
CHAPTER 26

214

Exponential and Logarithmic 
Functions

From Chapter 25, we know that the natural logarithm ln x is an increasing differentiable function with do-
main the set of all positive real numbers and range the set of all real numbers. Since it is increasing, it is a 
one-to-one function and, therefore, has an inverse function, which we shall denote by ex.

Definition

ex is the inverse of ln x.

It follows that the domain of ex is the set of all real numbers and its range is the set of all positive real 
numbers. Since ex is the inverse of ln x, the graph of ex can be obtained from that of ln x by reflection in the 
line y = x. See Fig. 26-1.

Fig 26-1

Our notation may be confusing. It should not be assumed from the notation that ex is an ordinary power of 
base e with exponent x. Later in this chapter, we will find out that this is indeed true, but we do not know it yet.

Properties of ex

(26.1) ex > 0 for all x
 The range of ex is the set of positive real numbers.
(26.2) ln (ex) = x
(26.3) eln x = x
 Properties (26.2) and (26.3) follow from the fact that ex and ln x are inverses of each other.
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CHAPTER 26  Exponential and Logarithmic Functions 215

(26.4) ex is an increasing function.
 Assume u < v. Since u = ln (eu) and v = ln (ev), ln (eu) < ln (ev). But, since ln x is increasing, eu < ev. 

[For, if ev ≤ eu, then ln (ev) ≤ ln (eu).] 

(26.5) D
x(e

x) = ex

 Let y = ex. Then ln y = x. By implicit differentiation, 
1

1
y

y′ =  and, therefore, y′ = y = ex. For a more 

rigorous argument, let f (x) = ln x and f  −1(y) = ey. Note that ′ =f x
x

( ) .
1

 By Theorem 10.2(b),

 ( ) ( )
( ( ))

, , ( )f y
f f y

D e
e

ey
y

y
−

−′ = ′ = =1
1

1 1
1

that is
/

yy
 

EXAMPLE 26.1: D e D e D u u xx
x

u
u

x( ( ) ( ) ( sin )sin ) = =Chain Rule, with

== =e x e xu x(cos ) (cos )sin

(26.6) e dx e Cx x= +∫
EXAMPLE 26.2:    To find xe dx u x du x dxx2 2 2, , .let Then= =∫

xe dx e du e C e Cx u u x2 21
2

1
2

1
2∫ ∫= = + = +

(26.7) e dx e Cx x− −= − +∫
 Let u x du dx e dx e du e C e Cx u u x= − = − = − = − + = − +− −∫∫, . .Then

(26.8) e0 = 1
 By (26.3), 1 = eln 1 = e0.

(26.9) eu+v = euev

 ln (e u+v) = u + v = ln (eu) + ln (ev) = ln (euev) by (25.6). Hence, e e eu u+ =v v  because ln x is a one-to-one 
function.

(26.10) e
e
e

u
u

− =v
v

 By (26.9), eu−vev = e(u−v) +v = eu. Now divide by ev. 

(26.11) e
e

− =v
v

1

 Replace u by 0 in (26.10) and use (26.8).

(26.12) x < e x for all x
 By Problem 7 of Chapter 25, ln x ≤ x − 1 < x. By (26.3) and (26.4), x = eln x < e x. 

(26.13) lim
x

xe
→+∞

= +∞

 This follows from (26.4) and (26.12).

(26.14) lim
x

xe
→−∞

= 0

 Let u = −x. As x → ∞, u → + ∞ and, by (26.13), eu → + ∞. Then, by (26.11), e e
e

x u
u= = →− 1

0.

The mystery of the letter e in the expression ex can now be cleared up. 

Definition

Let e be the number such that ln e = 1.
Since ln x is a one-to-one function from the set of positive real numbers onto the set of all real numbers, there must 

be exactly one number x such that ln x = 1. That number is designated e.

Since, by (25.12), ln 2 < 1 < 2 ln 2 = ln 4, we know that 2 < e < 4. 

(26.15) (GC) e ~ .2 718281828
This estimate can be obtained from a graphing calculator. Later we will find out how to approximate e to 
any degree of accuracy.
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CHAPTER 26  Exponential and Logarithmic Functions216

Now we can show that the notation ex is not misleading, that is, that ex actually is a power of e. First of 
all, this can be proved for positive integers x by mathematical induction. [In fact, by (26.3), e = eln e = e1. So, 
by (26.9), en+1 = ene1 = ene for any positive integer n and therefore, if we assume by inductive hypothesis that 
en represents the produce of e by itself n times, then en+1 is the product of e by itself n + 1 times.] By (26.8) 
e0 = 1, which corresponds to the standard definition of e0. If n is a positive integer, e−n would ordinarily be 
defined by 1/en  and this is identical to the function value given by (26.11). If k and n are positive integers, 
then the power ek n/  is ordinarily defined as ekn . Now, in fact, by (26.9), the product e e ek n k n k n/ / /. . . , where 
there are n factors, is equal to e ek n k n k n k/ / / .+ + ⋅ ⋅ ⋅ + =  Thus, the function value ek n/  is identical to the nth root 
of ek. For negative fractions, we again apply (26.11) to see that the function value is identical to the value 
specified by the usual definition. Hence, the function value ex is the usual power of e when x is any rational 
number. Since our function ex is continuous, the value of ex when x is irrational is the desired limit of er for 
rational numbers r approaching x.

The graph of y = ex is shown in Fig. 26-2. By (26.13), the graph rises without bound on the right and, by 
(26.14), the negative x axis is a horizontal asymptote on the left. Since D e D e ex

x
x

x x2 0( ) ( ) ,= = >  the graph is 
concave upward everywhere. The graph of y = e−x is also shown in Fig. 26-2. It is obtained from the graph 
of y = ex by reflection in the y axis.

(26.16) ex

n

x
n

n= +( )
→+∞
lim 1

 For a proof, see Problem 5.

(26.17) e
n

n
n= +( )

→+∞
lim 1 1

 This is a special case of (26.16) when x = 1. We can use this formula to approximate e, although the 
convergence to e is rather slow. For example, when n = 100, we get 2.7169 and, when n = 10 000, 
we get 2.7181, which is correct only to three decimal places.

Fig. 26-2

The General Exponential Function
Let a > 0. Then we can define ax as follows:

Definition

ax = ex ln a

Note that this is consistent with the definition of ex since, when a = e, ln a = 1. 

(26.18) D
x
 (ax) = (ln a)ax

 In fact,

D e D e D u u x a

e

x
x a

u
u

x

u

( ) ( ) ln )ln = =

=

(chain rulewith

((ln ) (ln ) (ln )lna e a a ax a x= =

EXAMPLE 26.3:   Dx(2
x) = (ln 2)2x. 
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CHAPTER 26  Exponential and Logarithmic Functions 217

(26.19) a dx
a

a Cx x= +∫
1

ln
 This is a direct consequence of (26.18).

EXAMPLE 26.4: 10
1
10 10x x C= +∫ ln

We can derive the usual properties of powers.

(26.20) a0 = 1
 a0 = e0 ln a = e0 = 1
(26.21) au+v = auav

 au+v = e(u+v) ln a = eu ln a + v ln a = eu ln aev ln a = auav

(26.22) a
a
a

u
u

− =v
v

 By (26.21), au−vav = a(u−v) +v = au. Now divide by av. 

(26.23) a
a

− =v
v

1

 Replace u by 0 in (26.22) and use (26.20).

(26.24) a a

a e e e

u u

u a u a u au

v v

v v v v

=

= = =

( )

( ) ln( ) ( (ln )) ( ) ln == auv

(26.25) ( )

ln ln ln ln (ln

ab a b

a b e e e e

u u u

u u u a u b u a u b u a

=

= = =+ ++ = =ln ) ln( ) ( )b u ab ue ab

Recall that we know that D
x
 (xr) = rxr−1 for rational numbers r. Now we are able to prove that formula 

for any real number r.

(26.26) Dx (x
r) = rxr −1

 Since xr = er ln x, 

D x D e D e D u ux
r

x
r x

u
u

x( ) ( ) ( ) ( ) (ln= = Chain Rule with ==

= ⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝

⎞
⎠ = =

r x

e r
x

r x
x

r
x
x

ru r
r

ln )

( )
1 1

1 xxr−1

General Logarithmic Functions
Let a > 0. We want to define a function loga x that plays the role of the traditional logarithm to the base a. If 

y xa= log , then ay = x and, therefore, ln ( ) ln , ln ln ,
ln
ln .a x y a x y

x
a

y = = =

Definition

log
ln
ln .a x

x
a

=

( )26.27 y x a x

y x y

a
y

a

= =

= ⇔ =

log

log
l

is equivalent to

nn
ln ln ln

ln( ) ln (

x
a

y a x

a x a xy y

⇔ =

⇔ = ⇔ = ⇔The symbol iss the symbol for equivalence,

that is, if and only iff .)

Thus, the general logarithmic function with base a is the inverse of the general exponential function with 
base a.

(26.28) a xa xlog =
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CHAPTER 26  Exponential and Logarithmic Functions218

(26.29) loga (a
x) = x

 These follow from (26.27). See Problem 6.

 The usual properties of logarithm can easily be derived. See Problem 7.

Notice that log
ln
ln

ln
ln .e x

x
e

x
x= = =1  Thus, the natural logarithm turns out to be a logarithm in the 

usual sense, with base e.

SOLVED PROBLEMS

1. Evaluate: (a) ln (e3); (b) e7 ln 2; (c) e(ln 3)−2; (e) 1u. 

(a) ln (e3) = 3 by (26.2)
(b) e7 ln 2 = (eln 2)7 = 27 = 128 by (26.24) and (26.3)

(c) e
e
e e

(ln )
ln

3 2
3

2 2

3− = =  by (26.10)

(d) 1u = eu ln 1 = eu(0) = e0 = 1 by (26.8)

2. Find the derivatives of: (a) e3x+1; (b)53x; (c)3xπ; (d) x2ex. 

(a) Dx
 (e3x+1) = e3x+1 (3) = 3e3x+1 by the Chain Rule

( ) ( ) ( ) ( ) ( )

(

b chain rule withD D D u u xx
x

u
u5 5 33 = =

= lln ) ( ) ( . )

(ln )

5 5 3 26 18

3 5 53

u

x

by

=

 

(c) D x x xx ( ) ( ) ( . )3 3 3 26 261 1π π ππ π= =− − by

(d) D x e x D e e D xx
x

x
x x

x( ) ( ) ( )2 2 2= +
=

by the product rule

xx e e x xe xx x x2 2 2+ = +( ) ( )

3. Find the following antiderivative: ( ) ( ) ; ( ) .a b3 2 2 3x xdx x e dx∫∫
(a) 3 2 3 2 3

1
2 2

3
2 2( ) ln ln

x x x xdx dx C C= = + = +∫∫
(b) Let u x du x dx x e dx e du e Cx u u= = = = + =∫3 2 23

1
3

1
3

13, . Then 33
3e Cx +∫

4. Solve the following equations for x: ( ) ln ; ( ) ln (ln ) ; ( ) ;a b cx x e x3 2 12 0 3= = =−  (d) ex − 3e−x = 2.
In general, ln A = B is equivalent to A = eB, and eC = D is equivalent to C = ln D.

(a) ln x3 = 3 ln x. Hence, ln x3 = 2 yields 3 ln x = 2, ln , ./x x e= =2
3

2 3

(b) ln (ln x) = 0 is equivalent to ln x = e0 = 1, which, in turn, is equivalent to x = e1 = e. 

(c) e2x−1 = 3 is equivalent to 2x − 1 = ln 3, and then to x = +ln
.

3 1
2

(d) Multiply both sides by ex: e2x − 3 = 2ex, e2x − 2ex − 3 = 0. Letting u = ex yields the quadratic equation u2 − 2u − 
3 = 0; (u − 3) (u + 1) = 0, with solutions u = 3 and u = −1. Hence, ex = 3 or ex = −1. The latter is impossible 
since ex is always positive. Hence, ex = 3 and, therefore, x = ln 3.

5. Prove (26.16): e
u
n

u

n

n

= +⎛
⎝⎜

⎞
⎠⎟→+∞

lim .1

Let a
u
nn

n

= +⎛
⎝⎜

⎞
⎠⎟1 . Then

ln ln
ln ( ) ln

a n
u
n

u
u n
u nn = +⎛

⎝⎜
⎞
⎠⎟ = + −⎛

⎝⎜
⎞
⎠⎟1

1 1/
/

The expression ln ( ) ln1 1+ −⎛
⎝⎜

⎞
⎠⎟

u n
u n

/
/

 is a difference quotient for Dx(ln x) at x = 1, with Δ /x u n= . As n → + ∞,

 u/n → 0. So, that difference quotient approaches D x xx x x
(ln ) ( ) .= == =

1 1
1 1/  Hence, 

lim ln ( ) . , lim lim ln

n n n n n

aa u u a e
→+∞ →+∞ →+∞

= = =1 So nn eu= .
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CHAPTER 26  Exponential and Logarithmic Functions 219

6. Prove (26.28) a xa xlog =  and (26.29) loga (a
x) = x. 

Substituting log
a x for y in (26.27), we get a xa

xlog .=
Substituting ay for x in (26.27), we get y aa

y= log ( ).

7. Derive the following properties of log
a
 x: 

(a) log .

log
ln
ln ln

a

a a a

1 0

1
1 0

0

=

= = =

(b) log .

log
ln
ln

a

a

a

a
a
a

=

= =

1

1

(c) log log log .

log
ln
ln

ln ln
ln

a a a

a

u u

u
u
a

u
v v

v v
= +

= = +
v

aa
u
a a

ua a= + = +ln
ln

ln
ln log log

v
v

(d) log log log .a a a

u
uv v= −

 Replace u in (c) by 
u
v .

(e) log log .

( ).
a a

u

1

1
v v= −

Replace by in d

(f ) log ( ) log .

log ( )
ln( )

ln
ln

ln

a
r

a

a
r

r

u r u

u
u
a

r u
a

=

= = = rr ualog

(g) D x
a x

D x D
x
a

x a

x a x

(log ) ln .

(log )
ln
ln

=

= ⎛
⎝⎜

⎞
⎠⎟ =

1 1

1
lln (ln ) lna

D x
a xx = 1 1

SUPPLEMENTARY PROBLEMS

8. Calculate the derivatives of the following functions:

(a) y e Ans y ex x= ′ =5 55.
(b) y e Ans y x ex x= ′ =tan tan. sec ( )3 2 33 3
(c) y e Ans y e x xx x x= ′ = − +− −cos . (cos sin )
(d) y Ans y xx x= ′ = −− −3 2 3 32 2. (ln )

(e) y e Ans y
e

e
x

x

x
= ′ =

−
−sin ( ) .1

21
(f) y e Ans y ee x ex x= ′ = +.
(g) y x Ans y x xx x= ′ = + In. ( )1

(h) y x Ans y
x

x
= − ′ = −log ( ) . ln10

2
23 5

1
10

6
3 5

9. Find the following antiderivatives:

(a) 3
1

2 3 32 2x xdx Ans C. ln +∫
(b) 

e
x

dx Ans e C
x

x
1

2
1

/
/. − +∫

(c) ( ) .
( )

e e dx Ans
e

Cx x
x

+ + +∫ 1
1

4
3

4

(d) 
dx

e
Ans x ex

x

+ − + +∫ 1
1. ln( )

(e) 
e
x

dx Ans e C
x

x
1

3
1
2

1

2

2
/

/. − +∫
(f) e xdx Ans e C

x
x∫

− +
− +− +

2
22

21
2.
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(g) ( ) .e dx Ans e e x Cx x x+ + + +∫ 1 22 1
2

2

(h) ( ) .e x dx Ans e
x
e

Cx e x
e

− − + +
+

∫
1

1

(i) 
e

e
dx Ans e C

x

x
x

2

2
1
2

2

3
3+ + +∫ . ln( )

(j) 
e dx

e
Ans e C

x

x

x

1 2

1

−
+∫ −. sin ( )

(k) x dx Ans Cx x3 1 15
1

4 5 54 4( ) . ln
+ + +∫

(l) 
log

. ln (ln )
ln

(log )10 2
10

21
2 10

10
2

x
x

dx Ans x C x+ = + CC∫

10. (Hyperbolic Functions) Define

sinh , cosh , tanh
sinh
coshx

e e
x

e e
x

xx x x x

= − = + =
− −

2 2 xx
h

x
, sec cosh= 1

Derive the following results:

(a) Dx
 (sinh x) = cosh x and D

x
 (cosh x) = sinh x. 

(b) D
x(tanh x) = sech2 x and Dx(sech x) = −sech x tanh x.

(c) cosh2 x − sinh2 x = 1.
(d) sinh (x + y) = sinh x cosh y + cosh x sinh y.
(e) cosh (x + y) = cosh x cosh y + sinh x sinh y.
(f ) sinh 2x = 2 sinh x cosh x.
(g) cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 2 sinh2 x + 1.
(h) (GC) Sketch the graph of y = 2 cosh (x/2) (called a “catenary”), and find its minimum point.

Ans. (0, 2)

11. Solve the following equations for x.

(a) e Ansx3 1
32 2= . ln

(b) ln ( ) . /x Ans e4 1 41= − −

(c) ln(ln ) .x Ans ee= 2 2

(d) e e Ansx x− =−4 3 2 2. ln
(e) e e Ansx x+ =−12 7 2 2 3. ln lnand

(f) 5 7
7
5 75

x Ans= =.
ln
ln log

(g) log ( ) .2 3 5 29x Ans+ =
(h) log log .2

2
2

34 16x x Ans+ =
(i) log ( ) .2

42 20 5x Ans=
(j) e e Ansx x− −− = −2 7 8 3 2. ln
(k) x x Ansx = 3 1 3. and

12. Evaluate ( ) lim ; ( ) lima b
h

h

h

he
h

e
h→ →

− −
0 0

1 12

.

Ans. (a) 1; (b) 0

13. Evaluate: ( ) ; ( )
lnln

a b
e

e
dx

x
x

dx
x

x

e

+
+

∫∫ 2
2

10

2

Ans. (a) ln 4
3 ;  (b) 5

2

14. (GC) Use Newton’s method to approximate (to four decimal places) a solution of e
x

x = 1
.

Ans. 0.5671
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15. (GC) Use Simpson’s rule with n = 4 to approximate e dxx−∫ 2 2

0

1
/  to four decimal places.

Ans.  0.8556

16. If interest is paid at r percent per year and is compounded n times per year, then P dollars become P
r

n

n

1 100+⎛
⎝⎜

⎞
⎠⎟

 
dollars after 1 year. If n → + ∞, then the interest is said to be compounded continuously.

(a) If compounded continuously at r percent per year, show that P dollars becomes Per/100 dollars after 1 year, 
and Pe  

rt/100 dollars after t years.
(b) At r percent compounded continuously, how many years does it take for a given amount of money to double?
(c) (GC) Estimate to two decimal places how many years it would take to double a given amount of money 

compounded continuously at 6% per year?
(d) (GC) Compare the result of compounding continuously at 5% with that obtained by compounding once a 

year. 

Ans
r r

. ( )
(ln )

~
.

; ( )b c about 11.55 yea
100 2 69 31

rrs;

(d)  After 1 year, $1 becomes $1.05 when compounded once a year, and about $1.0512 when compounded 
continuously.

17. Find (log10 e) · ln 10.

Ans.  1

18. Write as a single logarithm with base a: 3 log
a 2 + loga 40 − loga 16

Ans. log
a 20

19. (GC) Estimate log2 7 to eight decimal places.

Ans. 2.80735492 

20. Show that log
b x = (loga x)(logb a).

21. (GC) Graph y e x= − 2 2/ . Indicate absolute extrema, inflection points, asymptotes, and any symmetry.

Ans. Absolute maximum at (0, 1), inflection points at x = ±1,  x axis is a horizontal asymptote on the left and 
right, symmetric with respect to the y axis.

22. Given e x y
dy
dx

xy − + =2 1, find  by implicit differentiation.

Ans
ye

y xe

xy

xy.
1
2

−
+

23. ( GC) Graph y x
e ex x

= = − −

sinh 2 .

24. Evaluate e e
e e

dx
x x

x x

−
+

−

−∫ .

Ans. ln (ex + e-x) + C

25. Use logarithmic differentiation to find the derivative of y x x= 3/ .

Ans. 
3 1

2

y x
x

( ln )−
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