the area of the portion of the cylinder x2 + z2 = 16 lying inside the cylinder x2 + y2 = 16.
Fig. 56-11 shows one-eighth of the required area, its projection on the xy plane being a quadrant of the circle 

x2 + y2 = 16. For the cylinder x2 + z2 = 16,
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10. Find the area of the portion of the sphere x2 + y2 + z2 = 16 outside the paraboloid x2 + y2 + z = 16.
Fig. 56-12 shows one-fourth of the required area, its projection on the yz plane being the region R bounded by 

the circle y2 + z2 = 16, the y and z axes, and the line z = 1. For the sphere,
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    Fig. 56-11   Fig. 56-12
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11. Find the area of the portion of the cylinder x2 + y2 = 6y lying inside the sphere x2 + y2 + z2 = 36.
Fig. 56-13 shows one-fourth of the required area. Its projection on the yz plane is the region R bounded by the 

z and y axes and the parabola z2 + 6y = 36, the latter having been obtained by eliminating x from the equations of 
the two surfaces. For the cylinder,
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SUPPLEMENTARY PROBLEMS

12. Find the volume cut from 9x2 + 4y2 + 36z = 36 by the plane z = 0.

Ans. 3π cubic units

13. Find the volume under z = 3x and above the first-quadrant area bounded by x = 0, y = 0, x = 4, and x2 + y2 = 25.

Ans. 98 cubic units

14. Find the volume in the first octant bounded by x2 + z = 9, 3x + 4y = 24, x = 0, y = 0, and z = 0.

Ans. 1485/16 cubic units

15. Find the volume in the first octant bounded by xy = 4z, y = x, and x = 4.

Ans. 8 cubic units

16. Find the volume in the first octant bounded by x2 + y2 = 25 and z = y.

Ans. 125/3 cubic units

17. Find the volume common to the cylinders x2 + y2 = 16 and x2 + z2 = 16.

Ans. 1024/3 cubic units

18. Find the volume in the first octant inside y2 + z2 = 9 and outside y2 = 3x.

Ans. 27π/16 cubic units

19. Find the volume in the first octant bounded by x2 + z2 = 16 and x − y = 0.

Ans. 64/3 cubic units
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20. Find the volume in front of x = 0 and common to y2 + z2 = 4 and y2 + z2 + 2x = 16.

Ans. 28π cubic units

21. Find the volume inside ρ = 2 and outside the cone z2 = ρ 2.

Ans. 32π/3 cubic units

22. Find the volume inside y2 + z2 = 2 and outside x2 − y2 − z2 = 2.

Ans. 8 4 2 3π ( )− /  cubic units

23. Find the volume common to ρ 2 + z2 = a2 and ρ = a sin θ.

Ans. 2(3π − 4)a2/9 cubic units

24. Find the volume inside x2 + y2 = 9, bounded below by x2 + y2 + 4z = 16 and above by z = 4.

Ans. 81π/8 cubic units

25. Find the volume cut from the paraboloid 4x2 + y2 = 4z by the plane z − y = 2.

Ans. 9π cubic units

26. Find the volume generated by revolving the cardiod ρ = 2(1 − cos θ) about the polar axis.

Ans. V y d d= =∫∫2 64 3π ρ ρ θ π / cubic units  

27. Find the volume generated by revolving a petal of ρ = sin 2θ about either axis.

Ans. 32π/105 cubic units

28. Find the area of the portion of the cone x2 + y2 = z2 inside the vertical prism whose base is the triangle bounded by 
the lines y = x, x = 0, and y = 1 in the xy plane.

Ans. 1
2 2 square units  

29. Find the area of the portion of the plane x + y + z = 6 inside the cylinder x2 + y2 = 4.

Ans. 4 3π square units  

30. Find the area of the portion of the sphere x2 + y2 + z2 = 36 inside the cylinder x2 + y2 = 6y.

Ans. 72(π − 2) square units

31. Find the area of the portion of the sphere x2 + y2 + z2 = 4z inside the paraboloid x2 + y2 = z.

Ans. 4π square units
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32. Find the area of the portion of the sphere x2 + y2 + z2 = 25 between the planes z = 2 and z = 4.

Ans. 20π square units

33. Find the area of the portion of the surface z = xy inside the cylinder x2 + y2 = 1.

Ans. 2 2 2 1 3π ( )− / square units  

34. Find the area of the surface of the cone x2 + y2 − 9z2 = 0 above the plane z = 0 and inside the cylinder x2 + y2 = 6y.

Ans. 3 10π square units  

35. Find the area of that part of the sphere x2 + y2 + z2 = 25 that is within the elliptic cylinder 2x2 + y2 = 25.

Ans. 50π square units

36. Find the area of the surface of x2 + y2 − az = 0 which lies directly above the lemniscate 4ρ 2 = a2 cos 2θ.

Ans. S
a

a d d a= + = −( )∫∫4 4 3
5
3 4

2 2
2

ρ ρ ρ θ π square units  

37. Find the area of the surface of x2 + y2 + z2 = 4 which lies directly above the cardioid ρ = 1 − cos θ.

 Ans. 8 2 2 1[ ln( )]π − − + square units  
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