CHAPTER 26

Exponential and Logarithmic
Functions

From Chapter 25, we know that the natural logarithm In x is an increasing differentiable function with do-
main the set of all positive real numbers and range the set of all real numbers. Since it is increasing, it is a
one-to-one function and, therefore, has an inverse function, which we shall denote by e*.

Definition
e* is the inverse of In x.

It follows that the domain of e* is the set of all real numbers and its range is the set of all positive real
numbers. Since ¢* is the inverse of In x, the graph of ¢* can be obtained from that of In x by reflection in the
line y = x. See Fig. 26-1.
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Fig 26-1

Our notation may be confusing. It should not be assumed from the notation that e* is an ordinary power of
base e with exponent x. Later in this chapter, we will find out that this is indeed true, but we do not know it yet.

Properties of e*
(26.1) e'*>0forall x
The range of e* is the set of positive real numbers.
(26.2) In(e)=x
(26.3) e =x
Properties (26.2) and (26.3) follow from the fact that e¢* and In x are inverses of each other.
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(26.4) ¢'is an increasing function.
Assume u < ». Since 1 = In (¢“) and v=In (¢), In (¢“) < In (e*). But, since In x is increasing, ¢“ < e".
[For, if e < ¢", then In (e?) < 1n (e¥).]

(26.5) D (e)=¢"
Let y = . Then In y = x. By implicit differentiation, %y’ =1 and, therefore, y' = y = ¢*. For a more
rigorous argument, let f (x) = In x and f ~!(y) = ¢*. Note that f’(x) = % By Theorem 10.2(b),

-1y’ — 1 1 y :L: y
(f )(y)_ f/(f—l(y))’ that 18, Dy(e ) l/ey e

EXAMPLE 26.1: D (¢ = D, (e")D, (u) (Chain Rule, with u = sin x)
= e"(cosx) = e (cos x)

(26.6) Je" dx=e"+C

EXAMPLE 26.2: To find Jxe"z dx, letu = x?, du = 2xdx. Then

J.xe*‘:dxz%.[e“duz%e“ +C=%e" +C

(26.7) [erdx=—e+C
Let u =—x, du =—dx. Then je“dx = —je”du =—e"+C=—¢"+C.
(26.8) €'=1
By (26.3), 1 = =¢".
(26.9) e“v=ete’
In (e") =u+ v=1In (") +In (¢’) = In (e“e’) by (25.6). Hence, ¢"** = "¢’ because In x is a one-to-one
function.

u

(26.10) ¢ = ‘;—
By (26.9), e"~%e? = ¢t = ¢*. Now divide by e".

(26.11) ¢ = e—ly
Replace u by 0 in (26.10) and use (26.8).

(26.12) x < e~ forall x

By Problem 7 of Chapter 25, In x < x — 1 < x. By (26.3) and (26.4), x = ¢"* < ¢*.
(26.13) lim e* = oo

X—>Foo

This follows from (26.4) and (26.12).
(26.14) lime* =0

X—>—oo

1
Let u = —x. As x — oo, u — +o0 and, by (26.13), ¢* — +oo. Then, by (26.11), e*=¢" = p — 0.

The mystery of the letter e in the expression e* can now be cleared up.
Definition

Let e be the number such thatIne = 1.
Since In x is a one-to-one function from the set of positive real numbers onto the set of all real numbers, there must
be exactly one number x such that In x = 1. That number is designated e.

Since, by (25.12),In2<1<2In2 =1n 4, we know that 2 < e < 4.

(26.15) (GC) e~2.718281828
This estimate can be obtained from a graphing calculator. Later we will find out how to approximate e to
any degree of accuracy.
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Now we can show that the notation ¢* is not misleading, that is, that e* actually is a power of e. First of
all, this can be proved for positive integers x by mathematical induction. [In fact, by (26.3), e =e"¢=¢'. So,
by (26.9), ¢! = e"e! = ¢"e for any positive integer n and therefore, if we assume by inductive hypothesis that
e" represents the produce of e by itself n times, then ¢! is the product of e by itself n + 1 times.] By (26.8)
e’ = 1, which corresponds to the standard definition of €°. If n is a positive integer, ¢ would ordinarily be
defined by 1/¢" and this is identical to the function value given by (26.11). If k and n are positive integers,
then the power ¢*'” is ordinarily defined as ¥/e*. Now, in fact, by (26.9), the product """, . . ¢/, where
there are n factors, is equal to e*/"**/m+ - **n= ¢k Thus, the function value e*" is identical to the nth root
of ¢*. For negative fractions, we again apply (26.11) to see that the function value is identical to the value
specified by the usual definition. Hence, the function value e* is the usual power of ¢ when x is any rational
number. Since our function ¢* is continuous, the value of ¢* when x is irrational is the desired limit of e" for
rational numbers r approaching x.

The graph of y = ¢ is shown in Fig. 26-2. By (26.13), the graph rises without bound on the right and, by
(26.14), the negative x axis is a horizontal asymptote on the left. Since D?(e*) = D (e*) = e* > 0, the graph is
concave upward everywhere. The graph of y = ¢™ is also shown in Fig. 26-2. It is obtained from the graph
of y = ¢* by reflection in the y axis.

(26.16) " = lim (1+3)"
For a proof, see Problem 5.
(26.17) e= I}qum(l +1)
This is a special case of (26.16) when x = 1. We can use this formula to approximate e, although the

convergence to e is rather slow. For example, when n = 100, we get 2.7169 and, when n = 10 000,
we get 2.7181, which is correct only to three decimal places.

0.1)

Fig. 26-2

The General Exponential Function
Let a > 0. Then we can define a* as follows:

Definition
a* = e* Ina
Note that this is consistent with the definition of e* since, whena =e,Ina = 1.

(26.18) D_(a*)=(Ina)a*
In fact,

D (e"™*)y=D, (e")D.u (chainrule withu = xIna)

=e"(Ina)=e"™(Ina)=a*(Ina)

EXAMPLE 26.3: D (29 =(In2)2".
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1
(26.19) ja'dxzma +C

This is a direct consequence of (26.18).

EXAMPLE 26.4: lex = ﬁlox +C

\Y usu i Wers.
We can derive the usual properties of powers
(26.20) a°=

aozeoma:eoz 1
(26.21) a“*=a"a’

au+v — e(u+1/) Ina — et Ina+vlna — et lnuevlnu = a‘a?’

u

(26.22) a " =L

av

By (26.21), a**a’ = a“ %" = g". Now divide by a".

1
(26.23) a™’ = P
Replace u by 0 in (26.22) and use (26.20).

(26.24) a" =(a")"

(au)v — evln(a“) — ev(u(lna)) — e(uv)]na — auv
(26.25) (ab)" = a"b"
aubu — eulnueulnb — eulna+ulnb — eu(lna+lnb) = euln(ab) — (ab)u

Recall that we know that D _(x") = rx"! for rational numbers r. Now we are able to prove that formula
for any real number r.

(26.26) D_(x) ="
Since x" = e""¥,

D (x")=D (e"™)=D,(e*)D () (Chain Rule with u = rlnx)

=e" (r(%j) = r(x’)(%) = ri—: =t

General Logarithmic Functions
Let a > 0. We want to define a function log, x that plays the role of the traditional logarithm to the base a. If

|
y=log, x, then @® = x and, therefore, In (a”)=Inx, ylna=Inx,y= %.
Definition
1 Inx
Oga X ln

(26.27) y=log, xisequivalent to a’ = x

Inx
yzlogﬂx@yzm@ylnazlnx

< In(a”) =Inx < @’ = x (The symbol < is the symbol for equivalence,
that is, if and only if.)

Thus, the general logarithmic function with base a is the inverse of the general exponential function with
base a.

(26.28) a“=* =x



CHAPTER 26 Exponential and Logarithmic Functions

(26.29) log, (a") =x
These follow from (26.27). See Problem 6.

The usual properties of logarithm can easily be derived. See Problem 7.

Notice that log, x = ln_x = me

usual sense, with base e.

SOLVED PROBLEMS

1. Evaluate: (a) In (€%); (b) €'%; () e™32; (e) 1%

(a) In(e’)=3Dby (26.2)
(b) €’2=(e"2)7 =27 =128 by (26.24) and (26.3)

In3

=Inx. Thus, the natural logarithm turns out to be a logarithm in the

(c) e2=

= e% by (26.10)
(d) 1v=ehl =g = "= by (26.8)

2. Find the derivatives of: (a) e**'; (b)5%; (¢)3x™; (d) x%e".

(a) D_(e**")=e*! (3)=3e*"" by the Chain Rule

(b) D (5*)=D,(5)D(u)  (chain rule with u =3x)
=(In5)5"(3) by (26.13)
=3(In5)5*

(©) D,(3x")=3(mx"")=37x™" by (26.26)

(d) D (x*¢*)=x*D (e*)+e*D (x?) by the product rule

=x%" +e*(2x) = xe* (x+2)

3. Find the following antiderivative: (a) J3(2-*) dx; (b) J. x2e* dx

(a) j3(2)dx 3]2 dy=3752"+C= 22x+c
1

1 1 .
— 43 — 2 X — u — __pu — ¥
(b) Let u=x3, du=3x dx.ThenJ‘xe dx—3fe du—3e +C—3e +C

4.  Solve the following equations for x: (a) Inx* =2; (b) In (Inx) =0; (¢) e**!1 =3; (d) &' = 3e™=2.
In general, In A = B is equivalent to A = €%, and ¢€ = D is equivalent to C = In D.

(@) Inx*=31Inx. Hence,Inx*=2yields3Inx=2, Inx=4%,x=¢*?

(b) In (In x) =0 is equivalent to In x = €° = 1, which, in turn, is equivalent to x = e¢' = e.
In3+1

(¢c) e*'=3isequivalentto 2x—1=1n3, and thento x=

(d) Multiply both sides by e%: e — 3 =2¢*, € —2¢* -3 =0. Lettmg u = e* yields the quadratic equation > — 2u —
3=0; (u—3)(u+1)=0, with solutions # = 3 and u = —1. Hence, ¢* =3 or ¢* = —1. The latter is impossible
since e* is always positive. Hence, ¢* = 3 and, therefore, x = In 3.

5. Prove (26.16): ¢ —hm(1+ )

Let 4, 2(14’%) . Then
Ina =n1n(1+ﬁ)=u(w)
! n uln

W) is a difference quotient for D (In x) at x =1, with Ax =u/n. As n — +oo,

The expression (
u/n — 0. So, that difference quotient approaches D (In x)|X:l = (l/x)|x:1 =1 Hence,

11m Ina, = u(1) =u. So, hma = lim " = e".

n—>+oeo
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6. Prove (26.28) a"%* = x and (26.29) log, (a*) = x.

7. Derive the following properties of log, x:

(a)

(b)

(©)

(d)

(e)

()

(2)

Substituting log, x for y in (26.27), we get a™*%* = x.
Substituting a” for x in (26.27), we get y =log_(a").

log, 1=0.

Inl 0
logn 1 = m = =
log, a=1.

Ina
log, a= Ta =1
log, uv =log, u+log, v.

Inuy _Inu+Inv _

Ina ~ Ina

Inu
Ina

log, ur =

log, % =log,u—log,v.

Replace u in (c) by %

log, % =-log,v.
Replaceubylin(d).
log, (u")=rlog, u.

Ina

rinu
“Tna ~
1
Tna x°

log, (u")= rlog, u

D _(log, x)=

Ina In

D.(log, x)=D, (lnx) 1aD(lnx)

SUPPLEMENTARY PROBLEMS

lnv

=log,u+log, v

Ll
Ina

8. Calculate the derivatives of the following functions:

(@) y=e* Ans.  y’=5¢e*
(b) y=e Ans. =3sec?(3x) e
() y=ero Ans. y’=—e *(cosx +sinx)
(d y=3" Ans. ¥y = —2x(ln 3)3-+
(e) y=sin"'(e") Ans. =
Y Y= NI

® y=e Ans.  y' =e*
(g) y=x* Ans. y'=x*(1+Inx)

hy y=log,(3x> -5 Ans, yr=—_ 6%
( ) y= Oglo( X ) ns. y _11’110 3x2_5

9. Find the following antiderivatives:
(a) j 32y Ans. 21n3 34+ C
1/x
- Ans. —e""+C
X 4

© [ +1etdx ans. o

d Ie +1 Ans. —In(e* +1)+

Ans. -+ +C
—x° +2 1 e
() J. Ans. - 5e +C



10.

11.

12.

13.

14.
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(2) J.(e" +1)2dx Ans. te* +2e¢*+x+C
xﬂH
(h) J'(e Z—x )dx Ans. ¢ e+1+C
. e )
@) jh—ﬂdx Ans.  +In(e* +3)+C
Ans. sin”'(e*)+C
O \/1—— (e)
3 X+l A
&) [xE)dx Ans. =
log,, x 1 ) )
I [—0=d Ans. g (nx) + c-1nl0 2 010 og, 32 + €
(Hyperbolic Functions) Define
. et —e™ e +e* sinh x
sinhx = 5 coshx = 5 tanhx = coshx’ = Goshx

Derive the following results:

(a) D_(sinh x)=coshxand D _(cosh x) =sinh x.

(b) D (tanh x) = sech’x and D (sech x) = —sech x tanh x.

(¢) cosh? x —sinh? x = 1.

(d) sinh (x 4+ y) = sinh x cosh y + cosh x sinh y.

(e) cosh (x+y)=cosh x cosh y + sinh x sinh y.

(f) sinh 2x =2 sinh x cosh x.

(g) cosh 2x = cosh? x + sinh? x =2 cosh?>x — 1 =2 sinh> x + 1.

(h)

Ans. (0, 2)

Solve the following equations for x.

(a) =2 Ans.  $In2
(b) In(x*)=-1 Ans. e*
(¢©) In(lnx)=2 Ans. e“
(d) e —4e*=3 Ans. 2In2
(e) e*+12¢" = Ans. 2In2andIn3
) 5=7 Ans. 7~ log,7
(&) log,(x+3)=5 Ans. 29
(h) log, x* +log,x=4 Ans. /16
(i) log, (2*)=20 Ans. 5
G) e =Te*= Ans. —3In2
k) x*=x3 Ans. land3

. el - er —
Evaluate (a) 1{12’& ; (b) %15)1(} 7
Ans. (a) 15 (b) 0

e2+ lnx

Evaluate: (a) J = +2 ——=dx; (b).[

Ans. (a)In%; (b) 3

. . . 1
(GC) Use Newton’s method to approximate (to four decimal places) a solution of e* = <

Ans. 0.5671

(GC) Sketch the graph of y = 2 cosh (x/2) (called a “catenary”), and find its minimum point.



CHAPTER 26 Exponential and Logarithmic Functions

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

1
(GC) Use Simpson’s rule with n = 4 to approximate J’O e~*'? dx to four decimal places.

Ans.  0.8556

If interest is paid at r percent per year and is compounded n times per year, then P dollars become P(l + ﬁ)
dollars after 1 year. If n — +oo, then the interest is said to be compounded continuously. "

(a) If compounded continuously at r percent per year, show that P dollars becomes Pe”' dollars after 1 year,
and Pe'% dollars after ¢ years.

(b) At r percent compounded continuously, how many years does it take for a given amount of money to double?

(c) (GC) Estimate to two decimal places how many years it would take to double a given amount of money
compounded continuously at 6% per year?

(d) (GC) Compare the result of compounding continuously at 5% with that obtained by compounding once a

year.
Ans. (b) &”1112)’“ @; (c) about 11.55 years;
(d) After 1 year, $1 becomes $1.05 when compounded once a year, and about $1.0512 when compounded

continuously.
Find (log,; e) - In 10.
Ans. 1
Write as a single logarithm with base a: 3 log, 2 +log, 40 —log, 16
Ans. log, 20

(GC) Estimate log, 7 to eight decimal places.

Ans.  2.80735492

Show that log, x = (log, x)(log, @).

(GC) Graph y = ¢ /2, Indicate absolute extrema, inflection points, asymptotes, and any symmetry.

Ans.  Absolute maximum at (0, 1), inflection points at x ==1, x axis is a horizontal asymptote on the left and
right, symmetric with respect to the y axis.

Given e — x+ y?> =1, find Ey by implicit differentiation.
Ans. A=Y
2y + xe®
. et —e™*
( GC) Graph y=sinhx= 3
Evaluate J e e
X + e—X

Ans. In(ef+e™)+C

Use logarithmic differentiation to find the derivative of y = x**.

3y(1—1Inx)

xZ

Ans



