CHAPTER 17

Differential Exercises Trigonometric Functions

Continuity of $\cos x$ and $\sin x$

It is clear that cos *x* and sin *x* are continuous functions, that is, for any θ ,

 $\lim_{h \to 0} \cos (\theta + h) = \cos$ $(\theta + h) = \cos \theta$ and $\lim_{h \to 0} \sin (\theta + h) = \sin \theta$ *h*

To see this, observe that, in Fig. 17-1, as *h* approaches 0, point *C* approaches point *B*. Hence, the *x* coordinate of *C* (namely, cos $(\theta + h)$) approaches the *x* coordinate of *B* (namely, cos θ), and the *y* coordinate of *C* (namely, sin $(\theta + h)$) approaches the *y* coordinate of *B* (namely, sin θ).

To find the derivative of sin *x* and cos *x*, we shall need the following limits.

(17.1)
$$
\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1
$$

(17.2)
$$
\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0
$$

θ

For a proof of (17.1), see Problem 1. From (17.1), (17.2) is derived as follows:

$$
\frac{1-\cos\theta}{\theta} = \frac{1-\cos\theta}{\theta} \cdot \frac{1+\cos\theta}{1+\cos\theta} = \frac{1-\cos^2\theta}{\theta(1+\cos\theta)}
$$

$$
= \frac{\sin^2\theta}{\theta(1+\cos\theta)} = \frac{\sin\theta}{\theta} \cdot \frac{\sin\theta}{1+\cos\theta}.
$$

139

Hence,

$$
\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \cdot \lim_{\theta \to 0} \frac{\sin \theta}{1 + \cos \theta} = 1 \cdot \frac{\sin 0}{1 + \cos 0} = 1 \cdot \frac{0}{1 + 1} = 1 \cdot 0 = 0
$$

 (17.3) $D_x(\sin x) = \cos x$

 (17.4) $D_x(\cos x) = -\sin x$

For a proof of (17.3), see Problem 2. From (17.3) we can derive (17.4), with the help of the chain rule and (16.8), as follows:

$$
D_x(\cos x) = D_x\left(\sin\left(\frac{\pi}{2} - x\right)\right) = \cos\left(\frac{\pi}{2} - x\right) \cdot (-1) = -\sin x
$$

Graph of $sin x$

Since sin $(x + 2\pi) = \sin x$, we need only construct the graph for $0 \le x \le 2\pi$. Setting $D_x(\sin x) = \cos x = 0$ and noting that cos $x = 0$ in [0, 2 π] when and only when $x = \pi/2$ or $x = 3\pi/2$, we find the critical numbers $\pi/2$ and $3\pi/2$. Since $D_x^2(\sin x) = D_x(\cos x) = -\sin x$, and $-\sin(\pi/2) = -1 < 0$ and $-\sin(3\pi/2) = 1 > 0$, the second derivative test implies that there is a relative maximum at $(\pi/2, 1)$ and a relative minimum at $(3\pi/2, -1)$. Since $D_x(\sin x) = \cos x$ is positive in the first and fourth quadrants, $\sin x$ is increasing for $0 < x < \pi/2$ and for $3\pi/2 < x < 2\pi$. Since $D_x^2(\sin x) = -\sin x$ is positive in the third and fourth quadrants, the graph is concave upward for $\pi < x < 2\pi$. Thus, there will be an inflection point at $(\pi, 0)$, as well as at $(0, 0)$ and $(2\pi, 0)$. Part of the graph is shown in Fig. 17-2.

Graph of $cos x$

Note that $\sin (\pi/2 + x) = \sin (\pi/2) \cos x + \cos (\pi/2) \sin x = 1 \cos x + 0 \sin x = \cos x$. Thus, the graph of cos *x* can be drawn by moving the graph of sin *x* by $\pi/2$ units to the left, as shown in Fig. 17-3.

Fig. 17-3

The graphs of $y = \sin x$ and $y = \cos x$ consist of repeated waves, with each wave extending over an interval of length 2*p*. The length (*period*) and height (*amplitude*) of the waves can be changed by multiplying the argument and the value, respectively, by constants.

EXAMPLE 17.1: Let $y = \cos 3x$. The graph is sketched in Fig. 17-4. Because $\cos 3(x + 2\pi/3) = \cos (3x + 2\pi) =$ cos 3*x*, the function is of period $p = 2\pi/3$. Hence, the length of each wave is $2\pi/3$. The number of waves over an interval of length 2π (corresponding to one complete rotation of the ray determining the angle *x*) is 3. This number is called the *frequency f* of cos 3*x*. In general, $pf =$ (length of each wave) \times (number of waves in an interval of 2π) = 2π . Hence, $f = 2\pi/p$.

For any $b > 0$, the functions $\sin bx$ and $\cos bx$ have frequency *b* and period $2\pi/b$.

EXAMPLE 17.2: $y = 2 \sin x$. The graph of this function (see Fig. 17-5) is obtained from that of $y = \sin x$ by doubling the *y* values. The period and frequency are the same as those of $y = \sin x$, that is, $p = 2\pi$ and $f = 1$. The amplitude, the maximum height of each wave, is 2.

EXAMPLE 17.3: In general, if $b > 0$, then $y = A \sin bx$ and $y = A \cos bx$ have period $2\pi/b$, frequency *b*, and amplitude |*A*|. Figure 17-6 shows the graph of *y* = 1.5 sin 4*x*.

Other Trigonometric Functions

Derivatives

- **(17.5)** D_x (tan x) = sec² x
- **(17.6)** $D_x(\cot x) = -\csc^2 x$
- **(17.7)** $D_x(\sec x) = \tan x \sec x$
- **(17.8)** $D_x(\csc x) = -\cot x \csc x$

For the proofs, see Problem 3.

Other Relationships

- **(17.9)** $\tan^2 x + 1 = \sec^2 x$ $\tan^2 x + 1 = \frac{\sin^2 x}{\cos^2 x}$ $x^2 x + 1 = \frac{\sin^2 x}{\cos^2 x} + 1 = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ $x+1 = \frac{\sin^2 x}{\cos^2 x} + 1 = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ $x + \cos^2 x$ $x+1 = \frac{\sin^2 x}{\cos^2 x} + 1 = \frac{\sin^2 x + \cos^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$
- **(17.10)** $\tan (x + \pi) = \tan x$ and $\cot (x + \pi) = \cot x$

Thus, tan *x* and cot *x* have period π . See Problem 4.

- **(17.11)** $\tan(-x) = -\tan x$ and $\cot(-x) = -\cot x$
	- $\tan(-x) = \frac{\sin(-x)}{\cos(-x)}$ sin cos $(x-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\frac{\sin x}{\cos x} = -\frac{\sin x}{\cos x}$ *x x* $\frac{x}{x}$ = -tan *x*, and similarly for cot *x*

Graph of $y = \tan x$

Since tan *x* has period π , it suffices to determine the graph in (− $\pi/2$, $\pi/2$). Since tan (−*x*) = −tan *x*, we need only draw the graph in $(0, \pi/2)$ and then reflect in the origin. Since tan $x = (\sin x)/(\cos x)$, there will be vertical asymptotes at $x = \pi/2$ and $x = -\pi/2$. By (17.5), D_x (tan $x > 0$ and, therefore, tan x is increasing.

 $D_x^2(\tan x) = D_x(\sec^2 x) = 2 \sec x(\tan x \sec x) = 2 \tan x \sec^2 x.$

Thus, the graph is concave upward when tan $x > 0$, that is, for $0 < x < \pi/2$, and there is an inflection point at (0, 0). Some special values of tan *x* are given in Table 17-1, and the graph is shown in Fig. 17-7.

For an acute angle θ of a right triangle,

 $an \theta = \frac{\sin \theta}{\cos \theta} = \frac{\text{opposite}}{\text{hypotenuse}}$: adjacent hypotenuse $=\frac{\text{opposite}}{\text{adjacent}}$

Graph of $y = \sec x$

Since sec $x = 1/(\cos x)$, the graph will have a vertical asymptote $x = x_0$ for all x_0 for which $\cos x_0 = 0$, that is, for $x = (2n + 1)\pi/2$, where *n* is any integer. Like cos *x*, sec *x* has a period of 2π , and we can confine our attention to $(-\pi, \pi)$. Note that $|\sec x| \ge 1$, since $|\cos x| \le 1$. Setting $D_x(\sec x) = \tan x \sec x = 0$, we find critical numbers at $x = 0$ and $x = \pi$, and the first derivative test tells us that there is a relative minimum at $x = 0$ and a relative maximum at $x = \pi$.

Since

 $D_x^2(\sec x) = D_x(\tan x \sec x) = \tan x(\tan x \sec x) + \sec x(\sec^2 x) = \sec x(\tan^2 x + \sec^2 x)$

there are no inflection points and the curve is concave upward for $-\pi/2 < x < \pi/2$. The graph is shown in Fig. 17-8.

Angles Between Curves

By the *angle of inclination* of a nonvertical line \mathcal{L} , we mean the smaller counterclockwise angle α from the positive *x* axis to the line. (See Fig. 17-9.) If *m* is the slope of \mathcal{L} , then $m = \tan \alpha$. (To see this, look at Fig. 17-10, where the line \mathcal{L}' is assumed to be parallel to \mathcal{L} and, therefore, has the same slope *m*. Then $m =$ $(\sin \alpha - 0)/(\cos \alpha - 0) = (\sin \alpha)/(\cos \alpha) = \tan \alpha.$)

By the *angle between two curves at a point of intersection P*, we mean the smaller of the two angles between the tangent lines to the curves at *P*. (See Problems 17 and 18.)

SOLVED PROBLEMS

1. Prove (17.1): $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$

> Since $\frac{\sin(-\theta)}{-\theta} = \frac{\sin \theta}{\theta}$ $\frac{n\theta}{\theta}$, we need consider only $\theta > 0$. In Fig. 17-11, let $\theta = \angle AOB$ be a small positive central angle of a circle of radius $OA = OB = 1$. Let *C* be the foot of the perpendicular from *B* onto *OA*. Note that $OC = \cos\theta$ and $CB = \sin\theta$. Let *D* be the intersection of *OB* and an arc of a circle with center at *O* and radius *OC*. So,

> > Area of sector $COD \le$ area of $\triangle COB \le$ area of sector AOB

Observe that area of sector $COD = \frac{1}{2}\theta \cos^2 \theta$ and that area of sector $AOB = \frac{1}{2}\theta$. (If *W* is the area of a sector determined by a central angle θ of a circle of radius *r*, then *W*/(area of circle) = $\theta/2\pi$. Thus, $W/\pi r^2 = \theta/2\pi$ and, therefore, $W = \frac{1}{2} \theta r^2$.)

Hence,

$$
\frac{1}{2}\theta\cos^2\theta \le \frac{1}{2}\sin\theta\cos\theta \le \frac{1}{2}\theta
$$

Division by $\frac{1}{2}\theta \cos \theta > 0$ yields

$$
\cos \theta \le \frac{\sin \theta}{\theta} \le \frac{1}{\cos \theta}
$$

As θ approaches 0^+ , $\cos\theta \rightarrow 1$, $1/(\cos \theta) \rightarrow 1$. Hence,

$$
1 \le \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \le 1 \quad \text{Thus} \quad \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1
$$

2. Prove (17.3): $D_x(\sin x) = \cos x$.

Here we shall use (17.1) and (17.2) .

Let $y = \sin x$. Then $y + \Delta y = \sin (x + \Delta x)$ and

 $\Delta y = \sin(x + \Delta x) - \sin x = \cos x \sin \Delta x + \sin x \cos \Delta x - \sin x$

$$
= \cos x \sin \Delta x + \sin x (\cos \Delta x - 1)
$$

\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left(\cos x \frac{\sin \Delta x}{\Delta x} + \sin x \frac{\cos \Delta x - 1}{\Delta x} \right)
$$

\n
$$
= (\cos x) \lim_{\Delta x \to 0} \frac{\sin \Delta x}{\Delta x} + (\sin x) \lim_{\Delta x \to 0} \frac{\cos \Delta x - 1}{\Delta x}
$$

\n
$$
= (\cos x)(1) + (\sin x)(0) = \cos x
$$

3. Prove: (a) D_x (tan *x*) = see² *x* (17.5); (b) D_x (sec *x*) = tan *x* sec *x* (17.7).

(a)
$$
\frac{d}{dx}(\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right) = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x}
$$

$$
= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x
$$

(b) Differentiating both sides of (17.9), $\tan^2 x + 1 = \sec^2 x$, by means of the chain rule, we get

 $2 \tan x \sec^2 x = 2 \sec x D_x (\sec x)$.

Hence, $D_x(\sec x) = \tan x \sec x$.

4. Prove (17.10): $tan(x + \pi) = tan x$.

 $sin(x + \pi) = sin x cos \pi + cos x sin \pi = -sin x$ $cos(x + \pi) = cos x cos \pi - sin x sin \pi = -cos x$

Hence,

$$
\tan(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin x}{-\cos x} = \frac{\sin x}{\cos x} = \tan x
$$

5. Derive $\tan(u-v) = \frac{\tan u - \tan v}{1 + \tan u \tan v}$

- $\tan(u v) = \frac{\sin(u v)}{\cos(u v)} = \frac{\sin u \cos v \cos u \sin v}{\cos u \cos v + \sin u \sin v}$ $v - \cos u \sin v$ $\cos u \cos v + \sin u \sin v$ $\frac{\sin u}{\sin v}$ $=\frac{\frac{\sin u}{\cos u} - \frac{\sin v}{\cos v}}{1 + \frac{\sin u}{\sin v}}$ cos *u* cos *v* $1+\frac{\sin u}{\cos u}\frac{\sin u}{\cos u}$ (divide numerator and denominator by $\cos u \cos v$) $=\frac{\tan u - \tan v}{1 + \tan u \tan v}$ $\tan u - \tan$ $\tan u \tan$ *u* $1 + \tan u$
- **6.** Calculate the derivatives of the following functions: (a) $2\cos 7x$; (b) $\sin^3 (2x)$; (c) $\tan (5x)$; (d) $\sec (1/x)$.
	- (a) $D_x(2 \cos 7x) = 2(-\sin 7x)(7) = -14 \sin 7x$
	- (b) $D_x(\sin^3(2x)) = 3(\sin^2(2x))(\cos(2x))(2) = 6\sin^2(2x)\cos(2x)$
	- (c) D_x (tan (5*x*)) = (sec² (5*x*))(5) = 5 sec² (5*x*)
	- (d) $D_x(\sec(1/x)) = \tan(1/x) \sec(1/x) (-1/x^2) = -(1/x^2) \tan(1/x) \sec(1/x)$

7. Find all solutions of the equation $\cos x = \frac{1}{2}$.

Solving $(\frac{1}{2})^2 + y^2 = 1$, we see that the only points on the unit circle with abscissa $\frac{1}{2}$ are $(\frac{1}{2}, \sqrt{3}/2)$ and $(\frac{1}{2}, -\sqrt{3}/2)$. The corresponding central angles are $\pi/3$ and $5\pi/3$. So, these are the solutions in [0, 2 π]. Since cos *x* has period 2π , the solutions are $\pi/3 + 2\pi n$ and $5\pi/3 + 2\pi n$, where *n* is any integer.

8. Calculate the limits (a)
$$
\lim_{x \to 0} \frac{\sin 5x}{2x}
$$
; (b) $\lim_{x \to 0} \frac{\sin 3x}{\sin 7x}$; (c) $\lim_{x \to 0} \frac{\tan x}{x}$

(a)
$$
\lim_{x \to 0} \frac{\sin 5x}{2x} = \lim_{x \to 0} \frac{5}{2} \frac{\sin 5x}{5x} = \frac{5}{2} \lim_{u \to 0} \frac{\sin u}{u} = \frac{5}{2} (1) = \frac{5}{2}
$$

(b) $\lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{7}{\sin 7x}$ *x x x x* $\lim_{x\to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x\to 0} \frac{\sin 3x}{3x} \cdot \frac{7x}{\sin 7x} \cdot \frac{3}{7} =$ 7 3 3 7 7 3 7 3 $rac{3}{7}$ $\lim_{u\to 0}$ $\frac{\sin u}{u}$ $\lim_{u\to 0}$ $\frac{u}{\sin u}$ $=\frac{3}{7}(1)(1)=\frac{3}{7}$ *u u u* $\lim_{u \to 0} u \lim_{u \to 0} \sin u$

(c)
$$
\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{u \to 0} \frac{1}{\cos x}
$$

$$
= (1)(\frac{1}{1}) = 1
$$

9. Let $y = x \sin x$. Find y'' .

$$
y' = x\cos x + \sin x
$$

$$
y'' = x(-\sin x) + \cos x + \cos x = -x\sin x + 2\cos x
$$

$$
y''' = -x\cos x - \sin x - 2\sin x = -x\cos x - 3\sin x
$$

10. Let $y = \tan^2(3x - 2)$. Find y'' .

$$
y' = 2\tan(3x - 2)\sec^{2}(3x - 2) \cdot 3 = 6\tan(3x - 2)\sec^{2}(3x - 2)
$$

$$
y'' = 6[\tan(3x - 2) \cdot 2\sec(3x - 2) \cdot \sec(3x - 2)\tan(3x - 2) \cdot 3 + \sec^{2}(3x - 2)\sec^{2}(3x - 2) \cdot 3]
$$

$$
= 36\tan^{2}(3x - 2)\sec^{2}(3x - 2) + 18\sec^{4}(3x - 2)
$$

11. Assume $y = \sin(x + y)$. Find *y'*.

$$
y' = \cos(x + y) \cdot (1 + y') = \cos(x + y) + \cos(x + y) \cdot (y')
$$

Solving for *y*′,

$$
y' = \frac{\cos(x+y)}{1-\cos(x+y)}
$$

12. Assume sin $y + \cos x = 1$. Find y'.

$$
\cos y \cdot y' - \sin x = 0. \quad \text{So} \quad y' = \frac{\sin x}{\cos y}
$$
\n
$$
y'' = \frac{\cos y \cos x - \sin x(-\sin y) \cdot y'}{\cos^2 y} = \frac{\cos x \cos y + \sin x \sin y \cdot y'}{\cos^2 y}
$$
\n
$$
= \frac{\cos x \cos y + \sin x \sin y (\sin x) / (\cos y)}{\cos^2 y} = \frac{\cos x \cos^2 y + \sin^2 x \sin y}{\cos^3 y}
$$

13. A pilot is sighting a location on the ground directly ahead. If the plane is flying 2 miles above the ground at 240 mi/h, how fast must the sighting instrument be turning when the angle between the path of the plane and the line of sight is 30°? See Fig. 17-12.

$$
\frac{dx}{dt} = -240 \text{ mi/h} \quad \text{and} \quad x = 2 \cot \theta
$$

From the last equation, $\frac{dx}{dt}$ $= -2 \csc^2 \theta \frac{d\theta}{dt}$. Thus, $-240 = -2(4) \frac{d\theta}{dt}$ when $\theta = 30^\circ$ *d dt* $\frac{d\theta}{dt} = 30 \text{ rad/h} = \frac{3}{2\pi} \text{deg/s}$

14. Sketch the graph of $f(x) = \sin x + \cos x$.

 $f(x)$ has a period of 2π . Hence, we need only consider the interval [0, 2π]. $f'(x) = \cos x - \sin x$, and $f''(x) =$ $-(\sin x + \cos x)$. The critical numbers occur where $\cos x = \sin x$ or $\tan x = 1$, $x = \pi/4$ or $x = 5\pi/4$.

 $f''(\pi/4) = -(\sqrt{2}/2 + \sqrt{2}/2) = -\sqrt{2} < 0$. So, there is a relative maximum at $x = \pi/4$, $y = \sqrt{2}$. $f''(5\pi/4) = -(-\sqrt{2}/2 - \sqrt{2}/2) = \sqrt{2} > 0$. Thus, there is a relative minimum at $x = 5\pi/4$, $y = -\sqrt{2}$. The inflection points occur where $f''(x) = -(sin x + cos x) = 0$, $sin x = -cos x$, $tan x = -1$, $x = 3\pi/4$ or $x = 7\pi/4$, $y = 0$. See Fig. 17-13.

Fig. 17-13

15. Sketch the graph of $f(x) = \cos x - \cos^2 x$.

 $f'(x) = -\sin x - 2(\cos x)(-\sin x) = (\sin x)(2\cos x - 1)$

and

$$
f''(x) = (\sin x)(-2\sin x) + (2\cos x - 1)(\cos x)
$$

= 2(\cos² x - \sin² x) - \cos x = 4\cos² x - \cos x - 2

Since *f* has period 2π , we need only consider $[-\pi, \pi]$, and since *f* is even, we have to look at only [0, π]. The critical numbers are the solutions in [0, π] of sin $x = 0$ or 2 cos $x - 1 = 0$. The first equation has solutions 0 and π , and the second is equivalent to $\cos x = \frac{1}{2}$, which has the solution $\pi/3$. $f''(0) = 1 > 0$; so there is a relative minimum at (0, 0). $f''(\pi) = 3 > 0$; so there is a relative minimum at $(\pi, -2)$. $f''(\pi/3) = -\frac{3}{2} < 0$; hence there is a relative maximum at $(\pi/3, \frac{1}{4})$. There are inflection points between 0 and $\pi/3$ and between $\pi/3$ and π ; they can be found by using the quadratic formula to solve $4 \cos^2 x - \cos x - 2 = 0$ for cos *x* and then using a cosine table or a calculator to approximate *x*. See Fig. 17-14.

Fig. 17-14

16. Find the absolute extrema of
$$
f(x) = \sin x + x
$$
 on $[0, 2\pi]$.

 $f'(x) = \cos x + 1$. Setting $f'(x) = 0$, we get cos $x = -1$ and, therefore, the only critical number in [0, 2 π] is $x = \pi$. We list π and the two endpoints 0 and 2π and compute the values of $f(x)$.

x	$f(x)$
π	π
0	0
2π	2π

Hence, the absolute maximum 2π is achieved at $x = 2\pi$, and the absolute minimum 0 at $x = 0$.

17. Find the angle at which the lines $\mathcal{L}_1: y = x + 1$ and $\mathcal{L}_2: y = -3x + 5$ intersect.

Let α_1 and α_2 be the angles of inclination of \mathcal{L}_1 and \mathcal{L}_2 (see Fig. 17-15), and let m_1 and m_2 be the respective slopes. Then tan $\alpha_1 = m_1 = 1$ and tan $\alpha_2 = m_2 = -3$. $\alpha_2 - \alpha_1$ is the angle of intersection. Now, by Problem 5,

$$
\tan(\alpha_2 - \alpha_1) = \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2} = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{-3 - 1}{1 + (-3)(1)}
$$

$$
= \frac{-4}{-2} = 2
$$

From a graphing calculator, $\alpha_{2} - \alpha_{1} \sim 63.4^{\circ}$.

18. Find the angle α between the parabolas $y = x^2$ and $x = y^2$ at (1, 1). Since $D_x(x^2) = 2x$ and $D_x(\sqrt{x}) = 1/(2\sqrt{x})$, the slopes at (1, 1) are 2 and $\frac{1}{2}$. Hence, $\tan \alpha = \frac{2-(\frac{1}{2})}{1+2(\frac{1}{2})} = \frac{\frac{3}{2}}{2}$ 3 4 $\frac{1}{2}$ $\frac{3}{2} = \frac{3}{4}$. Thus, using a graphing calculator, we approximate α by 36.9°.

SUPPLEMENTARY PROBLEMS

- **19.** Show that $cot(x + \pi) = cot x$, $sec(x + 2\pi) = sec x$, and $csc(x + 2\pi) = csc x$.
- **20.** Find the period *p*, frequency *f*, and amplitude *A* of 5 sin(*x*/3) and sketch its graph.

Ans.
$$
p = 6\pi, f = \frac{1}{3}, A = 5
$$

21. Find all solutions of $\cos x = 0$.

Ans.
$$
x = (2n+1)\frac{\pi}{2}
$$
 for all integers *n*

22. Find all solutions of tan $x = 1$.

Ans. $x = (4n+1)\frac{\pi}{4}$ for all integers *n*

- **23.** Sketch the graph of $f(x) = \frac{\sin x}{2 \cos x}$.
	- *Ans*. See Fig. 17−16.

Fig. 17-16

- **24.** Derive the formula $\tan(u + v) = \frac{\tan u + \tan v}{1 \tan u \tan v}$.
- **25.** Find *y*′.

- **26.** Evaluate: (a) $\lim_{x\to 0} \frac{\sin x}{\sin x}$ $\lim_{x\to 0} \frac{\sin ax}{\sin bx}$; (b) $\lim_{x\to 0} \frac{\sin^3(2x)}{x \sin^2(3x)}$ *x* $\lim_{x \to 0} x \sin^2(3x)$ 3 $\frac{(2)}{20}$ 3
	- *Ans.* (a) $\frac{a}{b}$; (b) $\frac{8}{9}$
- **27.** If $x = A \sin kt + B \cos kt$, show that $\frac{d^2x}{dt^2} = -k^2x$.
- **28.** (a) If $y = 3 \sin(2x + 3)$, show that $y'' + 4y = 0$. (b) If $y = \sin x + 2 \cos x$, show that $y''' + y'' + y' + y = 0$.
- **29.** (i) Discuss and sketch the following on the interval $0 \le x < 2\pi$. (ii) (GC) Check your answers to (i) on a graphing calculator.
	- (a) $y = \frac{1}{2} \sin 2x$
	- (b) $y = \cos^2 x \cos x$
	- (c) *y* = *x* − 2 sin *x*
	- (d) $y = \sin x(1 + \cos x)$
	- (e) $y = 4\cos^3 x 3\cos x$
	- *Ans.* (a) maximum at $x = \pi/4$, $5\pi/4$; minimum at $x = 3\pi/4$, $7\pi/4$; inflection point at $x = 0$, $\pi/2$, π , $3\pi/2$ (b) maximum at $x = 0$, π ; minimum at $x = \pi/3$, $5\pi/3$; inflection point at $x = 32^{\circ}32'$, $126^{\circ}23'$, $233^{\circ}37'$, 327°28′
		- (c) maximum at $x = 5\pi/3$; minimum at $x = \pi/3$; inflection point at $x = 0$, π
		- (d) maximum at $x = \pi/3$; minimum at $x = 5\pi/3$; inflection point at $x = 0$, π , 104°29′, 255°31′
		- (e) maximum at $x = 0$, $2\pi/3$, $4\pi/3$; minimum at $x = \pi/3$, π , $5\pi/3$; inflection point at $x = \pi/2$, $3\pi/2$, $\pi/6$, 5*p*/6, 7*p*/6, 11*p*/6

30. If the angle of elevation of the sun is 45 \degree and is decreasing by $\frac{1}{4}$ radians per hour, how fast is the shadow cast on the ground by a pole 50 ft tall lengthening?

Ans. 25 ft/h

31. Use implicit differentiation to find *y*^{\cdot}: (a) tan *y* = *x*²; (b) cos (*xy*) = 2*y*.

Ans. (a) $y'' = 2x \cos^2 y$; (b) $y' = -\frac{y \sin(xy)}{2 + x \sin(xy)}$ $sin(xy)$ $2 + x \sin(xy)$