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SECTION 1 BINARY OPERATIONS 

The transition from elementary school arithmetic to high school algebra involves using 
letters to represent unknown numbers and studying the basic properties of equations and 
expressions. The two main binary operations used in high school algebra are addition 
and multiplication. Abstract algebra takes the next step in abstraction. Not only are 
the variables unknown, but the actual operations involved may be unknown! We will 
study sets that have binary operations with properties similar to those of addition and 
multiplication of numbers. In Part I, our goal will be to develop some of the basic 
properties of a group. In this section we start our investigation of groups by defining 
binary operations, naming properties possessed by some binary operations, and giving 
examples. 

Definitions and Examples 

The first step in our journey to understand groups is to give a precise mathematical 
definition of a binary operation that generalizes the familiar addition and multiplication 
of numbers. Recall that for any set S, Definition 0.4 defines the set S x S to contain all 
ordered pairs (a, b) with a, b E S. 

1.1 Definition A binary operation * on a set S is a function mapping S x S into S. For each (a, b) E 

S x S, we wi ll denote the element *((a, b)) of S by a* b. • 
Intuitively, we may regard a binary operation * on S as assigning, to each ordered 

pair (a, b) of elements of S, an element a * b of S. 
Binary refers to the fact that we are mapping pairs of elements from S into S. We 

could also define a ternary operation as a function mapping triples of elements of S to S, 
but we will have no need for this type of operation. Throughout this book we will often 
drop the term binary and use the term operation to mean binary operation. 

1.2 Example Our usual addition + is an operation on the set R Our usual multiplication is a 
different operation on R In this example, we could replace lR by any of the sets C , Z, 
JR+, or z+ . ... 
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12 Part I Groups and Subgroups 

Note that we require an operation on a set S to be defined for every ordered pair 
(a, b) of elements from S. 

1.3 Example Let M(IR) be the set of all matricest with real entries. The usual matrix addition+ is 
not an operation on this set since A + B is not defined for an ordered pair (A, B) of 
matrices having different numbers of rows or of columns. • 

Sometimes an operation on S provides an operation on a subset H of S also. We 
make a formal definition. 

1.4 Definition Let * be an operation on S and let H be a subset of S. The subset H is closed under 
* if for all a, b E H we also have a * b E H. In this case, the operation on H given by 
restricting* to His the induced operation of* on H . • 

By our very definition of an operation * on S, the set S is closed under *· but a 
subset may not be, as the following example shows. 

1.5 Example Our usual addition + on the set lR of real numbers does not induce an operation on the 
set IR* of nonzero real numbers because 2 E IR* and -2 E IR*, but 2 + (-2) = 0 and 
0 rj; IR*. Thus IR* is not closed under *· • 

In our text, we will often have occasion to decide whether a subset H of S is closed 
under a binary operation * on S. To arrive at a correct conclusion, we have to know what 
it means for an element to be in H , and to use this fact. Students often have trouble here. 
Be sure you understand the next example. 

1.6 Example Let + and · be the usual operations of addition and multiplication on the set Z, 
and let H = {n2 1n E z +j. Determine whether H is closed under (a) addition and 
(b) multiplication. 

For part (a), we need only observe that 12 = 1 and 22 = 4 are in H, but that 
1 + 4 = 5 and 5 rf; H. Thus His not closed under addition. 

For part (b), suppose that r EH and s EH. Using what it means for rand s to be 
in H , we see that there must be integers n and m in z + such that r = n2 and s = m2 . 

Consequently, rs = n2 m2 = (nm)2
. By the characterization of elements in Hand the fact 

that nm E z +, this means that rs E H, so His closed under multiplication. • 

1.7 Example Let F be the set of all real-valued functions/ having as domain the set lR of real numbers. 
We are familiar from calculus with the operations+,-,-, and o on F. Namely, for each 
ordered pair (j, g) of functions in F, we define for each x E lR 

f + g by (f + g)(x) = f(x) + g(x) 
f - g by (f - g)(x) = f(x) - g(x) 

f · g by (f · g)(x) = f(x)g(x) 
fog by (f o g)(x) = f(g(x)) 

addition, 
subtraction, 
multiplication, and 
composition. 

All four of these functions are again real valued with domain IR, so Fis closed under all 
four operations+,-,-, and o. • 

The operations described in the examples above are very familiar to you. In this 
text, we want to abstract basic structural concepts from our familiar algebra. To empha-

t Most students of abstract algebra have studied linear algebra and are fam iliar with matrices and matrix 
operations. For the benefit of those students, examples involving matrices are often given. The reader who is 
not familiar with matrices can either skip all references to them or turn to the Appendix at the back of the text, 
where there is a short summary. 
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size this concept of abstraction from the familiar, we should illustrate these structural 
concepts with unfamiliar examples. 

The most important method of describing a particular binary operation * on a given 
set is to characterize the element a* b assigned to each pair (a, b) by some property 
defined in terms of a and b. 

1.8 Example On z+, we define an operation * by a* b equals the smaller of a and b, or the common 
value if a = b. Thus 2 * 11 = 2; 15 * 10 = 10; and 3 * 3 = 3. .A 

1.9 Example On z+, we define an operation*' by a*' b =a. Thus 2 *' 3 = 2; 25 *' 10 = 25; and 

5 *' 5 = 5. ... 

1.10 Example On z+, we define an operation*" by a*" b = (a* b) + 2, where* is defined in Exam-
ple 1.8. Thus 4 *" 7 = 6; 25 *" 9 = 11 ; and 6 *" 6 = 8. .A 

It may seem that these examples are of no importance, but in fact they are used mil­
lions of times each day. For example, consider the GPS navigational system installed 
in most cars and cell phones. It searches alternative driving routes, computes the travel 
time, and determines which route takes less time. The operation in Example 1.8 is pro­
grammed into modern GPS systems and it plays an essential role. 

Examples 1.8 and 1.9 were chosen to demonstrate that an operation may or may 
not depend on the order of the given pair. Thus in Example 1.8, a * b = b * a for all 
a, b E z+, and in Example 1.9 this is not the case, for 5 *' 7 = 5 but 7 *' 5 = 7. 

1.11 Definition An operation * on a set S is commutative if (and only if) a * b = b *a for all 
a,b ES. • 

As was pointed out in Section 0, it is customary in mathematics to omit the words 
and only if from a definition. Definitions are always understood to be if and only if 
statements. Theorems are not always if and only if statements, and no such convention 
is ever used for theorems. 

Now suppose we wish to consider an expression of the form a * b * c. A bi­
nary operation * enables us to combine only two elements, and here we have three. 
The obvious attempts to combine the three elements are to form either (a* b) * c or 
a* (b * c). With * defined as in Example 1.8, (2 * 5) * 9 is computed by 2 * 5 = 2 
and then 2 * 9 = 2. Likewise, 2 * (5 * 9) is computed by 5 * 9 = 5 and then 2 * 5 = 2. 
Hence (2 * 5) * 9 = 2 * (5 * 9), and it is not hard to see that for this *, 

so there is no ambiguity in writing a* b *c. But for*" of Example 1.10, 

(2 *" 5) *" 9 = 4 *" 9 = 6, 

while 

2 *" (5 *" 9) = 2 *" 7 = 4. 

Thus (a*" b) *" c need not equal a*" (b *" c), and the expression a*" b *" c is 
ambiguous. 

1.12 Definition An operation on a set Sis associative if (a* b) * c = a* (b * c) for all a, b, c E S. • 

It can be shown that if * is associative, then longer expressions such as a * b * 
c * d are not ambiguous. Parentheses may be inserted in any fashion for purposes of 
computation; the final results of two such computations will be the same. 
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Composition of functions mapping IR into IR was reviewed in Example 1.7. For any 
set S and any functions f and g mapping S into S, we similarly define the composition 
fog of g followed by fas the function mapping S into S such that (f o g)(x) = f(g(x)) 
for all x E S. Some of the most important binary operations we consider are defined 
using composition of functions. It is important to know that function composition is 
always associative whenever it is defined. 

1.13 Theorem (Associativity of Composition) Let S be a set and Jet/, g, and h be functions mapping 
S into S. Then/ o (go h) = (fog) oh. 

Proof To show these two functions are equal, we must show that they give the same assignment 
to each x E S. Computing we find that 

(f o (go h))(x) = f((g o h)(x)) = f(g(h(x))) 

and 

((fog) o h)(x) = (f o g)(h(x)) = f(g(h(x))), 

so the same elementf(g(h(x))) of Sis indeed obtained. • 
As an example of using Theorem 1.13 to save work, recall that it is a fairly painful 

exercise in summation notation to show that multiplication of n x n matrices is an asso­
ciative operation. If, in a linear algebra course, we first show that there is a one-to-one 
correspondence between matrices and linear transformations and that multiplication of 
matrices corresponds to the composition of the linear transformations (functions), we 
obtain this associativity at once from Theorem 1.13. 

There is another property that an operation on a set may have that is of particular 
importance in algebra. The numbers 0 and 1 play special roles as real numbers because 
for any real number a, a + 0 = a and a x I = a. Because of these properties, 0 is called 
the additive identity in IR and l is called the multiplicative identity in R In general we 
have the following definition of an identity. 

1.14 Definition Let S be a set with binary operation *· If e E S has the property that for all a E S, 
a * e = e *a = a, then e is called an identity element for *· • 

We included both conditions a * e = a and e * a = a in the definition of an identity 
because we are not assuming that the operation on S is commutative. Of course, if the 
operation is commutative, such as + and x on the real numbers, then we would only 
have to check one of the conditions and the other follows from commutativity. 

1.15 Theorem (Uniqueness of Identity) A set with binary operation * has at most one identity 
element. 

Proof We need to show that there cannot be two different identity elements. To do this, we 
assume that both e and e' are identities and show that e = e' . Consider the element 
e * e' . Since e is an identity, e * e' = e' . But e* e' = e because e' is also an identity. 
Therefore e = e' . + 

1.16 Example Continuing with Example 1.7, Jet F be the set of all functions mapping the real numbers 
to the real numbers . We verify that the function defined by 1(x) = x is the identity for the 
operation function composition. Let/ E F. Then/ o t(x) = f(t(x)) = f(x) and Lo f(x) = 
t(f(x)) = f(x). 

The function m(x) = l is the identity for the operation function multiplication, 
a(x) = 0 is the identity for function addition, but function subtraction has no identity 
element. .&. 
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The last property that we consider in this section is the existance of inverse ele­
ments. For addition, the inverse of a real number a is -a. Using multiplication, the 
inverse of a nonzero real number a is ~ . We now give the formal definition of an inverse 
for an element x. 

1.17 Definition If* is an operation on the set Sand S has an identity e, then for any x ES, the inverse 
of x is an element x' such that x * x' = x' * x = e. • 

1.18 Example Continuing Example 1.16, let F be the set of functions mapping the real numbers to 
the real numbers with operation function composition. We have two definitions for the 
inverse of a function f E F, the usual definition of an inverse function and Definition 
1.17. The two definitions match since both say that an inverse for f is a function f' 
such that f of' = f ' of = t. So f E F has an inverse if and only if f is one-to-one and 
00~. • 

Tables 

For a finite set, a binary operation on the set can be defined by means of a table in which 
the elements of the set are listed across the top as heads of columns and at the left side 
as heads of rows. We always require that the elements of the set be listed as heads across 
the top in the same order as heads down the left side. The next example illustrates the 
use of a table to define a binary operation. 

1.19 Example Table 1.20 defines the binary operation* on S = {a, b, c) by the following rule: 

(ith entry on the left) * (jth entry on the top) 

1.20 Table =(entry in the ith row andjth column of the table body). 

* 
a 

b 

c 

a b 

b c 

a c 

c b 

c 

b 

b 

a 

Thus a * b = c and b * a = a, so * is not commutative. 

We can easily see that a binary operation defined by a table is commutative 
if and only if the entries in the table are symmetric with respect to the diagonal 
that starts at the upper left corner of the table and terminates at the lower right 
corner. 

1.21 Example Complete Table 1.22 so that* is a commutative operation on the set S = {a, b, c, d). 

Solution From Table 1.22, we see that b *a = d. For * to be commutative, we must have a * 
b = d also. Thus we place d in the appropriate square defining a * b, which is located 
symmetrically across the diagonal in Table 1.23 from the square defining b *a. We 
obtain the rest of Table 1.23 in this fashion to give our solution. • 

1.22 Table 1.23 Table 

* a b c d 

a b 

b d a 

c a c d 

d a b b c 
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1.24 Example When an operation has an identity element, it is customary to put the identity first in the 
list of heads. This makes the first row and the first column match the head row and head 
column as seen in Table 1.25. .A. 

1.25 Table 

* 
e 

a 

b 

c 

e a b 

e a b 

a c c 

b a e 

c e a 

c 

c 

a 

c 

b 

Some Words of Warning 

Classroom experience shows the chaos that may result if a student is given a set and 
asked to define some binary operation on it. Remember that in an attempt to define a 
binary operation * on a set S we must be sure that 

1. exactly one element is assigned to each possible ordered pair of elements of S, 

2. for each ordered pair of elements of S, the element assigned to it is again in S. 

Regarding Condition 1, a student will often make an attempt that assigns an element 
of S to "most" ordered pairs, but for a few pairs, determines no element. In this event, 
* is not everywhere defined on S. It may also happen that for some pairs, the at­
tempt could assign any of several elements of S, that is, there is ambiguity. In any case 
of ambiguity, * is not well defined. If Condition 2 is violated, then S is not closed 
under *· 

1.26 Example On which of the sets Q, Q*, and z+ does the formula a * b = a/ b define an operation? 
Note that this formula does not make sense in the case that b = 0. So for example, 
2 * 0 = 2/0 is not defined, which means Condition l is not satisfied. So * is not an 
operation on Q . 

If we throw out 0, we do have an operation on Q* since both Conditions I and 2 
are satisfied. That is, for any a, b E Q*, a * b = a/ b is a non zero rational number. 

The set z+ does not include 0, but there is another issue. For example, 1 * 2 = 
1/2 <le z+, which means that Condition 2 is violated and* is not an operation on z+ . .& 

Following are several illustrations of attempts to define operations on sets. Some 
of them need some work! The symbol * is used for the attempted operation in all these 
examples. 

1.27 Example Let F be the set of all real-valued functions with domain lR as in Example 1.7. Suppose 
we "define" * to give the usual quotient off by g, that is, f * g = h, where h(x) = 
f(x)/ g(x). Here Condition 2 is violated, for the functions in F are defined for all real 
numbers, and for some g E F, g(x) will be zero for some values of x in lR and h(x) 
would not be defined at those numbers in R For example, if f (x) = cos x and g(x) = x?, 
then h(O) is undefined, so h f:. F. .A. 

1.28 Example Let F be as in Example 1.27 and letf * g = h, where his the function greater than both 
f and g. This "definition" is extremely vague. In the first place, we have not defined 
what it means for one function to be greater than another. Even if we had, any sensible 
definition would result in there being many functions greater than both f and g, and* 
would still be not well defined. .A. 

1.29 Example Let S be a set consisting of 20 people, no two of whom are of the same height. Define 
* by a * b = c, where c is the tallest person among the 20 in S. This is a perfectly good 
binary operation on the set, although not a particularly interesting one. .A. 

1.30 Example Let S be as in Example 1.29 and let a * b = c, where c is the shortest person in S who 
is taller than both a and b. This * is not everywhere defined, since if either a orb is the 
tallest person in the set, a * b is not determined. .A. 
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• EXER CISES 1 

Computations 

Exercises l through 4 concern the binary operation * defined on S = {a, b, c, d, e} by means of Table 1.31. 

1. Computeb*d,c*c,and[(a*C)*e]*a. 

2. Compute (a* b) * c and a* (b *c).Can you say on the basis of this computation whether * is associative? 

3. Compute (b * d) * c and b * (d * c). Can you say on the basis of this computation whether* is associative? 

4. Is * commutative? Why? 

5. Complete Table 1.32 so as to define a commutative binary operation* on S = {a, b, c, d). 

6. Table 1.33 can be completed to define an associative binary operation * on S = {a, b, c, d). Assume this is 
possible and compute the missing entries. Does S have an identity element? 

1.31 Table 1.32 Table 1.33 Table 

* a b c d e * a b c d * a b c d 

a a b c b d a a b c a a b c d 

b b c a e c b b d c b b a c d 

c c a b b a c c a d b c c d c d 

d b e b e d d d a d 

e d b a d c 

In Exercises 7 through 11, determine whether the operation * is associative, whether the operation is commutative, 
and whether the set has an identity element. 

7. *defined on .Z by Jetting a* b =a - b 

8. * defined on Q by Jetting a* b = 2ab + 3 

9. * defined on .Z by letting a * b = ab + a + b 

10. * defined on .z+ by letting a * b = 2 ab 

11. * defined on .z+ by Jetting a * b = ab 

12. Let S be a set having exactly one element. How many different binary operations can be defined on S? Answer 
the question if S has exactly 2 elements; exactly 3 elements; exactly n elements. 

13. How many different commutative binary operations can be defined on a set of 2 elements? on a set of 3 
elements? on a set of n elements? 

14. How many different binary operations on a set S with n elements have the property that for all x E S, x * x = x? 

15. How many different binary operations on a set S with n elements have an identity element? 

Concepts 

In Exercises 16 through 19, correct the definition of the italicized term without reference to the text, if correction 
is needed, so that it is in a form acceptable for publication. 

16. A binary operation * is commutative if and only if a* b = b *a. 

17. A binary operation * on a set S is associative if and only if, for all a,b,c ES, we have 
(b * c) *a = b * (c *a). 

18. A subset Hof a set Sis closed under a binary operation* on S if and only if (a* b) E H for all a, b E S. 

19. An identity in the set S with operation * is an element e E S such that a * e = e *a = a. 

20. Is there an example of a set S, a binary operation on S, and two different elements e 1, e2 E S such that for all 
a E S, e 1 *a= a and a* e2 =a? If so, give an example and if not, prove there is not one. 
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In Exercises 21 through 26, determine whether the definition of* does give a binary operation on the set. In the 
event that* is not a binary operation, state whether Condition I , Condition 2, or both conditions regarding defining 
binary operations are violated. 

21. On z+, define a* b = b0
. 

22. On JR+ , define * by letting a * b = 2a - b. 

23. On JR+ , define * by a * b to be the minimum of a and b - 1 if they are different and their common value if 
they are the same. 

24. On IR, define a * b to be the number c so that cb = a. 

25. On z+, define* by letting a* b = c, where c is at least 5 more than a+ b. 

26. On z+, define* by letting a* b = c, where c is the largest integer less than the product of a and b. 

27. Let H be the subset of M1(1R) consisting of all matrices of the form [~ -:J for a, b E JR. Is H closed under 

a. matrix addition? b. matrix multiplication? 

28. Determine whether each of the following is true or false. 

a. If* is any binary operation on any set S, then a* a = a for all a E S. 

b. If* is any commutative binary operation on any set S, then a* (b * c) = (b * c) *a for all a, b, c E S. 

c. If* is any associative binary operation on any set S, then a* (b * c) = (b * c) *a for all a, b, c E S. 

d. The only binary operations of any importance are those defined on sets of numbers. 
e. A binary operation * on a set Sis commutative if there exist a, b E S such that a* b = b *a. 
f. Every binary operation defined on a set having exactly one element is both commutative and associative. 

g. A binary operation on a set S assigns at least one element of S to each ordered pair of elements of S. 

h . A binary operation on a set S assigns at most one element of S to each ordered pair of elements of S. 

i. A binary operation on a set S assigns exactly one element of S to each ordered pair of elements of S. 

j. A binary operation on a set Smay assign more than one element of S to some ordered pair of 
elements of S. 

k. For any binary operation * on the set S, if a, b, c E Sand a* b = a * c, then b = c. 
I. For any binary operation * on the set S, there is an element e E S such that for all x E S, x * e = x. 

m. There is an operation on the set S = {e1, e1, a) so that for all x E S, e1 * x = e1 * x = x. 

n. Identity elements are always called e. 

29. Give a set different from any of those described in the examples of the text and not a set of numbers. Define 
two different binary operations * and *' on this set. Be sure that your set is well defined. 

Theory 

30. Prove that if* is an associative and commutative binary operation on a set S, then 

for all a, b, c, d E S. Assume the associative law only for triples as in the definition, that is, assume only 

(x * y) * z = x * (y * z) 
for all x, y, z E S. 

In Exercises 31 and 32, either prove the statement or give a counterexample. 

31. Every binary operation on a set consisting of a single element is both commutative and associative. 

32. Every commutative binary operation on a set having just two elements is associative. 

Let F be the set of all real-valued functions having as domain the set lR of all real numbers. Example 1.7 defined 
the binary operations +, - , ., and o on F. In Exercises 33 through 41, either prove the given statement or give a 
counterexample. 

33. Function addition + on F is associative. 

34. Function subtraction - on F is commutative. 
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35. Function subtraction - on F is associative. 

36. Under function subtraction - F has an identity. 

37. Under function multiplication· F has an identity. 

38. Function multiplication · on Fis commutative. 

39. Function multiplication · on F is associative. 

40. Function composition o on Fis commutative. 

41. If * and *' are any two binary operations on a set S, then 

a* (b *' c) =(a* b) *' (a* c) forall a, b, cES. 

42. Suppose that * is an associative binary operation on a set S. Let H = {a E S I a* x = x *a for all x E S}. 
Show that H is closed under *· (We think of H as consisting of all elements of S that commute with every 
element in S.) 

43. Suppose that* is an associative and commutative binary operation on a set S. Show that H = {a E SI a* a= 
a} is closed under *· (The elements of Hare idempotents of the binary operation*·) 

44. Let S be a set and let * be a binary operation on S sati sfying the two laws 

• x * x = x for all s E S, and 
• (x * y) * z = (y * z) * x for all x,y, z ES. 

Show that * is associative and commutative. (This is problem B-1 on the 1971 Putnam Competition.) 

SECTION 2 GROUPS 

In high school algebra, one of the key objectives is to learn how to solve equations. 
Even before learning algebra, students in elementary school are given problems like 
5 + D = 2 or 2 x D = 3, which become 5 + x = 2 and 2x = 3 in high school algebra. 
Let us closely examine the steps we use to solve these equations: 

5 +x = 2, given, 
-5 + (5 + x) = -5 + 2, 
(-5+ 5) +x = -5+2, 

o+x= -5 +2, 
x = -5 +2, 
X= -3, 

adding - 5, 
associative law, 
computing - 5 + 5, 
property of 0, 
computing - 5 + 2. 

Strictly speaking, we have not shown here that -3 is a solution, but rather that it is 
the only possibility for a solution. To show that -3 is a solution, one merely computes 
5 + (-3). A similar analysis could be made for the equation 2x = 3 in the rational 
numbers with the operation of multiplication: 

2x = 3, 

1C2x) = 1C3), 

C1·2)x = p, 
1 ·X - .!_3 - 2 , 

x = 13, 
_ 3 

X- 2• 

given, 

multiplying by 1, 
associative law, 

computing !2, 

property of 1, 

computing p. 
Now suppose that we have a set with a binary operation *· What properties does 

the operation need to have in order to solve an equation of the form a * x = b where a 
and b are fixed elements of S? Both equations 5 + x = 2 and 2x = 3 have this form; the 
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first uses the operation+, and the second uses the operation x . By examining the steps 
used we can see what properties of the operation * are required as summarized in the 
table below. 

Property 
Associative Property 

Identity Element 
Inverse Element 

+ 
- 5 + (5 +x) = (- 5 + 5) +x 

0: o +x = x 
- 5: - 5 + 5 = 0 

x 

2(2x) = (2 · 2)x 
l:l· x = x 
! . !. 2 -1 
2 · 2 -

If S is a set with an operation * satisfying these three properties, then an equation 
of the form a* x = b could be solved for x using exactly the same steps used to solve 
5 + x = 2 or 2x = 3. These three essential properties are all that is required in order to 
have a group. We are now ready to present the precise definition. 

Definition and Examples 

2.1 Definition A group (G, *) is a set G, closed under a binary operation *, such that the following 
axioms are satisfied: 

$1: For all a, b, c E G, we have 

(a* b) * c = a* (b * c). associativity of * 

~: There is an element e in G such that for all x E G, 

e * x = x * e = x. identity element e for * 

~:Corresponding to each a E G, there is an element a' in G such that 

a* a' = a' * a = e. inverse a' of a • 
2.2 Example (JR., +) is a group with identity element 0 and the inverse of any real number a is -a. 

However, (JR.,·) is not a group since 0 has no multiplicative inverse. We were still able 
to solve 2x = 3 in the example above because (JR.*, ·) is a group since multiplication 
of real numbers is associative, 1 is an identity, and every real number except 0 has an 
inverse. "' 

It is often convenient to say that G is a group under the operation * rather than 
write (G, *) is a group. At times, there is only one obvious operation that makes (G, *) 
a group. In this case, we may abuse notation and say that G is a group. For example, if 
we say that JR. is a group, we mean that JR. is a group under addition. 

2.3 Definition A group G is abelian if its binary operation is commutative. • 
Let us give some examples of some sets with binary operations that give groups 

and also of some that do not give groups. 

2.4 Example The set z+ under addition is not a group. There is no identity element for+ in z+. .... 

2.5 Example The set of all nonnegative integers (including 0) under addition is still not a group. There 
is an identity element 0, but no inverse for 2. "' 



• HISTORICAL NOTE 

T here are three historical roots of the develop­
ment of abstract group theory evident in the 

mathematical literature of the nineteenth century: 
the theory of algebraic equations, number theory, 
and geometry. All three of these areas used group­
theoretic methods of reasoning, although the meth­
ods were considerably more explicit in the first 
area than in the other two. 

One of the central themes of geometry in the 
nineteenth century was the search for invariants 
under various types of geometric transformations. 
Gradually attention became focused on the trans­
formations themselves, which in many cases can 
be thought of as elements of groups. 

In number theory, already in the eighteenth 
century Leonhard Euler had considered the re­
mainders on division of powers a" by a fixed prime 
p. These remainders have "group" properties. 
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Similarly, Carl F. Gauss, in his Disquisitiones 
Arithmeticae (1800), dealt extensively with 
quadratic forms ax2 + 2bxy + cy2 , and in particu­
lar showed that equivalence classes of these forms 
under composition possessed what amounted to 
group properties. 

Finally, the theory of algebraic equations pro­
vided the most explicit prefiguring of the group 
concept. Joseph-Louis Lagrange (1736-1813) in 
fact initiated the study of permutations of the roots 
of an equation as a tool for solving it. These per­
mutations, of course, were ultimately considered as 
elements of a group. 

It was Walther von Dyck (1856- 1934) and 
Heinrich Weber (1842-1913) who in 1882 were 
able independently to combine the three historical 
roots and give clear definitions of the notion of an 
abstract group. 

2.6 Example The familiar additive properties of integers and of rational, real, and complex numbers 
show that Z, Ql, IR, and <C under addition are abelian groups. .& 

2.7 Example The set z+ under multiplication is not a group. There is an identity 1, but no inverse 
~3. ... 

• HISTORICAL NOTE 

Commutative groups are called abelian in 
honor of the Norwegian mathematician Niels 

Henrik Abel (1802-1829). Abel was interested in 
the question of solvability of polynomial equa­
tions. In a paper written in 1828, he proved that if 
all the roots of such an equation can be expressed 
as rational functions f, g, ... , h of one of them, say 
x, and if for any two of these roots, f(x) and g(x), 
the relation f(g(x)) = gif(x)) always holds, then 
the equation is solvable by radicals. Abel showed 
that each of these functions in fact permutes the 
roots of the equation; hence, these functions are el­
ements of the group of permutations of the roots. It 
was this property of commutativity in these permu­
tation groups associated with solvable equations 
that led Camille Jordan in his 1870 treatise on al­
gebra to name such groups abelian; the name since 

then has been applied to commutative groups in 
general. 

Abel was attracted to mathematics as a 
teenager and soon surpassed all his teachers in Nor­
way. He finally received a government travel grant 
to study elsewhere in 1825 and proceeded to Berlin, 
where he befriended August Crelle, the founder of 
the most influential German mathematical journal. 
Abel contributed numerous papers to Crelle's Jour­
nal during the next several years, including many 
in the field of elliptic functions, whose theory he 
created virtually single-handedly. Abel returned to 
Norway in 1827 with no position and an abundance 
of debts. He nevertheless continued to write bril­
liant papers, but died of tuberculosis at the age of 
26, two days before Crelle succeeded in finding a 
university position for him in Berlin. 
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2.8 Example The familiar multiplicative properties of rational, real, and complex numbers show that 
the sets Q+ and JR+ of positive numbers and the sets «:))*, JR*, and C* of nonzero numbers 
under multiplication are abelian groups. .A. 

2.9 Example The set of all real-valued functions with domain lR under function addition is a group. 
This group is abelian. .A. 

2.10 Example (Linear Algebra) Those who have studied vector spaces should note that the axioms 
for a vector space V pertaining just to vector addition can be summarized by asserting 
that V under vector addition is an abelian group. .A. 

2.11 Example The set M111 x 11 (JR) of all m x n matrices under matrix addition is a group. The m x n 
matrix with all entries 0 is the identity matrix. This group is abelian. .A. 

2.12 Example The set M,,(JR) of all n x n matrices under matrix multiplication is not a group. The 
n x n matrix with all entries 0 has no inverse. .A. 

Each of the groups we have seen in the above examples is an abelian group. There 
are many examples of groups which are not abelian, two of which we now present. 

2.13 Example Here we give an example of a group that is not abelian. We let T be the set of all 
isometries of the plane. An isometry of the plane is a function mapping the plane to 
the plane which preserves distance. So if <P is an isometry of the plane and P, Q are 
points in the plane, then the distance between P and Q is the same as the distance 
between </J(P) and </J(Q). Isometries of the plane map the plane one-to-one and onto 
itself. Examples of isometries include translations and rotations of the plane. The set T 
under the operation of composition forms a group. To verify this we first must check that 
function composition is an operation. Certainly, the composition of two isometries is an 
isometry since each preserves distance. So function composition gives an operation on 
T. Theorem 1.13 states that function composition is associative, so ~ is satisfied. The 
identity function L that maps each point Pin the plane to itself gives an identity element 
in T, which means that ~ is satisfied. Finally, for any isometry </J, the inverse function 
<P- ' is also an isometry and it serves as an inverse as defined in ~-Therefore Tisa 
group under function composition. 

To show that T is not abelian, we only need to find two isometries <P and 8 such 
that </Jo 8 f= 8 o </J. The functions </J(x, y) = (-x,y) (reflection across the y-axis) and 
8(x, y) = (-y,x) (rotation by n /2 about the origin) foot the bill. Note that <Po 8(1, 0) = 
<jJ(8(1, 0)) = <jJ(O, I) = (0, I) and 8 o </J(I , 0) = 8(</J(I, 0)) = 8(-1, 0) = (0, - I), which 
implies that </J o 8 f= 8 o </J and T is not an abelian group under function composition . ... 

2.14 Example Show that the subset S of M,,(JR) consisting of all invertible n x n matrices under matrix 
multiplication is a group. 

Solution We start by showing that S is closed under matrix multiplication. Let A and B be in S, 
so that both A - l and s-1 exist and AA - l = BB- 1 = I,.. Then 

(AB)(B-'A- 1
) = A (BB-1)A-' = AI,,A-1 =In, 

so that AB is invertible and consequently is also in S. 
Since matrix multiplication is associative and In acts as the identity element, and 

since each element of S has an inverse by definition of S, we see that Sis indeed a group. 
This group is not commutative. .A. 

The group of invertible n x n matrices described in the preceding example is of 
fundamental importance in linear algebra. It is the general linear group of degree n, 
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and is usually denoted by GL(n, R). Those of you who have studied linear algebra know 
that a matrix A in GL(n, R) gives rise to an invertible linear transformation T : Rn --+ 

Rn, defined by T(x) =Ax, and that conversely, every invertible linear transformation 
of R11 into itself is defined in this fashion by some matrix in GL(n, R). Also, matrix 
multiplication corresponds to composition of linear transformations. Thus all invertible 
linear transformations of Rn into itself form a group under function composition; this 
group is usually denoted by GL(Rn). Since the sets GL(Rn) and GL(n, R) and their 
operations are essentially the same, we say that the two groups are isomorphic. We give 
a formal definition later in this section. 

We conclude our list of examples of groups with one that may seem a bit contrived. 
We include it to show that there are many ways to define groups and to illustrate the 
steps needed to verify that a given set with an operation is a group. 

2.15 Example Let * be defined on Q+ by a * b = ab / 2. Then 

and likewise 

ab abc 
(a* b) *C = 2 *C = 4' 

be abc 
a*(b*c) = a*- = - . 

2 4 
Thus * is associative. Computation shows that 

2*a = a*2 = a 

for all a E Q+, so 2 is an identity element for *· Finally, 
4 4 

a* - = - *a = 2, 
a a 

so a' = 4/a is an inverse for a. Hence Q+ with the operation* is a group. 

Elementary Properties of Groups 

As we proceed to prove our first theorem about groups, we must use Definition 2.1 , 
which is the only thing we know about groups at the moment. The proof of a second 
theorem can employ both Definition 2.1 and the first theorem; the proof of a third theo­
rem can use the definition and the first two theorems, and so on. 

Our first theorem will establish cancellation laws. In real number arithmetic, we 
know that 2a = 2b implies that a = b. We need only divide both sides of the equation 
2a = 2b by 2, or equivalently, multiply both sides by !· which is the multiplicative 
inverse of 2. We parrot this proof to establish cancellation laws for any group. Note that 
we will also use the associative law. 

2.16 Theorem If G is a group with binary operation *· then the left and right cancellation laws 
hold in G, that is, a* b = a* c implies b = c, and b *a = c *a implies b = c for all 
a,b,cEG. 

Proof Suppose a * b = a* c. Then by~. there exists a' , and 

a' *(a* b) = a' * (a* c). 

By the associative law, 

(a' *a)* b = (a'* a)* c. 

By the definition of a' in ~.a' *a = e, so 

e * b = e *c. 



24 Part I Groups and Subgroups 

By the definition of e in ~, 

b =c. 

Similarly, from b *a = c *a one can deduce that b = c upon multiplication on the right 
by a' and use of the axioms for a group. + 

Our next proof can make use of Theorem 2.16. We show that a "linear equation" in 
a group has a unique solution. Recall that we chose our group properties to allow us to 
find solutions of such equations. 

2.17 Theorem If G is a group with binary operation *, and if a and bare any elements of G, then the 
linear equations a * x = b and y * a = b have unique solutions x and y in G. 

Proof First we show the existence of at least one solution by just computing that a' * b is a 
solution of a* x = b. Note that 

a* (a'* b) = (a* a' )* b, 
= e*b, 
=b, 

associative law, 
definition of a', 
property of e. 

Thus x = a' * b is a solution of a * x = b. In a similar fashion, y = b * a' is a solution 
ofy *a = b. 

To show uniqueness of y, we use the standard method of assuming that we have 
two solutions, YI and y2, so that YI *a= band Y2 *a = b. Then YI *a = Y2 *a, and by 
Theorem 2. 16, YI = y2 . The uniqueness of x follows similarly. + 

Of course, to prove the uniqueness in the last theorem, we could have followed the 
procedure we used in motivating the definition of a group, showing that if a * x = b, 
then x = a' * b. However, we chose to illustrate the standard way to prove an object is 
unique; namely, suppose you have two such objects, and then prove they must be the 
same. Note that the solutions x = a' * b and y = b * a' need not be the same unless * is 
commutative. 

Because a group has a binary operation, we know from Theorem 1.15 that the 
identity e in a group is unique. We state this again as part of the next theorem for easy 
reference. 

2.18 Theorem In a group G with binary operation *, there is only one element e in G such that 

for all x E G. Likewise for each a E G, there is only one element a' in G such that 

a' *a = a* a' = e. 

In summary, the identity element and inverse of each element are unique in a group. 

Proof Theorem 1.15 shows that an identity element for any binary operation is unique. No use 
of the other group axioms was required to show this. 

Turning to the uniqueness of an inverse, suppose that a E G has inverses a' and a" 
so that a' * a = a * a' = e and a" * a = a * a" = e. Then 

a*a" = a*a' = e 

and, by Theorem 2.16, 

a11 == a' , 

so the inverse of a in a group is unique. • 
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Note that in a group G, we have 

(a* b) * (b' *a') = a* (b * b' ) *a' = (a* e) *a' = a* a' =e. 

This equation and Theorem 2.18 show that b' *a' is the unique inverse of a* b. 
That is, (a* b)' = b' *a'. We state this as a corollary. 

2.19 Corollary Let G be a group. For all a, b E G, we have (a* b)' = b' *a' . • 

2.20 Table 

x 

- I - 1 

- 1 

- 1 
1 

For your information, we remark that binary algebraic structures with weaker ax­
ioms than those for a group have also been studied quite extensively. Of these weaker 
structures, the semigroup, a set with an associative binary operation, has perhaps had 
the most attention. A monoid is a semigroup that has an identity element for the binary 
operation. Note that every group is both a semigroup and a monoid. 

Finally, it is possible to give axioms for a group (G, *) that seem at first glance to 
be weaker, namely: 

1. The binary operation * on G is associative. 

2. There exists a left identity element e in G such that e * x = x for all x E G. 

3. For each a E G, there exists a left inverse a' in G such that a'* a = e. 

From this one-sided definition, one can prove that the left identity element is also a 
right identity element, and a left inverse is also a right inverse for the same element. 
Thus these axioms should not be called weaker, since they result in exactly the same 
structures being called groups. It is conceivable that it might be easier in some cases to 
check these left axioms than to check our two-sided axioms. Of course, by symmetry it 
is clear that there are also right axioms for a group. 

Group Isomorphisms 

All our examples have been of infinite groups, that is, groups where the set G has an in­
finite number of elements. We turn to finite groups, starting with the smallest finite sets. 

Since a group has to have at least one element, namely, the identity, a minimal 
set that might give rise to a group is a one-element set {e}. The only possible binary 
operation * on {e} is defined bye* e =e. The three group axioms hold. The identity 
element is always its own inverse in every group. 

There is a group with only two elements, namely G = { 1, -1} with operation the 
usual multiplication. It is clear that G is closed under multiplication and we know that 
multiplication is associative. Furthermore, 1 is the identity, the inverse of 1 is 1, and the 
inverse of - 1 is - 1. Table 2.20 is the group table for G. 

Is this the only group with exactly two elements? To see, let us try to put a group 
structure on a set with two elements. Since one of the elements must be the identity, we 
will label the identity element e and we will label the other element a. Following tradi­
tion, we place the identity first both on the top and to the left as in the following table. 

Since e is to be the identity, 
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for all x E { e, a}. We are forced to fill in the table as follows, if* is to give a group: 

Also, a must have an inverse a' such that 

a* a' = a' * a = e. 

2.21 Table In our case, a' must be either e or a. Since a' = e obviously does not work, we must 
have a' = a, so we have to complete the table as shown in Table 2.21. 

* e a 

e e a 

a a e 

All the group axioms are now satisfied, except possibly associativity. But if we 
relabel l as e and -1 as a in Table 2.20 we obtain Table 2.21. Therefore, the table 
we constructed for {e, a) must also satisfy Wi, the associative property. The table also 
shows clearly that properties~ and ~ are satisfied, so ({e, a), *) is a group. The groups 
(1 , -1) and {e, a) are not the same, but they are essentially the same since by relabeling 
elements of one with the names of the other, the operations match. When the elements 
of one group can be matched with another in such a way that the operations are the 
same, we say that the groups are isomorphic and the matching is called a group 
isomorphism. We showed that any group with two elements is isomorphic with { 1, -1} 
under multiplication. The notation used to indicate isomorphism is ::::::, so we could write 
( { 1, - 1}, x) :::::: ( { e, a}, *). Of course the matching is a one-to-one function from one 
group onto the other. If we were only interested in groups whose tables are easy to 
compute, then we would not need a more precise definition for isomorphism. We would 
simply see if we can relabel one group table to make it look like the other. However, 
in the case of infinite groups or even groups with more than a few elements, we need a 
better way to verify that groups are isomorphic. We now give a more precise definition 
of a group isomorphism. 

2.22 Definition Let (G1, * i) and (G2, *z) be groups and f: G1 --+ G2 . We say that f is a group 
isomorphism if the following two conditions are satisfied. 

1. The function! is one-to-one and maps onto G2 . 

2. For all a, b E G1 ,f(a *1 b) = f(a) *zf(b). • 
Note that Condition 1 simply gives a way to relabel the elements of G1 with elements in 
G2. Condition 2, which we will refer to as the homomorphism property, says that with 
this relabeling, the operations *i on G1 and *z on G2 match. If we are in the context of 
groups, we will often use the term isomorphism to mean group isomorphism. If there 
is an isomorphism from a group G1 to G2 , we say that G1 is isomorphic with (or to) 
G2 . In Exercise 44, you are asked to show that ifj : G1 --+ G2 is an isomorphism, then 
1- 1 

: G2 --+ G 1, the inverse function, is also an isomorphism. So if G 1 is isomorphic 
wi th G2 , then G2 is isomorphic with G1. If you wish to verify that two groups, G1 and 
G2 , are isomorphic, you can either construct an isomorphism mapping G1 to G2 or one 
mapping G2 to G1 . 

2.23 Example In Exercise 10 you will be asked to show that 2Z, the even integers, forms a group under 
addition. Here we show Z and 2Z are isomorphic groups. In this case, the operations 
on the groups are both addition. We need a function! : Z --+ 2Z that is both one-to-one 
and onto 2Z . Letf : Z --+ 2Z be given by f (m) = 2m. We need to verify Condition 1 for 
an isomorphism, which says that f is one-to-one and onto. Suppose that a, b E Z and 
f(a ) = f(b). Then 2a = 2b, which implies that a = b, sof is one-to-one. We now show f 



2.24 Table 

* e a 

e e a 

a a 

b b 

2.25 Table 

* e 

e e 

a a 

b b 

b 

b 

a b 

a b 

b e 

e a 
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is onto. Let y E 2.Z. Since y is even, y = 2c for some c E Z. Therefore, y = 2c = f(c), so 
f maps onto 2.Z. We now tum our attention to the homomorphism property and consider 
arbitrary a, b E Z . Then 

f(a + b) = 2(a + b) = 2a + 2b =f(a) + f(b), 

which verifies Condition 2. Therefore f is a group isomorphism and Z and 2.Z are iso­
morphic groups. 

As noted above, we could have defined an isomorphism by using the inverse 
functionf- 1 : 2.Z-+ Z, which is defined by f- 1(x) = x/2. ..A. 

Properties of Group Tables 

With Table 2.21 as background, we should be able to list some necessary conditions that 
a table giving a binary operation on a finite set must satisfy for the operation to give a 
group structure on the set. There must be one element of the set, which we may as well 
denote by e, that acts as the identity element. The condition e * x = x means that the row 
of the table opposite e at the extreme left must contain exactly the elements appearing 
across the very top of the table in the same order. Similarly, the condition x * e = x 
means that the column of the table under e at the very top must contain exactly the 
elements appearing at the extreme left in the same order. The fact that every element a 
has a right and a left inverse means that in the row having a at the extreme left, the 
element e must appear, and in the column under a at the very top, the e must appear. 
Thus e must appear in each row and in each column. We can do even better than this, 
however. By Theorem 2.17, not only do the equations a* x = e and y * a = e have 
unique solutions, but also the equations a* x = band y* a = b. By a similar argument, 
this means that each element b of the group must appear once and only once in each 
row and each column of the table. 

Suppose conversely that a table for a binary operation on a finite set is such that 
there is an element acting as identity and that in each row and each column, each element 
of the set appears exactly once. Then it can be seen that the structure is a group structure 
if and only if the associative law holds. If a binary operation * is given by a table, 
the associative law is usually messy to check. If the operation * is defined by some 
characterizing property of a * b, the associative law is often easy to check. Fortunately, 
this second case turns out to be the one usually encountered. 

We saw that there was essentially only one group of two elements in the sense that if 
the elements are denoted bye and a with the identity element e appearing first, the table 
must be as shown in Table 2.21. Suppose that a set has three elements. As before, we 
may as well let the set be {e, a, b).For e to be an identity element, a binary operation * on 
this set has to have a table of the form shown in Table 2.24. This leaves four places to be 
filled in. You can quickly see that Table 2.24 must be completed as shown in Table 2.25 
if each row and each column are to contain each element exactly once. We find a group 
whose table is the same as Table 2.25. The elements of the group are the three matrices 

e = [ ~ ~ l a = [ 1 ~ r J and b = [ ~ ~ ~ l We let G = { e, a, b} . In Exercise 

18 you will show that G is a group under matrix multiplication. By computing matix 
products it is easy to check that the group table for G is identical with Table 2.25. 
Therefore Table 2.25 gives a group. 

Now suppose that G' is any other group of three elements and imagine a table for G' 
with identity element appearing first. Since our filling out of the table for G = { e, a, b} 
could be done in only one way, we see that if we take the table for G' and rename the 
identity e, the next element listed a, and the last element b, the resulting table for G' 
must be the same as the one we had for G. As explained above, this renaming gives an 
isomorphism of the group G' with the group G . Thus our work above can be summarized 
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by saying that all groups with a single element are isomorphic, all groups with just two 
elements are isomorphic, and all groups with just three elements are isomorphic. We use 
the phrase up to isomorphism to express this identification. Thus we may say, "There is 
only one group of three elements, up to isomorphism." 

An interesting problem in group theory is to determine up to isomorphism all the 
groups with a given number of elements n. In Exercise 20, you will be asked to show 
that there are up to isomorphism exactly two groups of order 4. It is beyond the scope of 
this book to give a thorough investigation of this problem, but we will solve the problem 
for some other special values of n in later sections. 

• EXERCISES 2 

Computations 

In Exercises 1 through 9, determine whether the binary operation * gives a group structure on the given set. If no 
group results, give the first axiom in the order :.?;] , g;z, ,'?J3 from Definition 2.1 that does not hold. 

1. Let * be defined on IZ by letting a* b = ab. 

2. Let* be defined on 2/Z = {2n In E /Z} by letting a * b = a+ b. 

3. Let * be defined on JR+ by letting a * b = ,Jab. 
4. Let* be defined on Q by letting a* b = ab. 

5. Let * be defined on the set JR* of nonzero real numbers by letting a * b = a/ b. 

6. Let * be defined on C by letting a* b = labl. 
7. Let * be defined on the set {a, b) by Table 2.26. 

8. Let * be defined on the set {a, b) by Table 2.27. 

9. Let * be defined on the set {e, a, b) by Table 2.28. 
2.28 Table 

2.26 Table 2.27 Table 

* e a b 
* a b * a b 

e e a b 
a a b a a b 

a a e b 
b b b b a b 

b b b e 

10. Let n be a positive integer and Jet nil = {nm Im E /Z}. 

a. Show that (n/Z, + ) is a group. 
b. Show that (n/Z, +) :::::: (/Z, + ). 

In Exercises 11 through 18, determine whether the given set of matrices under the specified operation, matrix 
addition or multiplication, is a group. Recall that a diagonal matrix is a square matrix whose only nonzero entries 
lie on the main diagonal, from the upper left to the lower right corner. An upper-triangular matrix is a square 
matrix with only zero entries below the main diagonal. Associated with each n x n matrix A is a number called 
the determinant of A, denoted by det(A). If A and B are both n x n matrices, then det(AB) = det(A) det(B). Also, 
det(/11 ) = 1 and A is invertible if and only if det(A) =P 0. 

11. All n x n diagonal matrices under matrix addition. 

12. All n x n diagonal matrices under matrix multiplication. 

13. All n x n diagonal matrices with no zero diagonal entry under matrix multiplication. 

14. All n x n diagonal matrices with all diagonal entries 1 or - 1 under matrix multiplication. 

15. All n x n upper-triangular matrices under matrix multiplication. 

16. All n x n upper-triangular matrices under matrix addition. 

17. All n x n upper-triangular matrices with determinant 1 under matrix multiplication. 
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[10] [_.!__"3 ] [ -.!_ "3 ] 
18.The set of2x2 matricesG={e,a,b}wheree= Ol ,a= 1 - ~ ,andb= - f}.~ under 

matrix multiplication. 

19. Let S be the set of all real numbers except -1. Define * on S by 

a* b = a+ b + ab. 

a. Show that * gives a binary operation on S. 

b. Show that (S, *) is a group. 

c. Find the solution of the equation 2 * x * 3 = 7 in S. 

20. This exercise shows that there are two nonisomorphic group structures on a set of 4 elements. 
Let the set be {e, a, b, c), with e the identity element for the group operation. A group table would then have 

to start in the manner shown in Table 2.29. The square indicated by the question mark cannot be filled in with 
a. It must be filled in either with the identity element e or with an element different from both e and a. In this 
latter case, it is no loss of generality to assume that this element is b. If this square is filled in with e, the table 
can then be completed in two ways to give a group. Find these two tables. (You need not check the associative 
law.) If this square is filled in with b, then the table can only be completed in one way to give a group. Find this 
table. (Again, you need not check the associative law.) Of the three tables you now have, two give isomorphic 
groups. Determine which two tables these are, and give the one-to-one onto relabeling function which is an 
isomorphism. 

a. Are all groups of 4 elements commutative? 

b. Find a way to relabel the four matrices 

so the matrix multiplication table is identical to one you constructed. This shows that the table you con­
structed defines an associative operation and therefore gives a group. 

c. Show that for a particular value of n, the group elements given in Exercise 14 can be relabeled so their 
group table is identical to one you constructed. This implies the operation in the table is also associative. 

21. According to Exercise 12 of Section 1, there are 16 possible binary operations on a set of 2 elements. How 
many of these give a structure of a group? How many of the 19,683 possible binary operations on a set of 
3 elements give a group structure? 

Concepts 

22. Consider our axioms ~. ;?;2, and ~ for a group. We gave them in the order ~ ;?;2~. Conceivable other 
orders to state the axioms are ~ ~;?;2. ;?;2~ ~. ;?;2~~, ~~ ;?;2, and ~;?;2~ . Of these six possible 
orders, exactly three are acceptable for a definition. Which orders are not acceptable, and why? (Remember 
this. Most instructors ask the student to define a group on at least one test.) 

2.29 Table 

* e a b c 

e e a b c 

a a ? 

b b 

c c 

23. The following "definitions" of a group are taken verbatim, including spelling and punctuation, from papers of 
students who wrote a bit too quickly and carelessly. Criticize them. 

a. A group G is a set of elements together with a binary operation * such that the following conditions are 
satisfied 
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* is associative 
There exists e E G such that 

e * x = x * e = x = identity. 

For every a E G there exists an a' (inverse) such that 

b. A group is a set G such that 

The operation on G is associative. 

there is an identity element (e) in G. 

a·a'=a' ·a= e 

for every a E G, there is an a' (inverse for each element) 

c. A group is a set with a binary operation such 

the binary operation is defined 
an inverse exists 

an identity element exists 

d. A set G is called a group over the binery operation * such that for all a, b E G 

Binary operation * is associative under addition 
there exist an element {e} such that 

Fore every element a there exists an element a' such that 

a*a'=a'*a=e 

24. Give a table defining an operation satisfying axioms 3}2 and ~ in the definition of a group, but not satisfying 
axiom ~ for the set 

a. {e,a,b) 
b. {e,a,b,c ) 

25. Mark each of the following true or false. 

a. A group may have more than one identity element. 
b. Any two groups of three elements are isomorphic. 

___ c. In a group, each linear equation has a solution. 

d. The proper attitude toward a definition is to memorize it so that you can reproduce it word for 
word as in the text. 

e. Any definition a person gives for a group is correct provided that everything that is a group by that 
person's definition is also a group by the definition in the text. 

___ f. Any definition a person gives for a group is correct provided he or she can show that everything 
that satisfies the definition satisfies the one in the text and conversely. 

___ g. Every finite group of at most three elements is abelian. 

___ h. An equation of the form a * x * b = c always has a unique solution in a group. 
___ i. The empty set can be considered a group. 
___ j. Every group is a binary algebraic structure. 

Proof synopsis 

We give an example of a proof synopsis. Here is a one-sentence synopsis of the proof that the inverse of an element 
a in a group (G, *) is unique. 

Assuming that a* a'= e and a* a"= e, apply the left cancellation law to the equation a* a'= a* a". 

Note that we said "the left cancellation law" and not "Theorem 2.16." We always suppose that our synopsis was 
given as an explanation given during a conversation at lunch, with no reference to text numbering and as little 
notation as is practical. 
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26. Give a one-sentence synopsis of the proof of the left cancellation law in Theorem 2.1 6. 

27. Give at most a two-sentence synopsis of the proof in Theorem 2.17 that an equation ax = b has a unique 
solution in a group. 

Theory 

28. An element a ::j: e in a group is said to have order 2 if a * a= e. Prove that if G is a group and a E G has order 
2, then for any b E G, b' *a* b also has order 2. 

29. Show that if G is a finite group with identity e and with an even number of elements, then there is a ::j: e in G 
such that a* a = e. 

30. Let JR* be the set of all real numbers except 0. Define * on JR* by letting a * b = la lb. 

a. Show that * gives an associative binary operation on JR* . 
b. Show that there is a left identity for * and a right inverse for each element in JR* . 
c. Is JR* with this binary operation a group? 

d . Explain the significance of this exercise. 

31. If * is a binary operation on a set S, an element x of S is an idempotent for * if x * x = x. Prove that a group 
has exactly one idempotent element. (You may use any theorems proved so far in the text.) 

32. Show that every group G with identity e and such that x * x = e for all x E G is abelian. [Hint: Consider 
(a* b) *(a* b).] 

33. Let G be an abelian group and let c" = c * c * · · · * c for n factors c, where c E G and n E ;z;+ . Give a mathe­
matical induction proof that (a* b)" =(a")* (b") for all a, b E G. 

34. Suppose that G is a group and a, b E G satisfy a* b = b *a' where as usual, a' is the inverse for a. Prove that 
b *a = a' * b. 

35. Suppose that G is a group and a and b are elements of G that satisfy a * b = b * a3. Rewrite the element 
(a * b)2 in the form bkar. (See Exercise 33 for power notation.) 

36. Let G be a group with a finite number of elements. Show that for any a E G, there exists an n E ;z;+ such that 
a" = e. See Exercise 33 for the meaning of a". [Hint: Consider e, a, a2

, a3, .. . , a111
, where m is the number of 

elements in G, and use the cancellation laws.] 

37. Show that if (a* b)2 = a2 * b2 for a and bin a group G, then a* b = b *a. See Exercise 33 for the meaning 
of a2

. 

38. Let G be a group and let a, b E G. Show that (a* b)' = a' * b' if and only if a* b = b *a. 

39. Let G be a group and suppose that a* b * c = e for a, b, c E G. Show that b * c *a = e also. 

40. Prove that a set G, together with a binary operation * on G satisfying the left axioms 1, 2, and 3 given after 
Corollary 2.19, is a group. 

41. Prove that a nonempty set G, together with an associative binary operation * on G such that 

a* x = band y * a = b have solutions in G for all a, b E G, 

is a group. [Hint: Use Exercise 40.] 

42. Let G be a group. Prove that (a ' )' = a. 

43. Let <f> : 11!:.2 --+ 11!:.2 be an isometry of the plane. 

a . Prove that <f> is a one-to-one function. 

b. Prove that <f> maps onto 11!:.2. 

44. Prove that if f : G 1 --+ G2 is a group isomorphism from the group ( G 1, * 1) to the group ( G2, *2), then 
1- 1 

: G2 --+ G1 is also a group isomorphism. 

45. Suppose that G is a group with n elements and A <;:: G has more than ~ elements. Prove that for every g E G, 
there exists a, b E A such that a* b =g. (This was Problem B-2 on the 1968 Putnam exam.) 
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SECTION 3 ABELIAN EXAMPLES 

In this section we introduce two families of abelian groups and one special abelian 
group. These groups will be very useful in our study of groups in that they provide 
examples we can use to help understand concepts and test conjectures. Furthermore, we 
will see that some of them arise frequently in the study of groups. 

We start by defining the set Z 11 = (0, 1, 2, 3, ... , n - 1}, the first n - 1 positive in­
tegers together with 0, which makes a total of n elements. To define an operation +,, on 
Z,,, we let a, b E Z11 • Then 

b-{ a+b if a+b< n 
a +,, - a + b - n if a + b ='.'.: n · 

Note that for any a, b E Z11 , 0 :::: a+ b :::: 2n - 2, so 0 :::: a +11 b :::: n - 1 is an op­
eration which we call addition modulo n. Addition modulo n is clearly commutative: 
a +,, b = b +,, a for any a, b E Z,, . The number 0 is an identity, the inverse of a E Z,, is 
n - a for a "I 0, and the inverse of 0 is 0. To show that (Z,,, +11 ) is an abelian group, it 
only remains to show that +11 is associative. Although it is not difficult to show directly 
that +11 is associative, it is a little tedious, so we defer the proof until we develop the 
circle group and then use properties of that group to conclude that (Z,,, +,, ) is an abelian 
group. 

3.1 Example For n = 1, Z 1 = {O}, which is the trivial group with just one element. For n = 2, Z2 = 
(0, l}, which as we saw in Section 2 is isomorphic with (1,-1} under multiplication. 
It is important to note that completely different operations on sets can still define iso­
morphic groups. We also saw in Section 2 that any group with exactly three elements 
is isomorphic with any other group with exactly three elements. Therefore Z3 under 
addition modulo 3 is isomorphic with the group consisting of the three matrices 

3.2 Example 

{[ l OJ [_1 _v'3 ] [-l v'3 ]} 
0 1 , 1 -~ , -1 ~~ 

under matrix multiplication. Again we see that two groups can be isomorphic, but have 
completely different sets and operations. .&. 

Let us look more closely at the group table for Z4 , Table 3.3. We see that the 
inverse for 0 is 0, the inverse for 1 is 4 - 1 = 3, and the inverse for 2 is 4 - 2 = 2. 
In Exercise 20 in Section 2, you were asked to show that there are two groups with 
exactly four elements. The other group is the Klein 4-group denoted V, which stands 
for Vier, German for "four." The group table for V is displayed as Table 3.4. How can 
we tell that the two groups Z4 and V are not isomorphic? We could try all possible one­
to-one functions from Z4 onto K4 to see if any of them make the table for Z4 look like 
the table for K4. This is tedious, so instead we look for a sneaky method. Notice that 
the diagonal entries of the table for K4 are all the identity. No matter how we relabel 

3.3 Table 3.4 Table 

Z4: +4 0 2 3 V: * e a b c 
0 0 2 3 e e a b c 
1 1 2 3 0 a a e c b 
2 2 3 0 1 b b c e a 
3 3 0 1 2 c c b a e 
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the entries in the table for Z4 , only two entries along the diagonal will be the same. 
Therefore Z4 and K4 are not isomorphic. ..&. 

Looking back at the definition of + 11 there is no reason we had to restrict our set 
to integers a with 0 :::: a < n. In fact, the same formula defines an operation on all real 
numbers a with 0 :::: a < n. In general, let c be any positive real number and a, b E [0, c). 
We define +c by 

b _ { a + b if a + b < c 
a +c - a + b - c if a + b 2: c · 

This operation is called addition modulo c. It is easy to see that addition modulo c 
is an operation on [O, c), it is commutative, 0 is an identity, the inverse of 0 is 0, and 
the inverse of any a E (0, c) is c - a. Instead of writing [0, c) we will denote this set 
as !Re. In order to show that (IR0 + c) is an abelian group, it remains to show that +c is 
associative. Again, we defer the proof until after we develop the circle group. 

3.5 Example Let c = 2rc. Then ~re +zrr ~re = ~re and ~re +zrr ~re = ~re . The inverse of I is 2rc -

1 =ire. "' 

In the group (IR2rr , + 2rr), we are essentially equating 0 with 2rc in the sense that 
if a and b add to give 2rc, we know that a + zrr b = 0. Intuitively, we can think of this 
geometrically as taking a string of length 2rc and attaching the ends together to form a 
circle of radius 1. Our next goal is to make this idea more precise by defining a group 
on the unit circle in the plane and showing that this group is isomorphic with IR2rr . To 
do this, we first review some facts about complex numbers. 

y i 

4i 

3i 

2i bi a+ bi - _________ , 
I 
I 

'a 
- 4 -3 -2 - I 0 2 3 4 

-i 

-2i 

3.6 Figure 

Complex Numbers 

A real number can be visualized geometrically as a point on a line that we often regard 
as an x-axis. A complex number can be regarded as a point in the Euclidean plane, as 
shown in Fig. 3.6. Note that we label the vertical axis as the yi-axis rather than just the 
y-axis, and label the point one unit above the origin with i rather than 1. The point with 
Cartesian coordinates (a, b) is labeled a+ bi in Fig. 3.6. The set C of complex numbers 
is defined by 

C ={a+bi la,bEIR). 

We consider IR to be a subset of the complex numbers by identifying a real number r 
with the complex number r + Oi. For example, we write 3 + Oi as 3 and -re + Oi as -re 
and 0 + Oi as 0. Similarly, we write 0 + l i as i and 0 + si as si. 
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Complex numbers were developed after the development of real numbers. The 
complex number i was invented to provide a solution to the quadratic equation x2 = -1, 
so we require that 

i2 = -1. (1) 

Unfortunately, i has been called an imaginary number, and this terminology has led 
generations of students to view the complex numbers with more skepticism than the 
real numbers. Actually, all numbers, such as I, 3, rr, -J3, and i are inventions of our 
minds. There is no physical entity that is the number 1. If there were, it would surely 
be in a place of honor in some great scientific museum, and past it would file a steady 
stream of mathematicians, gazing at 1 in wonder and awe. A basic goal of this text is to 
show how we can invent solutions of polynomial equations when the coefficients of the 
polynomial may not even be real numbers! 

Multiplication of Complex Numbers 

The product (a+ bi)(c + di) is defined in the way it must be if we are to enjoy the 
familiar properties of real arithmetic and require that i2 = -1, in accord with Eq. (1). 
Namely, we see that we want to have 

(a+ bi)(c +di) = ac + adi + bci + bdi2 

= ac + adi + bci + bd(-1) 

= (ac - bd) +(ad+ bc)i. 

Consequently, we define multiplication of z1 = a + bi and z2 = c +di as 

z1z2 = (a+ bi)(c +di)= (ac - bd) +(ad+ bc)i, (2) 

which is of the form r + si with r = ac - bd and s =ad+ be. It is routine to check 
that the usual properties z1z2 = z2z1(commutative), z1(z2z3) = (z1z2)z3 (associative), 
and z1(z2 + Z3) = z1z2 + Z1Z3 (distributive) all hold for all z1, z2,Z3 EC. 

3.7 Example Compute (2 - 5i)(8 + 3i). 

Solution We don't memorize Eq. (2), but rather we compute the product as we did to motivate 
that equation. We have 

(2 - 5i)(8 + 3i) = 16 + 6i - 40i + 15 = 31 - 34i. 

To establish the geometric meaning of complex multiplication, we first define the abso­
lute value la + bil of a + bi by 

la + bil = J a2 + b2
. (3) 

This absolute value is a nonnegative real number and is the distance from a + bi to the 
origin in Fig. 3.6. We can now describe a complex number z in the polar-coordinate form 

z = lzl(cos e + i sine), (4) 

where e is the angle measured counterclockwise from the positive x-axis to the vector 
from 0 to z, as shown in Fig. 3.8. A famous formula due to Leonard Euler states that 

e;e = cose + isine . 

Euler's Formula 
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yi 

0 lzl cos I) 

3.8 Figure 

We ask you to derive Euler's formula formally from the power series expansions for 
e8 ,cos8 , and sin 8 in Exercise 43. Using this formula, we can express z in Eq. (4) as 
z = lzle;e. Let us set 

and 

and compute their product in this form, assuming that the usual laws of exponentiation 
hold with complex number exponents. We obtain 

z1z2 = lz1 le;e, lz2le;e, = lz1 l lz2 lei(e,+eil 

(5) 

Note that Eq. 5 concludes in the polar form of Eq. 4 where lz1z2I = lz1 llz2 I and the 
polar angle 8 for z1z2 is the sum 8 = 81 + 82 . Thus, geometrically, we multiply com­
plex numbers by multiplying their absolute values and adding their polar angles, as 
shown in Fig. 3.9. Exercise 41 indicates how this can be derived via trigonomet­
ric identities without recourse to Euler's formula and assumptions about complex 
exponentiation. 

yi 

3i 
y i 

Zz 2i 

ZJ 
7T/2 

--'+--'-- -'---.... x 
- 2 - 1 0 2 0 

3.9 Figure 3.10 Figure 

Note that i has polar angle rr / 2 and absolute value 1, as shown in Fig. 3.10. Thus i2 
has polar angle 2(rr / 2) = rr and 11 · 11 = 1, so that i2 = - 1. 

3.11 Example Find all solutions in C of the equation z2 = i. 

Solution Writing the equation z2 = i in polar form and using Eq. (5), we obtain 

lz l2(cos W + i sin 28) = 1(0 + i). 

Thus lzl2 = 1, so lzl = 1. The angle 8 for z must satisfy cos W = 0 and sin W = 1. 
Consequently, W = (rr /2) + n(2rr ), so 8 = (rr/ 4) + nrr for an integer n. The values of 
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n yielding values 8 where 0 :::: 8 < 2n are 0 and I, yielding 8 = n / 4 or 8 = Sn / 4. Our 
solutions are 

and ( 
Sn Sn) z2 = 1 cos 4 + i sin 4 

or 
1 

Z1 = .J2(1 + i) and 
- 1 

z2 = .J2(1 + i). 

3.12 Example Find all solutions of z4 = -16. 

Solution As in Example 3.11 we write the equation in polar form, obtaining 

lzl4(cos 48 + i sin 48) = 16(-1 + Oi). 

Consequently, lzl4 = 16, so lzl = 2 while cos 48 = - 1 and sin 48 = 0. We find that 
48 = n + n(2n), so 8 = (n/ 4) + n(n/ 2) for integers n. The different values of 8 
obtained where 0 ::=: 8 < 2n are n / 4, 3n / 4, Sn / 4, and 7n / 4. Thus one solution of 
z4 = - 16 is 

In a similar way, we find three more solutions, 

.J2(-1 + i), .J2(-1 - i), and .J2(1 - i) . 

The last two examples illustrate that we can find solutions of an equation z" = 
a + bi by writing the equation in polar form. There will always be n solutions, provided 
that a+ bi f=. 0. Exercises 16 through 21 ask you to solve equations of this type. 

We will not use addition or division of complex numbers, but we probably should 
mention that addition is given by 

(a + bi)+ (e +di) = (a+ e) + (b + d)i. (6) 

and division of a+ bi by nonzero e +di can be performed using only division of real 
numbers as follows: 

a+ bi a +bi e - di (ae + bd) + (be - ad)i 

e + di e + di e - di e2 + d2 
ae + bd be - ad . = ---+---l. 
e2+d2 e2+d2 

(7) 

yi 

3.13 Figure 



Section 3 Abelian Examples 37 

Algebra on the Unit Circle 

Let u = {z E re I lzl = l }, so that u is the circle in the Euclidean plane with center at 
the origin and radius l , as shown in Fig. 3. 13. 

3.14 Theorem (U, ·)is an abelian group. 

Proof We first check that U is closed under multiplication. Let z1, z2 E U. Then lzil = lz2 I = l , 
which implies that lz 1z1 I = l , showing z1z2 E U. 

Since multiplication of complex numbers is associative and commutative in gen­
eral, multiplication in U is also associative and commutative, which verifies ~ and the 
condition for abelian. 

The number l E U is the identity, verifying condition $2. 
Foreacha+bi EU, 

(a + bi)(a - bi) = a2 - (bi)2 = a2 + b2 = la + bil2 = 1. 

So the inverse of a+ bi is a - bi, which verifies condition ~. Thus U is an abelian 
group under multiplication. + 

Figure 3.13 gives us a way of relabeling points in U as points in R2rr . We simply 
relabel z as e where 0 :S e < 2TC. Let f : U --+ R 2rr be given by f (z) = e according 
to this relabeling. Then for z1, z2 E U,f(z1z2) = /(z1) + 2rr /(z2) since multiplying in U 
simply adds the corresponding angles: 

if Z1 *+ gl and Z2 *+ e2, then Z1 · Z2 *+ (e1 +irr e2). (8) 

Recall that all that remains to show that R2rr is a group is to show that +zrr is associative. 
Since the operations of multiplication in U and addition modulo 2TC in R2rr are the same 
using the above relabeling and multiplication in U is associative, addition modulo 2TC is 
also associative. This completes the proof that (Rirr, + zrr) is a group. Furthermore, the 
relabeling (8) shows that the two groups ( U, ·) and (R2rr, +2rr) are isomorphic . In Exer­
cise 45, you will be asked to prove that for any b > 0 and c > 0, (Rb, +b) is an abelian 
group and (Rb,+b) '.::'. (Rc, + c) . Since (R2rr ,+2rr) is isomorphic with (U, ·), for every 
c > 0, (Re, +c) is also isomorphic with (U, ·),meaning they have the same algebraic 
properties. 

3.15 Example The equation z · z · z · z = l in U has exactly four solutions, namely, I, i, - 1, and -i. 
Now 1 E U and 0 E R1rr correspond, and the equation x +1rr x +zrr x +zrr x = 0 in R2rr 
has exactly four solutions, namely, 0, TC / 2, TC, and 3TC / 2, which, of course, correspond 
to 1, i, - 1, and - i, respectively. .& 

Roots of Unity 

The elements of the set Un = {z E re It' = I} are called the nth roots of unity. In 
Exercise 46 you are asked to prove that U11 is a group under multiplication. Using the 
techniques from Examples 3.11 and 3.12, we see that the elements of this set are the 

numbers eC111 ';!-)i = cos ( m 
2
:) + i sin ( m 

2
: ) form= 0, 1, 2, ... , n - 1. 

They all have absolute value 1, so U11 c U. If we let ~ = cos 2rr + i sin 2rr, then these 
ll " 

nth roots of unity can be wri tten as 

(9) 

Because~" = l , these n powers of~ are closed under multiplication. For example, with 
n = 10, we have 
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Thus we see that we can compute titj by computing i +,J, viewing i andj as elements 
ofZn. 

By relabeling an element t'n E Un tom E Zn we can see that addition modulo n in 
Zn is also associative, which completes the proof that (Zn, +n) is an abelian group. 

3.16 Example We solve the equation x + s x + s x = 1 in Zs using trial and error. We note that nei­
ther 0, 1, nor 2 is a solution simply by substitution. However, substituting x = 3 gives 
3 + s 3 + s 3 = 6 + s 3 = 1, which shows x = 3 is a solution. We can also check by 
substituting that neither 4, 5, 6, nor 7 are solutions. So the only solution is x = 3. 
Because Zs is isomorphic with Us by the correspondence k E Zs corresponds with 

t k, the corresponding equation in Us is z · z · z = t = / F Without further calcula­
tions we know that there is only one solution to z · z · z = t in Us and that solution 

. 3 3"' ; (6 / 8) .. (6 / 8) ../2 ../2. . hi . h 1s z = t = e ' =cos n +ism n = - 2 + 2 1 smce t s 1s t e corre-

sponding solution in Zs. 
There are three solutions to z3 = t in U. We leave it to the reader to find the solu-

tions and check that only one of them, t 3, is in Us. "'-

We summarize the results of this section. 

1. For any n E z+, Zn is an abelian group under addition modulo n. 

2. For any n E z +, Zn is isomorphic with Un, an abelian group under complex 
number multiplication. 

3. For any c > 0, Re under addition modulo c is a group. 

4. U under multiplication is a group. 

5. For any c E JR+, lRc under addition modulo c is isomorphic with U under 
multiplication. 

• EXERCISES 3 

In Exercises I through 9 compute the given arithmetic expression and give the answer in the form a+ bi for 
a, b E JR:.. 

2. i4 3. i26 

4. (-i)39 6. (8 + 2i)(3 - i) 

7. (2 - 3i)(4 + i) + (6 - Si) 

5. (3 - 2i)(6 + i) 

8. (I + i)3 9. (I - i )5 (Use the binomial theorem.) 

10. Find IS - 12il. 11. Find In+ eil. 

In Exercises 12 through lS write the given complex number z in the polar form lzl(p +qi) where IP+ qil = 1. 

12. 3 - 4i 13. -1 - i 14. 12 +Si 15. -3 +Si 

In Exercises 16 through 21, find all solutions in C of the given equation. 

16. z4 = 1 17. z4 = -1 18. z3 = -12S 19. z3 = -27i 

20. z6 = l 21. z6 = -64 

In Exercises 22 through 27, compute the given expression using the indicated modular addition. 

22. 10 +11 16 23. 14 +99 92 24. 3.141+42.718 

25 I 7 26 3rr 3rr r;::; r;::; · 2 +1 8 · 4 + 2rr T 27. 2-v2+v!J2 3-v2 

28. Explain why the expression S +6 8 in JR:.6 makes no sense. 
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In Exercises 29 through 34, find all solutions x of the given equation. 

29. x + 10 7 = 3 in Z 10 

31. x +1 x = 3 in Z1 

33. x + 12 x = 2 in Z12 

30. x +21r lT = ~ in IR2rr 

32. x + 13 x + 13 x = 5 in Z 13 

34. x +s x +s x +s x = 4 in Zs 

35. Prove or give a counterexample to the statement that for any n E z+ and a E Z,,, the equation x +,, x =a has 
at most two solutions in Z,, . 

36. Prove or give a counterexample to the statement that for any n E z+ and a E Z,,, if n is not a multiple of 3, 
then the equation x +,, x +,, x =a has exactly one solution in Z,, . 

37. There is an isomorphism of Us with Zs in which ( = ei(rr/ 4) ++ 5 and ( 2 ++ 2. Find the element of Zs that 
corresponds to each of the remaining six elements ( 111 in Us for m = 0, 3, 4, 5, 6, and 7. 

38. There is an isomorphism of U1 with Z7 in which ( = ei(2rr/?) ++ 4. Find the element in Z7 to which ('" must 
correspond for m = 0, 2, 3, 4, 5, and 6. 

39. Why can there be no isomorphism of U6 with Z6 in which ( = ei(rr/ 3l corresponds to 4? 

40. Derive the formulas 

sin(a + b) = sin acosb + cosasinb 

and 

cos(a + b) = cosacosb - sinasin b 

by using Euler's formula and computing eiaeih. 

41. Let z1 = Jzil (cos 81 + i sin 81) and z2 = Jz2 J(cos 82 + i sin 82). Use the trigonometric identities in Exercise 40 
toderivez1z2 = Jzil lz2J [cos(81 +82)+isin(81 +82)). 

42. a. Derive a formula for cos 38 in terms of sin 8 and cos 8 using Euler's formula. 

b. Derive the formula cos 38 = 4 cos3 8 - 3 cos 8 from part (a) and the identity sin2 8 + cos2 8 = 1. (We will 
have use for this identity in Section 4 1.) 

43. Recall the power series expansions 

x2 x3 x4 x" 
ex= 1 +x+ - + - + - + · · · + - + · · · 

2! 3! 4! n! ' 
x3 x5 x? x2n- I 

sin x=x - -+- - - + · · · + (- 1)11
-

1 +·· · and 
3! 5! 7! (2n - l )! ' 

x2 x4 x6 x2" 
COSX = 1 - - + - - - + · · · + (- 1 )11 

-- + · · · 
2! 4! 6! (2n)! 

from calculus. Derive Euler's formula e;e = cos 8 + i sin 8 formally from these three series expansions. 

44. Prove that for any n E z+, (Z,,, +,, ) is associative without using the fact that U,, is associative. 

45. Let b, c E JR+. Find a one-to-one and onto function!: !Rb --+ !Re that has the homomorphism property. Con­
clude that !Re is an abelian group that is isomorphic with U. 

46. Prove that for any n ~ 1, U11 is a group. 

SECTION 4 N ONABELIAN EXAMPLES 

Notation and Terminology 

It is time to explain some conventional notation and terminology used in group theory. 
Algebraists as a rule do not use a special symbol * to denote a binary operation different 
from the usual addition and multiplication. They stick with the conventional additive or 
multiplicative notation and even call the operation addition or multiplication, depending 
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4.1 Table 

1 a 

1 1 a 

a a b 

b b 1 

4.2 Table 

+ 0 a 

0 0 a 

a a b 

b b 0 
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b 

b 

1 

a 

b 

b 

0 

a 

on the symbol used. The symbol for addition is, of course, +, and usually multiplication 
is denoted by juxtaposition without a dot, if no confusion results. Thus in place of the 
notation a * b, we shall be using either a + b to be read "the sum of a and b," or ab 
to be read "the product of a and b." There is a sort of unwritten agreement that the 
symbol + should be used only to designate commutative operations. Algebraists feel 
very uncomfortable when they see a + b f= b + a. For this reason, when developing 
our theory in a general situation where the operation may or may not be commutative, 
we shall always use multiplicative notation. 

Algebraists frequently use the symbol 0 to denote an additive identity element and 
the symbol 1 to denote a multiplicative identity element, even though they may not be 
actually denoting the integers 0 and I. Of course, if they are also talking about numbers 
at the same time, so that confusion would result, symbols such as e or u are used as 
identity elements. Thus a table for a group of three elements might be one like Table 4.1 
or, since such a group is commutative, the table might look like Table 4.2. In general 
situations we shall continue to use e to denote the identity element of a group. 

It is customary to denote the inverse of an element a in a group by a - 1 in mul­
tiplicative notation and by -a in additive notation. From now on, we shall use these 
notations in place of the symbol a'. 

Let n be a positive integer. If a is an element of a group G, written multiplicatively, 
we denote the product aaa ... a for n factors a by a". We let a0 be the identity element 
e, and denote the product a- 1 a- 1 a- 1 ••• a- 1 for n factors by a- ". It is easy to see that 
our usual law of exponents, a111a" = a111+11 form, n E Z, holds. Form, n E z+, it is clear. 
We illustrate another type of case by an example: 

a-2a5 = a- 1a- 1aaaaa = a- 1(a- 1a)aaaa = a- 1eaaaa = a- 1(ea)aaa 

= a- ' aaaa = (a- 1a)aaa = eaaa = (ea)aa = aaa = a3
• 

In additive notation, we denote a+ a + a+ · · · + a for n summands by na, denote 
(-a)+ (-a)+ (-a)+ · · · +(-a) for n summands by -na, and let Oa be the identity 
element. Be careful: In the notation na, the number n is in Z, not in G. One reason 
we prefer to present group theory using multiplicative notation, even if G is abelian, 
is the confusion caused by regarding n as being in G in this notation na. No one ever 
misinterprets then when it appears in an exponent. 

The following table summarizes basic notations and facts using both additive and 
multiplicative notation. We assume that a is an element of a group, n, m are integers, 
and k is a positive integer. 

*Notation +Notation · Notation 
May or may not be abelian Abelian May or may not be abelian 

e 0 1 
a' -a a-' 

a*b a+b ab 
a * a*· .. *a ka ak 
'-...,---' 

k 

(p' * a' *v .. . * a') -ka a ·K 

k 

Oa =0 au= 1 
(n + m)a = na + ma a n+m = anam 

n(ma) = (nm)a (an)m =am" 

Typically when stating a theorem we will use multiplicative notation, but the theo­
rem also applies when using additive notation by using the above table to translate. 



Section 4 Nonabelian Examples 41 

We often refer to the number of elements in a group, so we have a term for this 
number. 

4.3 Definition If G is a group, then the order of G is the number of elements or cardinality of G. The 
order of G is denoted IGI. • 

Permutations 

We have seen examples of groups of numbers, like the groups Z, Q, and lR under addi­
tion. We have also introduced groups of matrices, like the group GL(2, JR). Each element 
A of GL(2, JR) yields a transformation of the plane JR2 into itself; namely, if we regard 
x as a 2-component column vector, then Ax is also a 2-component column vector. The 
group GL(2, JR) is typical of many of the most useful groups in that its elements act 
on things to transform them. Often, an action produced by a group element can be re­
garded as a function, and the binary operation of the group can be regarded as function 
composition. In this section, we construct some finite groups whose elements, called 
permutations, act on finite sets. These groups will provide us with examples of finite 
nonabelian groups. 

You may be familiar with the notion of a permutation of a set as a rearrangement of 
the elements of the set. Thus for the set { 1, 2, 3, 4, 5), a rearrangement of the elements 
could be given schematically as in Fig. 4.4, resulting in the new arrangement (4, 2, 5, 
3, l}. Let us think of this schematic diagram in Fig. 4.4 as a function mapping each 
element listed in the left column into a single (not necessarily different) element from 
the same set listed at the right. Thus 1 is carried into 4, 2 is mapped into 2, and so 
on. Furthermore, to be a permutation of the set, this mapping must be such that each 
element appears in the right column once and only once. For example, the diagram in 
Fig. 4.5 does not give a permutation, for 3 appears twice while 1 does not appear at all 
in the right column. We now define a permutation to be such a mapping. 

5-> l 

4.4 Figure 

1->3 

5->3 

4.5 Figure 

4.6 Definition A permutation of a set A is a function cp : A --+ A that is both one-to-one and onto . 

• 
Permutation Groups 

We now show that function composition o is a binary operation on the collection of all 
permutations of a set A. We call this operation permutation multiplication. Let A be a 
set, and let a and r be permutations of A so that a and r are both one-to-one functions 
mapping A onto A. The composite function a o r defined schematically by 

gives a mapping of A into A. Rather than keep the symbol o for permutation multipli­
cation, we will denote a o r by the juxtaposition a r. Now a r will be a permutation 
if it is one-to-one and onto A. Remember that the action of ar on A must be read in 
right-to-left order: first apply r and then a. Let us show that a r is one-to-one. If 
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then 

and since a is given to be one-to-one, we know that r(a 1) = r(a2). But then, since r 
is one-to-one, this gives a 1 = a2 . Hence ar is one-to-one. To show that ar is onto A, 
let a EA. Since a is onto A, there exists a' EA such that a(a') = a. Since r is onto A, 
there exists a" EA such that r(a") = a'. Thus 

a= a(a' ) = a(r(a")) = (ar)(a"), 

soar is onto A. 

4.7 Example Suppose that 

A= {l , 2,3,4,5) 

and that a is the permutation given by Fig. 4.4. We write a in a more standard notation, 
changing the columns to rows in parentheses and omitting the arrows, as 

a -(1 2 3 4 i) , - 4 2 5 3 

so that a(!) = 4, a(2) = 2, and so on. Let 

r - (1 2 3 4 ;) . - 3 5 4 2 

Then 

ar - (1 2 3 4 ;)G 2 3 4 
;) = G 2 3 4 ~). - 4 2 5 3 5 4 2 I 3 2 

For example, multiplying in right-to-left order, 

(ar)(l) = a(r(l)) = a (3) = 5. 

• HISTORICAL NOTE 

One of the earliest recorded studies of per­
mutations occurs in the Sefer Yetsirah, or 

Book of Creation, written by an unknown Jew­
ish author sometime before the eighth century. 
The author was interested in counting the var­
ious ways in which the letters of the He­
brew alphabet can be arranged. The question 
was in some sense a mystical one. It was 
believed that the letters had magical powers; 
therefore, suitable arrangements could subjugate 
the forces of nature. The actual text of the 
Sefer Yetsirah is very sparse: "Two letters build two 
words, three build six words, four build 24 words, 
five build 120, six build 720, seven build 5040." 
Interestingly enough, the idea of counting the ar­
rangements of the letters of the alphabet also oc­
curred in Islamic mathematics in the eighth and 
ninth centuries. By the thirteenth century, in both 
the Islamic and Hebrew cultures, the abstract idea 

of a permutation had taken root so that both Abu­
!- ' Abbas ibn al-Banna (1256-1321), a mathemati­
cian from Marrakech in what is now Morocco, and 
Levi ben Gerson, a French rabbi, philosopher, and 
mathematician, were able to give rigorous proofs 
that the number of permutations of any set of n el­
ements is n! , as well as prove various results about 
counting combinations. 

Levi and his predecessors, however, were con­
cerned with permutations as simply arrangements 
of a given finite set. It was the search for solutions 
of polynomial equations that led Lagrange and oth­
ers in the late eighteenth century to think of permu­
tations as functions from a finite set to itself, the set 
being that of the roots of a given equation. And it 
was Augustin-Louis Cauchy (1789- 1857) who de­
veloped in detail the basic theorems of permutation 
theory and who introduced the standard notation 
used in this text. 
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We now show that the collection of all permutations of a nonempty set A forms a 
group under this permutation multiplication. 

4.8 Theorem Let A be a nonempty set, and let SA be the collection of all permutations of A. Then SA 
is a group under permutation multiplication. 

Proof We have shown that composition of two permutations of A yields a permutation of A, 
so SA is closed under permutation multiplication. 

Now permutation multiplication is defined as function composition, and in 
Section 1, we showed that.function composition is associative. Hence ~ is satisfied. 

The permutation t such that i(a) = a, for all a E A acts as identity. Therefore ~ is 
satisfied. 

For a permutation a, the inverse function, a - 1, is the permutation that reverses the 
direction of the mapping a, that is, a- 1(a) is the element a' of A such that a= a(a' ). 
The existence of exactly one such element a' is a consequence of the fact that, as a 
function, a is both one-to-one and onto. For each a E A we have 

t(a) =a= a(a') = a(a - 1(a)) = (aa - 1)(a) 

and also 
t(a') =a' = a-1(a) = a-1(a(a' )) = (a- 1a)(a'), 

so that a- 1a and aa- 1 are both the permutation t. Thus ~ is satisfied. • 
Warning: Some texts compute a product aµ, of permutations in left-to-right order, so 
that (a µ,)(a) = µ,(a(a)). Thus the permutation they get for aµ, is the one we would get 
by computing µ,a. Exercise 34 asks us to check in two ways that we still get a group. 
If you refer to another text on this material, be sure to check its order for permutation 
multiplication. 

There was nothing in our definition of a permutation to require that the set A be 
finite. However, most of our examples of permutation groups will be concerned with 
permutations of finite sets. Note that the structure of the group SA is concerned only 
with the number of elements in the set A, and not what the elements in A are. If sets A 
and B have the same cardinality, then SA '.::::'. S8 . To define an isomorphism fjJ: SA --+ S8 , 

we let/: A --+ B be a one-to-one function mapping A onto B, which establishes that A 
and B have the same cardinality. For a E SA , we Jet f/J(a) be the permutation a E S8 such 
that a(f(a)) = f(a(a)) for all a EA. To illustrate this for A = { 1, 2, 3} and B = {#, $, % } 
and the function!: A --+ B defined as 

fjJ maps 

f(l) = #, f(2) = $, f(3) = %, 

2 
2 

3) . (# 
1 mto % 

$ 
$ 

%) # . 

We simply rename the elements of A in our two-row notation by elements in B using 
the renaming function f, thus renaming elements of SA to be those of S8 . We can take 
{ 1, 2, 3, · · ·, n} to be a prototype for a finite set A of n elements. 

4.9 Definition Let A be the finite set { 1, 2, · · · , n} . The group of all permutations of A is the symmetric 
group on n letters, and is denoted by Sn. • 

Note that Sn has n! elements, where 

n! = n(n - l )(n - 2) · · · (3)(2)(1). 
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(
123) (123) Let <I = 
2 1 3 

and r = 
1 3 2 

. Then 

<Ir(l) = <I(l) = 2 

and 
rn(l) = 3 

which says that <I r op r <I. Therefore S3 is not abelian. We have seen that any group with 
at most four elements is abelian. Furthermore we will see later that up to isomorphism, 
the abelian group Z5 is the only group of order 5. Thus S3 is the smallest group which 
is not abelian. 

4.10 Example Suppose that <I = ( ~; ~ ~ ~ ~). We find the inverse <I - 1
. We saw in the proof of 

Theorem 4.8 that the inverse function of a permutation is the group inverse. So it is easy 
to find inverses for permutations, we simply tum the tables! That is, we switch the top 
and bottom rows and sort the columns so the top row is in order: 

- '=(123456) 
(J 421563. 

Disjoint Cycles 

There is a more efficient way of specifying the action of a permutation. In the two­
row notation that we have been using, we list each number 1 through n twice, once 
in the top row and once in the bottom row. Disjoint cycle notation allows us to write 
the permutation using each number only once. We illustrate with an example. Let <I = 

( 
I 2 3 4 5 6) ..,.. . . d. . . l . b .. 
3 4 6 2 5 1 

. 10 wnte m ISJOmt eye e notation we start y wntmg 

(I 

We see that <I(l) = 3, so we place 3 just to the right of 1: 

(1,3 

Now we see that <I maps 3 to 6, so we write: 

(1, 3, 6 

Our permutation maps 6 to 1, but there is no reason to write 1 again, so we just place a 
parenthesis after the 6 to indicate that 6 maps back to the first element listed: 

(1,3,6) 

This is called a cycle because when we apply <I repeatedly, we cycle through the 
numbers 1, 3, and 6. A cycle containing exactly k numbers is called a k-cycle. So the 
cycle ( 1, 3, 6) is a 3-cycle. This is not the end of the story for <I because we have not 
indicated that 2 maps to 4. So we start another cycle and write 

( I , 3, 6)(2, 4 

to indicate that <I maps 2 to 4. Since 4 maps back to 2, we obtain a 2-cycle: 

(1 , 3, 6)(2, 4) 

We still have not indicated what <I does to 5. We can write (1 , 3, 6)(2, 4)(5) to indicate 
that 5 maps to itself, but usually we will simply leave out I-cycles with the understand­
ing that any number not listed maps to itself. So in disjoint cycle notation 

(J = (1, 3, 6)(2, 4). 
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We see that CJ is a product of a 3-cycle and a 2-cycle. Sometimes we refer to a 
2-cycle as a transposition. 

A collection of cycles is said to be disjoint if no entry is in more than one cycle. 
Note that CJ could also be written as (3, 6, 1)(4, 2), (2, 4)(1 , 3, 6), or in a number of other 
ways. In general it doesn' t matter which order we write the disjoint cycles, and inside 
each cycle we can start with any number as long as we keep the cyclic order the same. 
It is clear that any permutation in Sil can be written in disjoint cycle notation and that 
the representation is unique up to the order the cycles are written and the cyclic order 
within each cycle. 

4.11 Example In disjoint cycle notation, CJ E S9 is written as (1, 5, 2, 7)(3, 4, 9). Let us rewrite CJ in two­
row notation. Reading off the disjoint cycle notation we see that CJ(l) = 5, CJ(5) = 2, 
CJ(2) = 7, CJ(7) = 1, CJ(3) = 4, CJ(4) = 9, and CJ(9) = 3. Since 6 and 8 do not appear in 
either cycle, we know that CJ(6) = 6 and CJ(8) = 8. Therefore, 

(
1234567 89) 

CJ= 574926183 

The operation that makes Sil a group is composition of functions. Keeping this in mind, 
we can see how to multiply permutations written in disjoint cycle notation. 

4.12 Example Let CJ = (1, 5, 3, 2, 6) and r = (1, 2, 4, 3, 6) in S6. Let us find CJr in disjoint cycle nota­
tion without resorting to using two-row notation. So 

CJ! =(I , 5, 3, 2, 6)(1, 2, 4, 3, 6). 

We need to rewrite this product in disjoint cycles. So we ask where 1 is mapped. Since 
the operation is function composition, we see that the cycle r on the right sends 1 to 
2 and then the cycle on the left sends 2 to 6. So CJr(l) = 6 and we start our cycle by 
writing 

(1, 6 

Now we see that r maps 6 to 1 and CJ maps 1 to 5, so we write 

(1, 6, 5 

We note that 5 is not in the cycle (I , 2, 4, 3, 6), so r(5) = 5 and CJr(5) = CJ(5) = 3. So 
we write 

(1,6,5,3 

Continuing in the same manner, we see that 3 maps to 1 and we complete the first cycle: 

(1,6,5,3) 

We are now ready to start the second cycle. We note that we have still not seen where 2 
maps, so we start the next cycle with 2 and we write 

CJ!= (l,5,3,2,6)(1,2,4,3,6) = (1 ,6,5,3)(2, 4) 

using the same method we used for the first cycle. We know we are through since we 
have used every number 1 through 6. .A 

Example 4.12 illustrates the process of multiplying permutations in general. We move 
from right to left between the cycles, and within the cycles we move from left to right. 

4.13 Example We compute the product of the permutations 

CJ= (l,5)(2,4)(1,4, 3)(2,5)(4, 2, 1) 

using disjoint cycle notation. 
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We start by seeing where 1 is mapped. The first cycle on the right maps 1 to 4. 
We are using function composition, so we next check what (2, 5) does to 4, which is 
nothing. So we move to the cycle (1, 4, 3) and note that 4 is mapped to 3. Next, 3 is not 
in the cycle (2, 4) and so (2, 4) does not move 3 . Finally, (1 , 5) also does not move 3 
and we conclude that u( l) = 3. We next need to determine where 3 is mapped by u and 
continue until we arrive at 

CT = (1,3,5, 4)(2) = (1 , 3, 5,4). 

It is interesting to note that in Example 4.13 the group was never specified. The same 
calculation is valid whether the group is S5 , S6, or S11 for any n ~ 5. 

4.14 Example We compute the inverse of u = (1 , 5, 7)(3, 8, 2, 4, 6). We first note that in general for a 
group (ab)- 1 = b- 1a- 1 , so 

The inverse of a cycle is simply the cycle written backward: 

CT - I = (6,4,2,8, 3)(7, 5, 1). 

This is a perfectly good way of writing u - 1, but since disjoint cycles commute and we 
can start each cycle with any entry in the cycle, we could write 

CT-I = (1 , 7,5)(2,8, 3, 6,4). 

With a little practice, computing products of permutations in disjoint cycle notation 
becomes routine. We give the table for S3. 

4.15 Table 

S3 
0 ( 1, 2, 3) (1, 3, 2) (I, 2) (I , 3) (2,3) 

(I , 2, 3) (1, 3,2) (1, 2) ( I, 3) (2,3) 

(1, 2,3) (I , 2, 3) (1, 3, 2) (I , 3) (2, 3) (I , 2) 

( 1, 3, 2) (1,3, 2) (1, 2, 3) (2,3) (1 , 2) (I , 3) 

(1 , 2) (1, 2) (2, 3) (1 , 3) (1 , 3, 2) (1 , 2, 3) 

(1, 3) (1 , 3) (1 , 2) (2, 3) (1,2,3) (1 , 3, 2) 

(2,3) (2, 3) ( I , 3) (I , 2) (I, 3, 2) ( I , 2, 3) 

Again we can see that S3 is not abelian since the table is not symmetric about the main 
diagonal. We also notice that although disjoint cycles commute, the same cannot be 
said for cycles that are not disjoint. For example we see in Table 4.15 that (I , 2)(2, 3) = 
(1 , 2, 3) =I= (1, 3, 2) = (2, 3)(1, 2). 

The Dihedral Group 

We next define a collection of finite groups based on the symmetries of regular n-gons. 
To be specific, we use as our standard regular n-gon the one whose points are U11 • Recall 
that U11 includes the point ( 1, 0) and the other points are spaced uniformly around the 
unit circle to form the vertices of a regular n-gon, which we denote by P11 • We label the 
points starting at (1, 0) with 0 and continue labeling them 1, 2, 3, ... , n - 1 around the 
circle counterclockwise. Note that this is the same labeling as the isomorphism between 
U11 and Z,, that we saw in Section 3. When we refer to a vertex we will reference it by 
its label. So vertex 0 is the point (1 , 0). Note that the edges of P,, consist of the line 
segments between vertices k and k +,, 1 for 0 ::: k ::: n - 1. 
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4.16 Definition Let n :=: 3. Then D11 is the set of all one-to-one functions cp : Z 11 --+ Z 11 that map onto Z11 

with the property that the line segment between vertices i and j is an edge in P 11 if and 
only if the line segment between cp(i) and cp(j) is an edge of P,,. The n1h dihedral group 
is the set D,, with binary operation function composition. • 

0 2 0 

2 3 

We justify calling (D 11 ,o) a group with Theorem 4.17. 

4.17 Theorem For any n '.:: 3, (D11 , o) is a group. 

Proof We first show that function composition is an operation on D,,. Let cp, e E D,, and sup­
pose that the line between vertices i and j is an edge in P11 • Since e E D,,, the line 
between e(i) and e(j) is an edge of P11 • Because cp E D11 , and the line between e(i) and 
e(j) is an edge, the line between cp(e(i)) = cp o 8(i) and cp(8(j)) = cp o 8(j) is an edge of 
P,,. 

We leave it to the reader to check that ifthe line segment between cp(8(i)) =cl> o 8(i) 
and cp(8(j)) = cp o 8(j) is an edge of P,, , then the line segment between i andj is an edge 
of P 11 . 

We also know that the composition of one-to-one and onto functions is one-to-one 
and onto, so cp o e E D11 • Therefore, function composition is an operation on D11 • 

The operation of composition of functions is associative, so ~ is satisfied. The 
function L : Z,, --+ Z,, defined by i(k) = k is an identity in D,,, so ~ is satisfied. Finally, 
if cl> ED,, , then cp- 1 ED,,; the inverse function for facts as the inverse in the group 
sense, so ~ is satisfied. Therefore, (D11 , o) is a group. + 

Following tradition, we will use multiplicative notation in the dihedral groups instead 
of using o. If the operation on D,, were abelian, we could use additive notation, but in 
Example 4.18 we find that D,, is not abelian. 

4.18 Example Let n '.:: 3 and p : Z,, --+ Z,, be given by rotating the n-gon P11 by 2,7, which just rotates 
each vertex to the next one. That is, 

4.19 Figure 
I 

rS> 
4 

p(k) = k +11 1 

for each k E Z ,,, as can be visualized in Figure 4.19. The fu nction p matches edges to 
edges and it is one-to-one and onto. Sop E D11 • 

A second element in D,, is reflection about the x-axis, which we callµ,. By glancing 
at Figure 4.20 we see that in D5 , µ,(0) = 0, µ,(l) = 4, µ,(2) = 3, µ,(3) = 2, and µ,(4) = 1. 
For any n '.:: 3 in general, if k E Z,, , then 

µ,(k) = - k. 

(Recall that in Z,,, -k is the additive inverse of k, which is n - k fork > 0 and -0 = 0.) 



48 Part I Groups and Subgroups 

4.20 Figure 
I 

Let us check if µ,p = pµ,. We start by checking what each function does to 0. 

·+e' 
µ,(p(O)) = µ,( l ) 

=n-l 

p(µ,(0)) = p(O) 

= 1 
4 

Since n :=:: 3, n - 1 i= I , which implies that µ,p i= pµ,. Thus for all n :=:: 3, D11 is not 
abelian. .&. 

4.21 Theorem Let n :=:: 3. The order of the dihedral group D11 is 2n and 

D" = {t, p, p2, p3, ... , p"-1, µ,, µ,p , µ,p2, µ,p3, ... , µ,p"-1 }. 

Proof We first show there can be at most 2n elements of D,, . If we map the vertices Z,, to the 
vertices Z,,, vertex 0 has n possible images. Let y be the image of vertex 0. Since y is 
connected by an edge to just two vertices, 1 must map to one of these two vertices. So 
after the image of vertex 0 is determined, there are only two choices for the image of 1. 
After the images of vertices 0 and 1 are determined, the rest are fixed. This means that 
there are at most 2n elements of D,,. 

To show that ID,, I = 2n we only need to show that no two of the functions t = 
po, p, p2, p3, ... , p"-1, µ, , µ,p , µ,p2

, µ,p3, ... , µ,p11
-

1 are the same. We first suppose that 
p k = p r for some integers 0 _:::: k _:::: n - 1 and 0 _:::: r _:::: n - I . Then: 

pk(O) = pr(O) 

k +,, 0 = r +,, 0 
k=r 

This shows that no two oft= p 0 , p, p2, p 3, .. . , p 11
-

1 are the same. 
We next show that no two ofµ, = µ,p0 , µ,p, µ,p2, µ,p3, . .. , µ,p11

-
1 are the same. As 

before we assume that µ,pk = µ,p r where 0 _:::: k _:::: n - 1 and 0 _:::: r _:::: n - 1 are integers. 
By cancellation, we have pk = pr. But then k = r as shown above. Therefore no two of 
µ, = µ,p0 , µ,p, µ,p2, µ,p3, . .. , µ,p" - 1 are the same. 

It now only remains to show that there are no values fork and r with pk = µ,pr. 

Note that traversing the n-gon in the order 

pk(O), pk(l), pk(2), .. . , pk(n - 1) 

progresses in a counterclockwise manner regardless of which k we use. On the other 
hand, 

traverses the n-gon in a clockwise manner. This shows that there are no values of k and 
r for which pk = µ,p r. Therefore, D,, has at least 2n elements. Combining this with the 
fact that D11 has at most 2n elements shows that ID,, I = 2n and 

D" = {t,p,p2,p3, . .. ,p"-1,µ,,µ,p , µ,p2, µ,p3, · ·· ,µ,pn-1} . • 
Theorem 4.21 says that if <P E D11 , then there is an integer 0 _:::: k _:::: n - 1 such that either 
<P = pk or else <P = µ,pk. We refer to this representation of <P as the standard form. 
We notice that each application ofµ, reverses the direction traversed by the images of 
0, I, 2, 3, ... , n. We use this fact in the following example. 

4.22 Example Let n :=:: 3. We know pµ, i= µ,p from Example 4.18, so let us determine pµ, E D11 in 
standard form. Each time we apply µ, we reverse the clock direction of the images of 
0, 1, 2, 3, ... , n - 1. This means that µ,pµ, reverses direction twice, so the rotation is 
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back to counterclockwise. Thus µ,pµ = pk for some k. We determine the value of k by 
determining where 0 is sent: 

k = pk(O) = µpµ(O) = µp(O) = µ.,( l ) = n - l 

Therefore, 

µ p µ = p"-1. 

Multiplying both sides on the left by µ., yields: 

µµpµ = µp"- 1 

Since µµ = t , we conclude that 

pµ = µp"- 1. 

When computing products in D,, we normally want our answer in standard form. This 
is not difficult if we keep in mind a few basic facts about the group D,, . We have shown 
some of the properties listed below, and the rest you will be asked to verify in the 
exercises. 

1. p" = t (Rotation by 2n is the identity map.) 
2. (pk)- 1 = p"- k 

3. µ 2 = t , which implies µ., - 1 =µ.,(Reflect across a line twice is the identity map.) 
4. pk µ., = µp"- k (Example 4.22 fork = 1 and Exercise 30 for any k.) 

4.23 Example In the group D5 compute (µp2)(µp ). We see that 

(µp2)(µp) = µp2 µp 
= µ(p2µ )p 
= µ(µp5-2)p 
= µ2p4 
= p4 

4.24 Example In the dihedral group D,, compute (µpk)-1. 

(µpk)-1 = (pk)-1 µ-I 
= p"-kµ 
= µp11- (11-k) 

= µpk 

In Example 4.24 we determined that the inverse of µpk is itself, which suggests that 
µpk could be reflection across a line of symmetry. In Exercise 37, you will be asked 
to show this is the case. Geometrically, we can see that each of the elements of the 
form µpk is reflection across a line. Placing one mirror along the line of reflection for 
µ., and another mirror along the line of reflection for µp is the basis for designing a 
kaleidoscope. Any element in D,, can be written as a product using only the elements 
µ.,and µp since we can write p = µµp. In a kaleidoscope successive reflections across 
the mirrors correspond to taking products involvingµ., and µp. So the image you see in 
the kaleidoscope has all the symmetries in D,,. That is, you can rotate the image by 3600 

or reflect it across any one of the lines of reflection for the elements µpk. Figure 4.25
11

is 
a typical image from a kaleidoscope with dihedral group D 16 symmetries. 
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4.25 Figure 

• EXERCISES 4 

Computation 

In Exercises l through 5, compute the indicated product involving the following permutations in S6: 

a = (
3
1 2 3 4 5 6) 

4 5 6 2 , 

1. ra 

(
l 2 

r = 2 4 
3 4 5 
l 3 6 

3. µ,a 2 

(
l 2 3 4 5 

µ,= 5 2 4 3 l 

In Exercises 6 through 9, compute the expressions shown for the permutations a, r, and µ, defined prior to Exer­
cise l. 

6. a 6 7. µ,2 8. alOO 9. µ, 100 

10. Convert the permutations a, r, and µ, defined prior to Exercise l to disjoint cycle notation. 

11. Convert the following permutations in Sg from disjoint cycle notation to two-row notation. 

a. (1, 4, 5)(2, 3) 

b. (1, 8, 5)(2, 6 , 7, 3, 4) 

c. (1 , 2, 3)(4, 5)(6, 7, 8) 

12. Compute the permutation products. 

a. (1 , 5,2,4)(1,5, 2,3) 
b. (1,5,3)(1,2,3,4,5,6)(1,5,3)- 1 

c. ((1 ,6, 7,2)2(4,5,2,6r 10 , 7, 3W1 

d. (1,6)(1,5)(1,4)(1,3)(1,2) 

13. Compute the following elements of D 12. Write your answer in standard form. 

a. µ,p2 µ,ps 

b. µ,plOµ,p- 1 

c. pµ,p-1 

d. (µ,p3 µ,- 1 p-1 )-1 
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14. Write the group table for D3. Compare the group tables for D3 and S3. Are the groups isomorphic? 

Let A be a set and let Cf E SA. For a fixed a E A, the set 
Ga.a = {C!"(a) In E Z } 

is the orbit of a under Cf. In Exercises 15 through 17, find the orbit of 1 under the permutation defined prior 
to Exercise 1. 

15. (f 16. r 17. µ, 

18. Verify that H = { i, µ,, p2, µ,p2} s; D4 is a group using the operation function composition. 

19. a. Verify that the six matrices 

[
l 0 OJ [O 0 l 0 ' 0 
0 0 1 l 

~ ~] · [~ ~ ~] ·[~ ~ ~] ·[~ ~ ~] · [~ ~ ~i 
00 010 010 100 001 

form a group under matrix multiplication. [Hint: Don' t try to compute all products of these matrices. In­

"'"'· th;ok h= th' oolomo "~tot [ n ;, "'"''°="' by moJt;pJy;og ;, 00 th' ldt by "'h of th' m•nfo~.1 
b. What group discussed in this section is isomorphic to this group of six matrices? 

20. After working Exercise 18, write down eight matrices that form a group under matrix multiplication that is 
isomorphic to D4. 

Concepts 

In Exercises 21 through 23, correct the definition of the italicized term without reference to the text, if correction 
is needed, so that it is in a form acceptable for publication. 

21. The dihedral g roup D,, is the set of all functions</> : Z,, ~ Z,, such that the line segment between vertex i and 
vertex j of U,, is an edge of P,, if and only if the line segment between vertices </>(i) and </>(j) in U,, is an edge 
of P,,. 

22. A permutation of a set Sis a one-to-one map from S to S. 

23. The order of a group is the number of elements in the group. 

In Exercises 24 through 28, determine whether the given function is a permutation of R 

24. !1 : IR ~ IR defined by f1 (x) = x + l 
25. h : IR ~ IR defined by f2(x) = x2 

26. f3 : IR ~ IR defined by f3(x) = -x3 

27. f4 : IR ~ IR defined by f4(x) = rr 
28. fs : IR ~ IR defined by fs(x) = x3 - x2 - 2x 

29. Determine whether each of the following is true or false. 

a. Every permutation is a one-to-one function. 

b. Every function is a permutation if and only if it is one-to-one. 
c. Every function from a finite set onto itself must be one-to-one. 

d . Every subset of an abelian group G that is also a group using the same operation as G is abelian. 
e. The symmetric group S10 has 10 elements. 

f. If</> E D,, , then</> is a permutation on the set Z,, . 

g. The group D,, has exactly n elements. 

h. DJ is a subset of D4. 

Theory 

30. Let n 2: 3 and k E Z,,. Prove that in D,,, pk µ, = µ,p 11-k . 

31. Show that S,, is a nonabelian group for n 2: 3. 
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32. Strengthening Exercise 31, show that if n 2: 3, then the only element of a of Sn satisfying a y = ya for all 
y E S11 is a = L, the identity permutation. 

33. Orbits were defined before Exercise 15. Let a, b EA and a E SA. Show that if Oa,a and O b,a have an element 
in common, then Oa,a = Ob,a · 

34. (See the warning following Theorem 4.8.) Let G be a group with binary operation *· Let G' be the same set as 
G, and define a binary operation *' on G' by x *' y = y * x for all x, y E G' . 

a. (Intuitive argument that G' under *' is a group.) Suppose the front wall of your classroom were made 
of transparent glass, and that all possible products a* b = c and all possible instances a* (b * c) = 
(a* b) * c of the associative property for G under* were written on the wall with a magic marker. What 
would a person see when looking at the other side of the wall from the next room in front of yours? 

b. Show from the mathematical definition of*' that G' is a group under*' · 

35. Give a careful proof using the definition of isomorphism that if G and G' are both groups with G abelian and 
G' not abelian, then G and G' are not isomorphic. 

36. Prove that for any integer n 2: 2, there are at least two nonisomorphic groups with exactly 2n elements. 

37. Let n 2: 3 and 0 ::; k ::; n - 1. Prove that the map µpk E D11 is reflection about the line through the origin that 
makes an angle of - ~.k with the x-axis. 

38. Let n 2: 3 and k, r E 2 11 • Based on Exercise 37, determine the element of D 11 that corresponds to first reflecting 
across the line through the origin at an angle of - 2~k and then reflection across the line through the origin 

maki ng an angle of - 2~'. Prove your answer. 

SECTION 5 S UBGROUPS 

Subsets and Subgroups 

You may have noticed that we sometimes have had groups contained within larger 
groups. For example, the group Z under addition is contained within the group IQ under 
addition, which in turn is contained in the group JR. under addition. When we view the 
group (Z, +) as contained in the group (JR., + ), it is very important to notice that the op­
eration + on integers n and mas elements of (Z, +) produces the same element n + m 
as would result if you were to think of n and m as elements in (JR., +) . Thus we should 
not regard the group (IQ+, ·) as contained in (JR., +), even though IQ+ is contained in JR. as 
a set. In this instance, 2 · 3 = 6 in (IQ+, ·), while 2 + 3 = 5 in (JR., + ). We are requiring 
not only that the set of one group be a subset of the set of the other, but also that the 
group operation on the subset be the induced operation that assigns the same element 
to each ordered pair from this subset as is assigned by the group operation on the whole 
set. 

5.1 Definition If a subset H of a group G is closed under the binary operation of G and if H with the 
induced operation from G is itself a group, then H is a subgroup of G. We shall let 
H ::; G or G 2: H denote that H is a subgroup of G, and H < G or G > H shall mean 
H ::; G but H ::/= G. • 

Thus (Z, +) < (JR.,+) but (IQ+, ·) is not a subgroup of (JR., +), even though as sets, 
IQ+ c R Every group G has as subgroups G itself and {e}, where e is the identity 
element of G. 

5.2 Definition If G is a group, then the subgroup consisting of G itself is the improper subgroup of G. 
All other subgroups are proper subgroups. The subgroup {e} is the trivial subgroup 
of G. All other subgroups are nontrivial. • 

We tum to some illustrations. 
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5.3 Example Let JR:" be the additive group of all n-component row vectors with real number entries. 
The subset consisting of all of these vectors having 0 as entry in the first component is 
a subgroup of JR:" . "' 

5.4 Example Q+ under multiplication is a proper subgroup of JR:+ under multiplication. 

5.5 Example The n1h roots of unity in C, U11 , form a subgroup of U, the complex numbers whose 
absolute value is 1, which in turn is a subgroup of C*, the nonzero complex numbers 
under multiplication. "' 

5.6 Example Recall that Sz,, is the set of all one-to-one functions mapping IJ',11 onto IJ',11 and D 11 is the 
set of all one-to-one functions <P mapping Z,, onto IJ',11 with the further property that the 
line segment between i and j is an edge of the regular n-gon ? 11 if and only if the line 
segment between <P(i) and </J(j) is an edge. D,, ~ Sz,, . Since both D11 and Sz,, are groups 
under composition of functions , D,, ::; Sz,, . "' 

5.7 Example There are two different types of group structures of order 4 (see Exercise 20 of 
Section 2). We describe them by their group tables (Tables 5.8 and 5.9). The group 
V is the Klein 4-group. 

The only nontrivial proper subgroup of Z4 is (0, 2) . Note that (0, 3) is not a sub­
group of Z4 , since (0, 3) is not closed under+. For example, 3 + 3 = 2, and 2 </:. (0, 3). 
However, the group V has three nontrivial proper subgroups, {e,a ), {e,b), and {e,c}. 
Here {e, a, b) is not a subgroup, since {e,a,b) is not closed under the operation of V 
because ab = c, and c </:. {e, a, b). "' 

5.8 Table 5.9 Table 

+ 0 1 2 3 V: e a b c 

0 0 I 2 3 e e a b c 

1 1 2 3 0 a a e c b 

2 2 3 0 1 b b c e a 

3 3 0 1 2 c c b a e 

It is often useful to draw a subgroup diagram of the subgroups of a group. In such 
a diagram, a line running downward from a group G to a group H means that H is a 
subgroup of G. Thus the larger group is placed nearer the top of the diagram. Figure 5 .10 
contains the subgroup diagrams for the groups Z4 and V of Example 5.7. 

2.4 

I 
{O, 2} 

I 
{O} 

(a) (b) 

5.10 Figure (a) Subgroup diagram for Z4. (b) Subgroup diagram for Y. 

Note that if H ::; G and a E H , then by Theorem 2.17, the equation ax = a must 
have a unique solution, namely the identity element of H. But this equation can also 
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be viewed as one in G, and we see that this unique solution must also be the identity 
element e of G. A similar argument then applied to the equation ax = e, viewed in both 
Hand G, shows that the inverse a- 1 of a in G is also the inverse of a in the subgroup H. 

5.11 Example Let F be the group of all real-valued functions with domain IR under addition. The subset 
of F consisting of those functions that are continuous is a subgroup of F, for the sum of 
continuous functions is continuous, the function! where f (x) = 0 for all x is continuous 
and is the additive identity element, and iff is continuous, then -f is continuous. .&. 

It is convenient to have routine steps for determining whether a subset of a group 
G is a subgroup of G. Example 5.11 indicates such a routine, and in the next theorem, 
we demonstrate carefully its validity. 

5.12 Theorem A subset H of a group G is a subgroup of G if and only if 

1. His closed under the binary operation of G, 

2. the identity element e of Gisin H, and 

3. for all a EH, a- 1 EH also. 

Proof The fact that if H ::::: G then Conditions 1, 2, and 3 must hold follows at once from the 
definition of a subgroup and from the remarks preceding Example 5.11. 

Conversely, suppose H is a subset of a group G such that Conditions 1, 2, and 3 
hold. By 2 we have at once that ~ is satisfied. Also ~ is satisfied by 3. It remains 
to check the associative axiom, ~. But surely for all a, b , c E H it is true that (ab)c = 
a(bc) in H, for we may actually view this as an equation in G, where the associative law 
holds. Hence H ::::: G. • 

5.13 Example Let F be as in Example 5.1 1. The subset of F consisting of those functions that are 
differentiable is a subgroup of F, for the sum of differentiable functions is differentiable, 
the constant function 0 is differentiable, and if f is differentiable, then -f is differen­
tiable. .&. 

5.14 Example Recall from linear algebra that every square matrix A has associated with it a number 
det(A) called its determinant, and that A is invertible if and only if det(A) -:/= 0. If A and B 
are square matrices of the same size, then it can be shown that det(AB) = det(A) · det(B). 
Let G be the multiplicative group of all invertible n x n matrices with entries in (['. and 
let T be the subset of G consisting of those matrices with determinant 1. The equation 
det(AB) = det(A) · det(B) shows that T is closed under matrix multiplication. Recall 
that the identity matrix /,, has determinant 1. From the equation det(A) · det(A - 1) = 
det(AA - I) = det(/11) = 1, we see that if det(A) = 1, then det(A - I) = 1. Theorem 5 .12 
then shows that T is a subgroup of G. .&. 

Theorem 5.15 provides an alternate way of checking that a subset of a group is a 
subgroup. 

5.15 Theorem A nonempty subset Hof the group G is a subgroup of G if and only if for all a, b E G, 
ab- 1 E G. 

Proof We leave the proof as Exercise 51. • 
On the surface Theorem 5.15 may seem simpler than Theorem 5.12 since we only need 
to show that H is not empty and one other condition. In practice, it is usually just as 
efficient to use Theorem 5 .12. On the other hand, Theorem 5 .16 can often be used 
efficiently. 
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5.16 Theorem Let H be a finite nonempty subset of the group G. Then H is a subgroup of G if and 
only if His closed under the operation of G. 

Proof We leave the proof as Exercise 57. • 
5.17 Example Recall that Un= {z E C I t' = l}. We could use Theorem 5.16 to verify that Un is a 

subgroup of C* by noting that Un has exactly n elements, so Un is a finite nonempty 
subset of C* and if z1, z2 E Un , then (z1z2)n = 1, which implies that Un is closed under 
multiplication. .&. 

5.18 Example We verify that the subset H = {t = p0 , p, p2 , . . . , pn- I} C Dn is a subgroup of Dn. By 
Theorem 5.16, we only need to check that His closed under the operation of Dn. Let 
k, r E Zn . Then pk p' = pk+.r E H . Therefore H :S: Dn. .&. 

Cyclic Subgroups 

Let us see how large a subgroup Hof Z 12 would have to be if it contains 3. It would 
have to contain the identity element 0 and 3 + 3, which is 6. Then it has to contain 6 + 3, 
which is 9. Note that the inverse of 3 is 9 and the inverse of 6 is 6. It is easily checked 
that H = (0, 3, 6, 9} is a subgroup of Z 12, and it is the smallest subgroup containing 3. 

Let us imitate this reasoning in a general situation. As we remarked before, for 
a general argument we always use multiplicative notation. Let G be a group and let 
a E G. A subgroup of G containing a must, by Theorem 5.12, contain an, the result 
of computing products of a and itself for n factors for every positive integer n. These 
positive integral powers of a do give a set closed under multiplication. It is possible, 
however, that the inverse of a is not in this set. Of course, a subgroup containing a must 
also contain a- 1, and, in general, it must contain a-111 for all m E z+. It must contain the 
identity element e = a0 . Summarizing, a subgroup of G containing the element a must 
contain all elements an (or na for additive groups) for all n E Z. That is, a subgroup 
containing a must contain {anln E Z}. Observe that these powers an of a need not be 
distinct. For example, in the group V of Example 5.7, 

a2 = e, a3 = a, a4 = e, a-' = a, and so on. 

We have almost proved the next theorem. 

5.19 Theorem Let G be a group and let a E G. Then 

H ={an In E Z} 

is a subgroup of G and is the smallestt subgroup of G that contains a, that is, every 
subgroup containing a contains H. 

Proof We check the three conditions given in Theorem 5.12 for a subset of a group to give a 
subgroup. Since a' a5 = ar+s for r, s E Z, we see that the product in G of two elements 
of H is again in H. Thus H is closed under the group operation of G. Also a0 = e, so 
e E H, and for a' E H, a-r E H and a-r a' = e. Hence all the conditions are satisfied, 
and H :::: G. 

t We may find occasion to distinguish between the terms minimal and smallest as applied to subsets of a set S 
that have some property. A subset H of S is minimal with respect to the property if H has the property, and 
no subset K C H , K f' H , has the property. If H has the property and H c:; K for every subset K with the 
property, then H is the smallest subset with the property. There may be many minimal subsets, but there can 
be only one smallest subset. To illustrate, {e, a), {e, b) , and {e, c} are all minimal nontrivial subgroups of the 
group V. (See Fig. 5.10.) However, V contains no smallest nontrivial subgroup. 
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Our arguments prior to the statement of the theorem showed that any subgroup of 
G containing a must contain H, so His the smallest subgroup of G containing a. + 

5.20 Definition Let G be a group and let a E G. Then the subgroup {d' In E Z } of G, characterized 
in Theorem 5.19, is called the cyclic subgroup of G generated by a, and denoted 
by (a ). • 

5.21 Example Let us find two of the cyclic subgroups to D1o. We first consider (µ,pk) for k E Z 1o. 
Since (µ,p k)2 = l and (µ,pk) - 1 = µ,pk, for any integer r, (µ,pk y is either µ,pk or l. Thus 

(µ,pk ) = {t, µ,lJ. 

Since p-1 = p9, every negative power of p is also a positive power of p and p 10 = t, 
(p) = [l, p , p2, .. . 'p9). 

5.22 Definition An element a of a group G generates G and is a generator for G if (a ) =G. A group 
G is cyclic if there is some element a in G that generates G. • 

5.23 Example Let Z4 and V be the groups of Example 5.7. Then Z4 is cyclic and both 1 and 3 are 
generators, that is, 

(1 ) = (3) = 1:4. 

However, Vis not cyclic, for (a), (b), and (c) are proper subgroups of two elements. Of 
course, (e) is the trivial subgroup of one element. .&. 

5.24 Example The group Z under addition is a cyclic group. Both 1 and -1 are generators for this 
group, and they are the only generators. Also, for n E z+, the group Zn under addition 
modulo n is cyclic. If n > I , then both I and n - I are generators, but there may be 
othen. .&. 

5.25 Exam ple Consider the group Z under addition. Let us find (3). Here the notation is additive, and 
(3) must contain 

3, 3 + 3 = 6, 3 + 3 + 3 = 9, and so on, 

0, - 3, - 3 + -3 = -6, - 3 + -3 + -3 = -9, and so on. 

In other words, the cyclic subgroup generated by 3 consists of all multiples of 3, posi­
tive, negative, and zero. We denote this subgroup by 3Z as well as (3). In a similar way, 
we shall let nZ be the cyclic subgroup (n) of Z. Note that 6Z < 3Z. .&. 

5.26 Example For each positive integer n, Un is the multiplicative group of the nth roots of unity in 
C . These elements of Un can be represented geometrically by equally spaced points on 
a circle about the origin, as illustrated in Fig. 5.27. The point labeled represents the 
number 

2JT . . 2JT ; = cos - + 1 sm - . 
n n 

The geometric interpretation of multiplication of complex numbers, explained in 
Section 3, shows at once that as ; is raised to powers, it works its way counterclockwise 
around the circle, landing on each of the elements of Un in tum. Thus Un under mul­
tiplication is a cyclic group, and ; is a generator. The group Un is the cyclic subgroup 
(;) of the group U of all complex numbers z, where lzl = 1, under multiplication. .&. 
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yi 

5.27 Figure 

• EXERCISES 5 

Computations 

In Exercises l through 6, determine whether the given subset of the complex numbers is a subgroup of the group 
IC of complex numbers under addition. 

1. lR 3. n 

4. The set ilR of pure imaginary numbers including 0 

5. The set n lQ of rational multiples of n 6. The set {n" In E Z} 

7. Which of the sets in Exercises I through 6 are subgroups of the group IC* of nonzero complex numbers under 
multiplication? 

In Exercises 8 through 13, determine whether the given set of invertible n x n matrices with real number entries is 
a subgroup of GL(n, JR). 

8. Then x n matrices with determinant greater than or equal to I 

9. The diagonal n x n matrices with no zeros on the diagonal 

10. The n x n matrices with determinant 2k for some integer k 

11. The n x n matrices with determinant -1 

12. Then x n matrices with determinant -1 or l 

13. The set of all n x n matrices A such that (A T)A = / 11 • (These matrices are called orthogonal. Recall that A~ 
the transpose of A , is the matri x whose jth column is the j th row of A for l ::: j ::: n, and that the transpose 
operation has the property (AB)T = (BT)(A T).] 

Let F be the set of all real-valued functions with domain lR and let F be the subset of F consisting of those functions 
that have a nonzero value at every point in R In Exercises 14 through 19, determine whether the given subset of 
F with the induced operation is (a) a subgroup of the group Funder addition, (b) a subgroup of the group F under 
multiplication. 

14. The subset F 
15. The subset of all / E F such thatf( l ) = 0 

16. The subset of all f E F such that/ ( I ) = I 

17. The subset of all f E F such that f (0) = I 

18. The subset of all / E F such thatf(O) = -1 

19. The subset of all constant functions in F. 
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20. Nine groups are given below. Give a complete list of all subgroup relations, of the form G; :'.": Gj. that exist 
between these given groups G1, G1, · · · , G9. 
G1 = IZ under addition 
G1 = 12/Z under addition 
GJ = Q+ under multiplication 
G4 = JR. under addition 
Gs = JR.+ under multiplication 
G6 = {n" In E /Z} under multiplication 
G-J = 3/Z under addition 
Gs = the set of all integral multiples of 6 under addition 
G9 = {6" I n E /Z} under multiplication 

21. Write at least 5 elements of each of the following cyclic groups. 

a. 25/Z under addition 

b. {(~)"In E /Z} under multiplication 
c. {n" I n E /Z} under multiplication 

d . (p3) in the group Dis 

e. ((l , 2, 3)(5, 6)) in the group s6 

In Exercises 22 through 25, describe all the elements in the cyclic subgroup of GL(2, JR.) generated by the given 
2 x 2 matrix. 

22. [ 
0 -]J 

- 1 0 23. [6 ~] 24. [~ ~] [ 0 -2] 25. -2 0 

26. Which of the following groups are cyclic? For each cyclic group, list all the generators of the group. 

G1 = (IZ, + ) G1 = (<Ql, + ) GJ = (<Ql+,.) G4 = (6/Z,+) 

Gs = (6" In E /Z} under multiplication 

G6 = {a+ bh I a, b E /Z} under addition 

In Exercises 27 through 35, find the order of the cyclic subgroup of the given group generated by the indicated 
element. 

27. The subgroup of /Z4 generated by 3 

28. The subgroup of V generated by c (see Table 5.9) 

29. The subgroup of U6 generated by cos 2f + i sin 2f 
30. The subgroup of Z 10 generated by 8 

31. The subgroup of Z 16 generated by 12 

32. The subgroup of the symmetric group Ss generated by (2, 4, 6, 9)(3, 5, 7) 

33. The subgroup of the symmetric group S10 generated by (l , I 0)(2, 9)(3, 8)( 4, 7)(5, 6) 

34. The subgroup of the multiplicative group G of invertible 4 x 4 matrices generated by 

[! ~ ~ ~] 
35. The subgroup of the multiplicative group G of invertible 4 x 4 matrices generated by 

[! ~ ! ~] 
36. a . Complete Table 5.28 to give the group Z6 of 6 elements. 

b. Compute the subgroups (0), (1), (2), (3), (4), and (5) of the group /Z6 given in part (a). 



Section 5 Exercises 59 

c. Which elements are generators for the group Z.6 of part (a)? 

d. Give the subgroup diagram for the part (b) subgroups of Z.6. (We will see later that these are all the sub­
groups of Z.6.) 

5.28 Table 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 

3 3 

4 4 

5 5 

Concepts 

In Exercises 37 and 38, correct the defi nition of the italicized term without reference to the text, if correction is 
needed, so that it is in a form acceptable for publication. 

37. A subgroup of a group G is a subset H of G that contains the identity element e of G and also contains the 
inverse of each of its elements. 

38. A group G is cyclic if and only if there exists a E G such that G = {a" In E Z.}. 

39. Determine whether each of the following is true or false. 

a. The associative law holds in every group. 
b. There may be a group in which the cancellation law fails . 

c. Every group is a subgroup of itself. 

d. Every group has exactly two improper subgroups. 

e. In every cyclic group, every element is a generator. 

f. A cyclic group has a unique generator. 
g. Every set of numbers that is a group under addition is also a group under multiplication. 

h . A subgroup may be defined as a subset of a group. 

i . Z.4 is a cyclic group. 

j . Every subset of every group is a subgroup under the induced operation. 

k. For any n ~ 3, the dihedral group D 11 has at least n + 2 cyclic subgroups. 

40. Show by means of an example that it is possible for the quadratic equation x2 = e to have more than two 
solutions in some group G with identi ty e. 

In Exercises 41 through 44 let B be a subset of A, and let b be a particular element of B. Determine whether the 
given set is a subgroup of the symmetric group SA under the induced operation. Here a [B] = {a(x) Ix E B). 

41. {a E SA I a(b) = b) 

42. {a E SA I a(b) E B) 

43. {a E SA I a[B] ~ B) 

44. {a E SA I a[B] = B) 

Theory 

In Exercises 45 and 46, let</>: G--+ G' be an isomorphism of a group (G, *) with a group (G', *') . Write out a 
proof to convince a skeptic of the intuitively clear statement. 
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4S. If H is a subgroup of G, then cp[H] = {cp(h) I h E H } is a subgroup of G'. That is, an isomorphism carries 
subgroups into subgroups. 

46. If there is an a E G such that (a) = G, then G' is cyclic. 

47. Show that if H and K are subgroups of an abelian group G, then 

{hk I h E H and k E K} 

is a subgroup of G. 

48. Find an example of a group G and two subgroups H and K such that the set in Exercise 47 is not a subgroup 
of G. 

49. Prove that for any integer n 2: 3, S11 has a subgroup isomorphic with D,, . 

SO. Find the flaw in the following argument: "Condition 2 of Theorem 5.12 is redundant, since it can be derived 
from l and 3, for let a E H. Then a- 1 E H by 3, and by 1, aa- 1 = e is an element of H , proving 2." 

Sl. Prove Theorem 5.15. 

S2. Prove that if G is a cyclic group and IGI ::: 3, then G has at least 2 generators. 

S3. Prove that if G is an abelian group, written multiplicatively, with identity element e, then all elements x of G 
satisfying the equation X2 = e form a subgroup H of G. 

S4. Repeat Exercise 53 for the general situation of the set H of all solutions x of the equation x" = e for a fi xed 
integer n 2: 1 in an abelian group G with identity e. 

SS. Find a counterexample to Exercise 53 if the assumption of abelian is dropped. 

S6. Show that if a E G, where G is a fini te group with identity e, then there exists n E tz::+ such that a" = e. 

S7. Prove Theorem 5.16. 

S8. Let G be a group and let a be one fixed element of G. Show that 

Ha = {x E G I xa = ax} 

is a subgroup of G. 

S9. Generalizing Exercise 58, let S be any subset of a group G. 
a. Show that Hs = {x E G I xs = sx for all s E S} is a subgroup of G. 

b. In reference to part (a), the subgroup He is the center of G. Show that He is an abelian group. 

60. Let H be a subgroup of a group G. For a , b E G, let a ~ b if and only if ab- 1 E H. Show that ~ is an equiva­
lence relation on G. 

61. For sets H and K, we define the intersection H n K by 

H n K = {x Ix E H and x E K}. 

Show that if H :::: G and K :::: G, then H n K :::: G. (Remember::::: denotes "is a subgroup of," not "is a subset 
of.") 

62. Prove that every cyclic group is abelian. 

63. Let G be a group and let G11 = {g" I g E G}. Under what hypothesis about G can we show that G11 is a subgroup 
ofG? 

64. Show that a group with no proper nontrivial subgroups is cyclic. 

6S. Cracker Barrel Restaurants place a puzzle called "Jump All But One Game" at each table. The puzzle starts 
with golf tees arranged in a triangle as in Figure 5.29a where the presence of a tee is noted with a solid dot 
and the absence is noted with a hollow dot. A move can be made if a tee can jump over one adjacent tee and 
land on an empty space. When a move is made, the tee that is jumped over is removed. A possible first move 
is shown in Figure 5.29b. The goal is to have just one remaining tee. Use the Klein 4-group to show that no 
matter what sequence of (legal) moves you make, the last remaining tee cannot be in a bottom comer position. 
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0 • • • 0 • • • • 0 • • • • • • • • • • • • • • • • • • • • 
(a) (b) 

5.29 Figure 

CYCLIC GROUPS 

Recall the following facts and notations from Section 5. If G is a group and a E G, then 

H ={an I n E Z } 

is a subgroup of G (Theorem 5.19). This group is the cyclic subgroup (a) of G gener­
ated by a . Also, given a group G and an element a in G, if 

G = (a" I n E Z }, 

then a is a generator of G and the group G = (a) is cyclic. We introduce one new bit of 
terminology. Let a be an element of a group G. If the cyclic subgroup (a) of G is finite, 
then the order of a is the order I (a) I of this cyclic subgroup. Otherwise, we say that a 
is of infinite order. We will see in this section that if a E G is of finite order m, then m 
is the smallest positive integer such that a111 = e. 

The first goal of this section is to describe all cyclic groups and all subgroups of 
cyclic groups. This is not an idle exerci se. We will see later that cyclic groups serve 
as building blocks for a significant class of abelian groups, in particular, for all finite 
abelian groups. Cyclic groups are fundamental to the understanding of groups. 

Elementary Properties of Cyclic Groups 

We start with a demonstration that cyclic groups are abelian. 

6.1 Theorem Every cyclic group is abelian. 

Proof Let G be a cyclic group and let a be a generator of G so that 

G = (a) = {an I n E Z}. 

If g 1 and g2 are any two elements of G, there exist integers rand s such that g 1 = a' and 
g2 = as. Then 

so G is abelian. • 
We shall continue to use multiplicative notation for our general work on cyclic 

groups, even though they are abelian. 
The division algorithm that follows is well known and seems pretty simple. In fact, 

this algorithm is taught in elementary school. If you divide an integer n by a positive 
integer m, you get an integer quotient q with a remainder r where 0 _::: r < m. You might 
write this as n -;- m = q R r, which of course means {;; = q + ~. Multiplying both sides 
by m gives the form of the division algorithm that is a fundamental tool for the study of 
cyclic groups. 
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6.2 Division Algorithm for Z If m is a positive integer and n is any integer, then there exist unique integers q 
and r such that 

n=mq+r and 0 ::; r < m. 

Proof We give an intuitive diagrammatic explanation, using Fig. 6.3. On the number line, mark 
off the multiples of m and the position of n. Now n falls either on a multiple qm of m 
and r can be taken as 0, or n falls between two multiples of m. If the latter is the case, 
let qm be the first multiple of m to the left of n. Then r is as shown in Fig. 6.3. Note that 
0 ::; r < m. Uniqueness of q and r follows since if n is not a multiple of m so that we 
can take r = 0, then there is a unique multiple qm of m to the left of n and at distance 
less than m from n, as illustrated in Fig. 6.3. + 

n 2: 0, q 2: 0 -t----t---1f---t-
r.(n 

-m 0 m 2m qm (q + l )m 

n < O, q < 0 
~r. n 

qm (q+ l)m - m 0 m 2m 

6.3 Figure 

In the notation of the division algorithm, we regard q as the quotient and r as the 
nonnegative remainder when n is divided by m. 

6.4 Example Find the quotient q and remainder r when 38 is divided by 7 according to the division 
algorithm. 

Solution The positive multiples of7 are 7, 14, 21, 28, 35, 42, · · · . Choosing the multiple to leave 
a nonnegative remainder less than 7, we write 

38 = 35 + 3 = 7(5) + 3 

so the quotient is q = 5 and the remainder is r = 3. 

6.5 Example Find the quotient q and remainder r when -38 is divided by 7 according to the division 
algorithm. 

Solution The negative multiples of 7 are - 7, - 14, -21 , -28, -35, -42, · · · . Choosing the mul­
tiple to leave a nonnegative remainder less than 7, we write 

-38 = -42 +4 = 7(-6) + 4 

so the quotient is q = -6 and the remainder is r = 4. 

We will use the division algorithm to show that a subgroup H of a cyclic group G is 
also cyclic. Think for a moment what we will have to do to prove this. We will have to 
use the definition of a cyclic group since we have proved little about cyclic groups yet. 
That is, we will have to use the fact that G has a generating element a. We must then 
exhibit, in terms of this generator a, some generator c = a111 for H in order to show that 
H is cyclic. There is really only one natural choice for the power m of a to try. Can you 
guess what it is before you read the proof of the theorem? 
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6.6 Theorem A subgroup of a cyclic group is cyclic. 

Proof Let G be a cyclic group generated by a and let H be a subgroup of G . If H = {e}, 

then H = (e) is cyclic. If Hi= {e}, then a" EH for some n E z+. Let m be the smallest 
integer in z+ such that a111 E H. 

We claim that c = a111 generates H ; that is, 

H = (a111
) = (c). 

We must show that every b EH is a power of c. Since b E H and H:::: G, we have 
b = a" for some n . Find q and r such that 

n=mq+r for 0 :::: r < m 

in accord with the division algorithm. Then 

so 

Now since a" E H, a111 E H , and H is a group, both (a111 )-q and a" are in H. Thus 

that is, a' E H. 

Since m was the smallest positive integer such that a111 E H and 0 :::: r < m, we must have 
r = 0. Thus n = mq and 

b = a" = (a111 )q = cq, 

so b is a power of c. • 
As noted in Examples 5.24 and 5.25, Z under addition is cyclic and for a positive 

integer n, the set nZ of all multiples of n is a subgroup of Z under addition, the cyclic 
subgroup generated by n. Theorem 6.6 shows that these cyclic subgroups are the only 
subgroups of Z under addition. We state this as a corollary. 

6.7 Corollary The subgroups of Z under addition are precisely the groups nZ under addition for n E Z . 

• 
This corollary gives us an elegant way to define the greatest common divisor of two 

positive integers rand s. Exercise 54 shows that H = {nr +ms I n , m E Z} is a subgroup 
of the group Z under addition. Thus H must be cyclic and have a generator d, which we 
may choose to be positive. 

6.8 Definition Let r be a positive integer and s be a non-negative integer. The positive generator d of 
the cyclic group 

H = {nr+ms l n, m E Z } 

under addition is the greatest common divisor (abbreviated gcd) of rand s. We write 
d = gcd(r, s). • 

Note that dZ = H , r = l r + Os E H , and s = Or + l s E H. This implies that r, s E 

dZ , which says that dis a divisor of both rand s. Since d E H , we can write 

d=nr+ms 

for some integers n and m. We see that every integer dividing both r and s divides the 
right-hand side of the equation, and hence must be a divisor of d also. Thus d must 
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be the largest number dividing both r and s; this accounts for the name given to d in 
Definition 6.8. 

The fact that the greatest common divisor d of r and s can be written in the form 
d = nr + ms for some integers n and m is called Bezout's identity. Bezout's identity is 
very useful in number theory, as we will see in studying cyclic groups. 

6.9 Example Find the gcd of 42 and 72. 

Solution The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42. The positive divisors of 72 
are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, and 72. The greatest common divisor is 6. Note 
that 6 = (3)(72) + (-5)(42). There is an algorithm for expressing the greatest common 
divisor d of rand sin the form d = nr +ms, but we will not need to make use of it here. 
The interested reader can find the algorithm by searching the Internet for the Euclidean 
algorithm and Bezout's identity. .&. 

Two positive integers are relatively prime if their gcd is 1. For example, 12 and 25 
are relatively prime. Note that they have no prime factors in common. In our discussion 
of subgroups of cyclic groups, we will need to know the following: 

If rand s are relatively prime and if r divides sm, then r must divide m. (1) 

Let's prove this. If rand s are relatively prime, then we may write 

1 = ar + bs for some a,b E Z. 

Multiplying by m, we obtain 

m = arm+bsm. 

Now r divides both arm and bsm since r divides sm. Thus r is a divisor of the right-hand 
side of this equation, so r must divide m. 

The Structure of Cyclic Groups 

We can now describe all cyclic groups, up to an isomorphism. 

6.10 Theorem Let G be a cyclic group with generator a. If the order of G is infinite, then G is isomor­
phic to (Z, +) . If G has finite order n, then G is isomorphic to (Z,, , + ,, ). 

Proof Case I For all positive integers m, a"' =F e. In this case we claim that no two 
distinct exponents hand k can give equal elements ah and ak of G. 
Suppose that a" = ak and say h > k. Then 

contrary to our Case I assumption. Hence every element of G can be 
expressed as a"' for a unique m E Z. The map <P : G --+ Z given by 
<P(a;) = i is thus well defined, one-to-one, and onto Z. Also, 

so the homomorphism property is satisfied and <P is an isomorphism. 
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Case II a"' = e for some positive integer m. Let n be the smallest positive 
integer such that a11 = e. If s E Z and s = nq + r for 0 ::: r < n, then 
as = a11q+r = (a11 )qar = eqar = a'. As in Case 1, if 0 :S k < h < n and 
a" = ak, then ah- k = e and O < h - k < n, contradicting our choice of 
n. Thus the elements 

a0 = e,a,a2,a3
, · · • ,a11

-
1 

are all distinct and comprise all elements of G. The map if; : G ~ Z11 

given by if;(a;) = i for i = 0, I , 2, · · · , n - I is thus well defined , 
one-to-one, and onto Z11 • Because a11 = e, we see that aid = ak where 
k = i +,if Thus 

so the homomorphism property is satisfied and if; is an isomorphism . 

a3 3 
a2 2 

a' 

a0 =e 0 

a" - I 
n - 1 

6.11 Figure 6.12 Figure 

• 

6.13 Example Motivated by our work with U11 , it is nice to visualize the elements e = a0 , a 1
, a2

, · · · , 

a11
-

1 of a cyclic group of order n as being distributed evenly on a circle (see Fig. 6.11). 
The element a" is located h of these equal units counterclockwise along the circle, mea­
sured from the right where e = a0 is located. To multiply a" and ak diagrammatically, 
we start from a" and go k additional units around counterclockwise. To see arithmeti­
cally where we end up, find q and r such that 

h + k= nq+ r for 0 ::: r < n. 

The nq takes us all the way around the circle q times, and we then wind up at a'. .A 

Figure 6.12 is essentially the same as Fig. 6.11 but with the points labeled with the 
exponents on the generator. The operation on these exponents is addition modulo n. 

This is simply the isomorphism between (a) and Z11 • Of course this is the same 
isomorphism we saw when we defined Z11 from U11 , but using a instead of s. 

As promised at the beginning of this section, we can see now that the order of an 
element a in a group G is simply the smallest positive number n such that a11 = e. 

6.14 Example Let us find the order of the k-cycle, a = (a 1, a2, a3 , .•. , ak), in the symmetric group. 
The order of a is the smallest postive power of a that is t. Note that applying a just 
maps each number to the next one in the cyclic order. So after k applications of a , each 
number maps back to itself, but not before k applications of a. Therefore, the order of a 
k-cycle is k. .A 
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Subgroups of Finite Cyclic Groups 

We have completed our description of cyclic groups and tum to their subgroups. Corol­
lary 6.7 gives us complete information about subgroups of infinite cyclic groups. Let us 
give the basic theorem regarding generators of subgroups for the finite cyclic groups. 

6.15 Theorem Let G be a cyclic group with n elements and generated by a. Let b E G and let b = a·~ 

Then b generates a cyclic subgroup H of G containing n/ d elements, where d is the 
greatest common divisor of n and s. Also, (as ) = (a') if and only if gcd(s, n) = gcd(t, n). 

Proof That b generates a cyclic subgroup Hof G is known from Theorem 5.19. We need show 
only that H has n/ d elements. Following the argument of Case II of Theorem 6.10, we 
see that H has as many elements as the smallest positive power m of b that gives the 
identity. Now b = a', and b"' = e if and only if (as)"' = e, or if and only if n divides ms. 
What is the smallest positive integer m such that n divides ms? Let d be the gcd of n and 
s. Then there exist integers u and v such that 

d = un+ vs. 

Since d divides both n and s, we may write 

1 = u(n/ d) + v(s/ d) 

where both n/d and s/d are integers. This last equation shows that n/ d and s/ d are 
relatively prime, for any integer dividing both of them must also divide 1. We wish to 
find the smallest positive m such that 

ms m(s/ d). . 
- = --- 1s an mteger. 
n (n/ d) 

From the division property (I) following Example 6.9, we conclude that n/ d must divide 
m, so the smallest such m is n/ d. Thus the order of His n/ d. 

Taking for the moment Z11 as a model for a cyclic group of order n, we see that if d 
is a divisor of n, then the cyclic subgroup (d) of Z11 has n/ d elements, and contains all 
the positive integers m less than n such that gcd(m, n) = d. Thus there is only one sub­
group of Z11 of order n/ d. Taken with the preceding paragraph, this shows at once that if 
a is a generator of the cyclic group G, then (as ) = (a' ) if and only if gcd(s, n) = 
gcd(t,n). + 

6.16 Example For an example using additive notation, consider Z 12, with the generator a= 1. Since 
the greatest common divisor of 3 and 12 is 3, 3 = 3 · 1 generates a subgroup of 1f = 4 
elements, namely 

(3) = {0,3,6,9). 

Since the gcd of 8 and 12 is 4, 8 generates a subgroup of 1j = 3 elements, namely, 

(8) = {0,4,8). 

Since the gcd of 12 and 5 is 1, 5 generates a subgroup of 1f = 12 elements; that is, 5 is 
a generator of the whole group Z 12. .A. 

The following corollary follows immediately from Theorem 6.15. 

6.17 Corollary If a is a generator of a finite cyclic group G of order n, then the other generators of G 
are the elements of the form ar, where r is relatively prime to n. 



Section 6 Cyclic Groups 67 

6.18 Example Let us find all subgroups of Z 18 and give their subgroup diagram. All subgroups are 
cyclic. By Corollary 6.17, the elements 1, 5, 7, 11, 13, and 17 are all generators of Z 18. 

Starting with 2, 

(2) = {0,2,4,6,8, 10, 12, 14, 16). 

is of order 9 and has as generators elements of the form h2, where h is relatively prime 
to 9, namely, h = 1, 2,4, 5, 7, and 8, so h2 = 2, 4, 8, 10, 14, and 16. The element 6 of (2) 
generates {O, 6, 12), and 12 also is a generator of this subgroup. 

We have thus far found all subgroups generated by 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 
13, 14, 16, and 17. This leaves just 3, 9, and 15 to consider. 

(3) = {O, 3, 6, 9, 12, 15), 

and 15 also generates this group of order 6, since 15 = 5 · 3, and the gcd of 5 and 6 is 
1. Finally, 

(9) = {O, 9). 

The subgroup diagram for these subgroups of Z 1s is given in Fig. 6.19. 

6.19 Figure Subgroup diagram for Z t8· 

This example is straightforward; we are afraid we wrote it out in such detail that it 
may look complicated. The exercises give some practice along these lines. .A 

6.20 Corollary Let G be a finite cyclic group and H :S G. Then IH I divides IGI. That is, IGI is a multiple 
of IHI. 

Proof Let g be a generator for G and let n = IGI. By Theorem 6.6, H is cyclic, so there is 
an element in h EH such that h generates H. Since h EH::: G, h = g5 for some s. 
Theorem 6. 15 states that 

which is a divisor of n. 

n 
IH l = -­

gcd(n, s) 

• 
6.21 Example We find all orders of the subgroups of Z28 . Factoring gives 28 = 22 · 7, so the possible 

orders of subgroups of the cyclic group Z28 are 1, 2, 4, 7, 14, and 28. We note that 
1(0) 1=1, 1(14)1=2, 1(7)1 =4, 1(4)1=7, 1(2) 1=14, l(l)I = IZ2s l = 28. So there are 
subgroups of order 1, 2, 4, 7, 14, and 28. .A 

Actually, Corollary 6.20 can be strengthened considerably. The assumption that G 
is cyclic is completely unnecessary. As we will see in Section 10, Lagrange's Theorem 
states that for any finite group, the order of a subgroup divides the order of the group. 
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• EXERCISES 6 

Computations 

In Exercises I through 4, find the quotient and remainder, according to the division algorithm, when n is divided 
bym. 

1. n = 42, m = 9 

3. n = -37, m = 8 

2. n = - 42, m = 9 

4. n = 37, m = 8 

In Exercises 5 through 7, find the greatest common divisor of the two integers. 

5. 32 and 24 6. 48 and 88 7. 360 and 420 

In Exercises 8 through 11, find the number of generators of a cyclic group having the given order. 

8. 5 9. 8 10. 24 11. 84 

An isomorphism of a group with itself is an automorphism of the group. In Exercises 12 through 16, find the 
number of automorphisms of the given group. 
[Hint: You may use Exercise 53. What must be the image of a generator under an automorphism?] 

14. Zs 15. z 16. Zs4 

In Exercises 17 through 23, find the number of elements in the indicated cyclic group. 

17. The cyclic subgroup of Z30 generated by 25 

18. The cyclic subgroup of Z42 generated by 30 

19. The cyclic subgroup (i) of the group IC* of nonzero complex numbers under multiplication 

20. The cyclic subgroup of the group IC* of Exercise 19 generated by ( l + i)/ ../2 
21. The cyclic subgroup of the group IC* of Exercise 19 generated by l + i 
22. The cyclic subgroup (p 10) of D z4 

23. The cyclic subgoup (p35) of D 375 

24. Consider the group S10 

a. What is the order of the cycle (2, 4, 6, 7)? 

b. What is the order of (1, 4)(2, 3, 5)? Of (1, 3)(2, 4, 6, 7, 8)? 

c. What is the order of (1, 5, 9)(2, 6, 7)? Of (l , 3)(2, 5, 6, 8)? 

d . What is the order of (1, 2)(3, 4, 5, 6, 7, 8)? Of (1 , 2, 3)(4, 5, 6, 7, 8, 9)? 

e. State a theorem suggested by parts (c) and (d). [Hint: The important words you are looking for are least 
common multiple.] 

In Exercises 25 through 30, fi nd the maximum possibe order for an element of S,, for a given value of n. 

25. n = 5 

28. n = 8 

26. n = 6 

29. n = 10 

27. n = 7 

30. n = 15 

In Exercises 31 through 33, find all subgroups of the given group, and draw the subgroup diagram for the sub­
groups. 

33. Zs 

In Exercises 34 through 38, fi nd all orders of subgroups of the given group. 

35. Zs 37. Z20 38. Z11 

Concepts 

In Exercises 39 and 40, correct the definition of the italicized term without reference to the text, if correction is 
needed, so that it is in a form acceptable for publication. 

39. An element a of a group G has order n E z+ if and only if a" = e. 

40. The greatest common divisor of two positive integers is the largest positive integer that divides both of them. 
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41. Determine whether each of the following is true or false. 

a. Every cyclic group is abelian. 
b. Every abelian group is cyclic. 

c. Q under addition is a cyclic group. 
d. Every element of every cyclic group generates the group. 

e. There is at least one abelian group of every finite order > 0. 
f. Every group of order ~4 is cyclic. 

g. All generators of Z20 are prime numbers. 
h. If G and G' are groups, then G n G' is a group. 
i. If H and K are subgroups of a group G, then H n K is a group. 

j . Every cyclic group of order > 2 has at least two distinct generators. 

In Exercises 42 through 46, either give an example of a group with the property described, or explain why no 
example exists. 

42. A finite abelian group that is not cyclic 

43. An infinite group that is not cyclic 

44. A cyclic group having only one generator 

4S. An infinite cyclic group having four generators 

46. A finite cyclic group having four generators 

The generators of the cyclic multiplicative group U11 of all nth roots of unity in <C are the primitive nth roots of 
unity. In Exercises 47 through 50, find the primitive nth roots of unity for the given value of n. 

47. n = 4 

48. n = 6 

49. n = 8 

SO. n = 12 

Proof Synopsis 

Sl. Give a one-sentence synopsis of the proof of Theorem 6.1 . 

S2. Give at most a three-sentence synopsis of the proof of Theorem 6.6. 

Theory 

S3. Let G be a cyclic group with generator a, and let G' be a group isomorphic to G. If</> : G -+ G' is an isomor­
phism, show that, for every x E G, <f>(x) is completely determined by the value </>(a). That is, if</> : G -+ G' 
and 1fr : G-+ G' are two isomophisms such that </>(a)= lfr(a), then </>(x) = 1/r(x) for all x E G. 

S4. Let rand s be integers. Show that {nr +ms I n, m E Z } is a subgroup of Z. 

SS. Prove that if G is a finite cyclic group, Hand K are subgroups of G, and H =f. K , then IHI =f. IKI. 

S6. Let a and b be elements of a group G. Show that if ab has finite order n, then ba also has order n. 

S7. Let rand s be positive integers. 

a. Define the least common multiple of rand s as a generator of a certain cyclic group. 
b. Under what condition is the least common multiple of rand s their product, rs? 
c. Generalizing part (b), show that the product of the greatest common divisor and of the least common 

multiple of rand sis rs. 
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58. Show that a group that has only a finite number of subgroups must be a finite group. 

59. Show by a counterexample that the following "converse" of Theorem 6.6 is not a theorem: "If a group G is 
such that every proper subgroup is cyclic, then G is cyclic." 

60. Let G be a group and suppose a E G generates a cyclic subgroup of order 2 and is the unique such element. 
Show that ax = xa for all x E G. [Hint: Consider (xax- 1 ) 2 .] 

61. Prove that if G is a cyclic group with an odd number of generators, then G has two elements. 

62. Let p and q be distinct prime numbers. Find the number of generators of the cyclic group Zpq · 

63. Let p be a prime number. Find the number of generators of the cyclic group z11,, where r is an integer =:: I. 

64. Show that in a finite cyclic group G of order n, written multiplicatively, the equation x" = e has exactly m 
solutions x in G for each positive integer m that divides n. 

65. With reference to Exercise 64, what is the situation if 1 < m < n and m does not divide n? 

66. Show that Z11 has no proper nontrivial subgroups if p is a prime number. 

67. Let G be an abelian group and let Hand K be finite cyclic subgroups with IH I =rand IKI = s. 

a. Show that if rand s are relatively prime, then G contains a cyclic subgroup of order rs. 
b. Generalizing part (a), show that G contains a cyclic subgroup of order the least common multiple of rand s. 

SECTION 7 GENERATING SETS AND CAYLEY D IGRAPHS 

Let G be a group, and let a E G. We have described the cyclic subgroup (a} of G, which 
is the smallest subgroup of G that contains the element a. Suppose we want to find as 
small a subgroup as possible that contains both a and b for another element b in G. By 
Theorem 5. 19, we see that any subgroup containing a and b must contain a" and b"' for 
all m, n E Z, and consequently must contain all finite products of such powers of a and b. 
For example, such an expression might be a2b4a-3b2a5 . Note that we cannot "simplify" 
this expression by writing first all powers of a followed by the powers of b, since G may 
not be abelian. However, products of such expressions are again expressions of the same 
type. Furthermore, e = a0 and the inverse of such an expression is again of the same 
type. For example, the inverse of a2b4a-3 b2 a5 is a-5b-2 a3b-4a-2 . By Theorem 5.12, 
this shows that all such products of integral powers of a and b form a subgroup of G, 
which surely must be the smallest subgroup containing both a and b. We call a and b 
generators of this subgroup. If this subgroup should be all of G, then we say that {a, b) 
generates G. Of course, there is nothing sacred about taking just two elements a, b E G. 
We could have made similar arguments for three, four, or any number of elements of G, 
as long as we take only finite products of their integral powers. 

7.1 Example As we have seen, the dihedral group is generated by {J.L, p} since every element in D,, 
can be written in the form pk or J.lPk for 0 .:::: k < n. Also, {J.L, J.lP} generates D,, since 
p = J.L(J.lP ), so any element in the dihedral group can also be written as a product of 
copies of J.l and J.lP· It is interesting to note that both J.l and J.lP have order 2, while in 
the generating set (J.L, p} one element has order 2, but the other has order n. .A. 

7.2 Example The Klein 4-group V = {e, a, b, c ) of Example 5.7 is generated by {a, b) since ab = c. 
It is also generated by (a, c), (b, c), and (a, b, c).If a group G is generated by a subset S, 
then every subset of G containing S generates G. .A. 

7.3 Example The group Z6 is generated by (1) and (5). It is also generated by (2, 3) since 2 + 3 = 5, 
so that any subgroup containing 2 and 3 must contain 5 and must therefore be Z6. It is 
also generated by {3, 4), {2, 3, 4), {l , 3), and {3, 5), but it is not generated by (2, 4) 
since (2} = {O, 2, 4} contains 2 and 4. .A. 
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We have given an intuitive explanation of the subgroup of a group G generated by 
a subset of G. What follows is a detailed exposition of the same idea approached in 
another way, namely via intersections of subgroups. After we get an intuitive grasp of 
a concept, it is nice to try to write it up as neatly as possible. We give a set-theoretic 
definition and generalize a theorem that was in Exercise 61 of Section 5. 

7.4 Definition Let {S; Ii E /}be a collection of sets. Here I may be any set of indices. The intersection 
n;E1S; of the sets S; is the set of all elements that are in all the sets S;; that is, 

n S; = {x I x E S; for all i E /}. 
iE/ 

If I is finite, I = { 1, 2, ... , n}, we may denote n;E1S; by 

S 1 n S2 n · · · n S". • 
7.5 Theorem For any group G and any nonempty collection of subgroups {H; :::: G Ii E /) ,the inter­

section of all the subgroups H;, n;E1H;, is also a subgroup of G. 

Proof Let us show closure. Let a E n;E1H; and b E n;E1H; , so that a EH; for all i EI and 
b E H ; for all i E /.Then ab EH; for all i E / ,since H; is a group. Thus ab E n;E1H;. 

Since H; is a subgroup for all i E / , we have e E H; for all i E / , and hence 
e E niE/H;. 

Finally, for a E n;E1H;, we have a E H; for all i E / ,so a- 1 E H; for all i E / ,which 
implies that a -I E n;E1H;. + 

Let G be a group and let a; E G for i E / . There is at least one subgroup of G 
containing all the elements a; for i E /,namely G is itself. Theorem 7.5 assures us that 
if we take the intersection of all subgroups of G containing all a; for i E / , we will obtain 
a subgroup Hof G. This subgroup His the smallest subgroup of G containing all the a; 

for i E /. 

7.6 Definition Let G be a group and let a; E G for i E /.The smallest subgroup of G containing {a; Ii E 

I) is the subgroup generated by {a; I i E /}. If this subgroup is all of G, then {a; Ii E 

I) generates G and the a; are generators of G. If there is a finite set {a; Ii E I) that 
generates G, then G is finitely generated. • 

Note that this definition is consistent with our previous definition of a generator for 
a cyclic group. Note also that the statement a is a generator of G may mean either that 
G = (a) or that a is a member of a subset of G that generates G. The context in which 
the statement is made should indicate which is intended. Our next theorem gives the 
structural insight into the subgroup of G generated by {a; Ii E I) that we discussed for 
two generators before Example 7 .1. 

7.7 Theorem If G is a group and a; E G for i E I =j:. </> , then the subgroup Hof G generated by {a; Ii E 

I) has as elements precisely those elements of G that are finite products of integral 
powers of the a;, where powers of a fixed a; may occur several times in the product. 

Proof Let K denote the set of all finite products of integral powers of the a;. Then K ~ H. 

We need only observe that K is a subgroup and then, since H is the smallest subgroup 
containing a; for i E / , we will be done. Observe that a product of elements in K is 
again in K. Since (a;)0 = e, we have e E K. For every element kin K, if we form from 
the product giving k a new product with the order of the a; reversed and the opposite 
sign on all exponents, we have k-1

, which is thus in K. For example, 

[(a1 )3(a2)\a1)-1r 1 
= (a1)\a2)-2(a1)-3, 

which is again in K. • 
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7 .8 Example Recall that the dihedral group D,, consists of permutations of :iZ11 that map edges to edges 
in the regular n-gon P,, . In disjoint cycle notation, p = (0, 1, 2, 3, ... , n - 1) and µ., = 
( 1, n - 1 )(2, n - 2) · · · ( "; 1 

, "i 1 
) if n is odd, and µ., = ( 1, n - 1 )(2, n - 2) · · · ( ";2

, "i2
) 

if n is even. Since µ., 2 = t and p" = t any product of integer powers of µ., and p can be 
rewritten to only have powers of 0 or 1 forµ., and powers of 0 , 1, 2, 3, ... n - 1 for p . 
Furthermore, the relation pµ, = µ,p" - ' allows us to move all the powers ofµ., to the left 
and all the powers of p to the right, being careful to replace p with p 11

-
1 each time we 

move aµ., past a p. So in the case of n = 6, 

ps µ,9 = p2 µ., = pµ,ps = µ,ps ps = µ,p4. 

Thus the subgroup of Sz. generated by µ., and p is the set 

{t , p, p2, ... , pn- l, µ.,, µ,p , µ,p2, . .. , µ,pn- l} 

which is the dihedral group. 

Cayley Digraphs 

For each generating set Sofa finite group G, there is a directed graph representing the 
group in terms of the generators in S. The term directed graph is usually abbreviated as 
digraph. These visual representations of groups were devised by Cayley, and are also 
referred to as Cayley diagrams in the literature. 

Intuitively, a digraph consists of a finite number of points, called vertices of the di­
graph, and some arcs (each with a direction denoted by an arrowhead) joining vertices. 
In a digraph for a group G using a generating set S we have one vertex, represented by 
a dot, for each element of G. Each generator in Sis denoted by one type of arc. We 
could use different colors for different arc types in pencil and paperwork. Since differ­
ent colors are not available in our text, we use different style arcs, like solid, dashed, 
and dotted, to denote different generators. Thus if S = {a , b, c) we might denote 

a by--.-- b by ---- ---, and c by.····· ·>- · 

With this notation, an occurrence of x y in a Cayley digraph means that 
xa = y. That is, traveling an arc in the direction of the arrow indicates that multiplication 
of the group element at the start of the arc on the right by the generator corresponding 
to that type of arc yields the group element at the end of the arc. Of course, since 
we are in a group, we know immediately that ya- 1 = x. Thus traveling an arc in the 
direction opposite to the arrow corresponds to multiplication on the right by the inverse 
of the corresponding generator. If a generator in S is its own inverse, it is customary to 
denote this by omitting the arrowhead from the arc, rather than using a double arrow. 
For example, if b2 = e, we might denote b by _______ .. 

7 .9 Example Both of the digraphs shown in Fig. 7 .10 represent the group Z 6 with generating set 
S = { 1}. Neither the length and shape of an arc nor the angle between arcs has any 
significance. .&. 

7.12 Example Both of the digraphs shown in Fig. 7.11 represent the group Z6 with generating set S = 
{2, 3). Since 3 is its own inverse, there is no arrowhead on the dashed arcs representing 3. 
Notice how different these Cayley diagrams look from those in Fig. 7.10 for the same 
group. The difference is due to the different choice for the set of generators. .&. 

Every digraph for a group must satisfy these four properties for the reasons 
indicated. 
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0 501 
4 2 

3 

(a) 

0 2 3 

C;=! 
5 

(b) 

7.10 Figure Two digraphs for Z6 with S = { 1} using----

0 

0 3 

4 

(a) (b} 

7.11 Figure Two digraphs for Z6 with S = {2, 3) using-~---
2 

and __ _ ____ .. 
3 

(a) 

7.13 Figure 

Property 

1. The digraph is connected, that is, 
we can get from any vertex g to 
any vertex h by traveling along 
consecutive arcs, starting at g and 
ending at h. 

2. At most one arc goes from a vertex 
g to a vertex h. 

3. Each vertex g has exactly one arc 
of each type starting at g, and one 
of each type ending at g. 

4. If two different sequences of arc 
types starting from vertex g lead 
to the same vertex h, then those 
same sequences of arc types starting 
from any vertex u will lead to 
the same vertex v. 

e a 

(b) 

Reason 

Every equation gx = h has a solution 
in a group. 

The solution of gx = h is unique. 

For g E G and each generator b we 
can compute gb, and (gb- 1)b =g. 

If gq = hand gr = h, then uq = 
ug- 1h = ur. 



74 Part I Groups and Subgroups 

It can be shown that, conversely, every digraph satisfying these four properties is a 
Cayley digraph for some group. Due to the symmetry of such a digraph, we can choose 
labels like a, b, c for the various arc types, name any vertex e to represent the identity, 
and name each other vertex by a product of arc labels and their inverses that we can 
travel to attain that vertex starting from the one that we named e. Some finite groups 
were first constructed (found) using digraphs. 

7.14 Example A digraph satisfying the four properties given above is shown in Fig. 7.13 (a). To obtain 
Fig. 7 .13 (b ), we selected the labels 

---- and ________ , 
a b 

named a vertex e, and then named the other vertices as shown. We have a group 

{e,a,a2,a3, b,ba, ba2, ba3
} 

of eight elements. From the diagram we could compute any product. For example, to 
compute ba2 ba3 we start at the vertex labeled ba2 , follow a dotted edge, and then follow 
three solid edges to arrive at a. Note that the way we labeled the vertices is not unique. 
For example, the vertex labeled ba3 could have been labeled ab simply by going along a 
different path starting at e. This says that ab = ba3. We also see that a4 = e and b2 = e. 
We hope that this example is starting to look familiar. In fact, Figure 7.13 is a Cayley 
digraph of the dihedral group D4 . We simply relabel a with p and b withµ! .&. 

• EXERCISES 7 

Computations 

In Exercises l through 8, list the elements of the subgroup generated by the given subset. 

1. The subset {2, 3) of Z 12 2. The subset {4, 6) of Z 12 

3. The subset {4, 6) in Z2s 4. The subset { 12, 30) of ll36 

S. The subset { 12, 42) of ll 6. The subset { 18, 24, 39) of ll 

7. The subset {µ, µp2 ) in Ds 8. Thesubset{p8, p 10} inD1s 

9. Use the Cayley digraph in Figure 7 .15 to compute these products. Note that the solid edges represent the 
generator a and the dashed lines represent b. 

b. (ba)(ba3) c. b(a2b) 

e a 

d 

7.15 Figure 
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In Exercises JO through 12, give the table for the group having the indicated digraph. In each digraph, take e as 
identity element. List the identity e first in your table, and list the remaining elements alphabetically, so that your 
answers will be easy to check. 

10. The digraph in Fig. 7 .16(a) 

11. The digraph in Fig. 7 .16(b) 

12. The digraph in Fig. 7.16(c) 

e.----a 
I 
I 
I 
I 
I b----c 

e a 
~ 

I \ 
I \ 

'\ ___ ) ' 
d ! 

(a) (b) 

7.16 Figure 

Concepts 

e 

I 
I 
I 

/ 

;lfi{ 
c / 

(c) 

13. How can we tell from a Cayley digraph whether or not the corresponding group is commutative? 

' ' a 

14. Using the condition found in Exercise 13, show that the group corresponding to the Cayley digraph in Figure 
7.13 is not commutative. 

15. Is it obvious from a Cayley digraph of a group whether or not the group is cyclic? [Hint: Look at Fig. 7.9(b).] 

16. The large outside triangle in Fig. 7 .11 (b) exhibits the cyclic subgroup (0, 2, 4} of Z6. Does the smaller inside 
triangle similarly exhibit a cyclic subgroup of Z6? Why or why not? 

17. The generating set S = { 1, 2} for Z6 contains more generators than necessary, since 1 is a generator for the 
group. Nevertheless, we can draw a Cayley digraph for Z6 with this generating set S. Draw such a Cayley 
digraph. 

18. Draw a Cayley digraph for Zs with generating set S = (2, 5). 

19. A relation on a set S of generators of a group G is an equation that equates some product of generators and 
their inverses to the identity e of G. For example, if S = {a, b) and G is commutative so that ab = ba, then one 
relation is aba- 1 b- 1 =e. If, moreover, bis its own inverse, then another relation is b2 =e. 

a. Explain how we can find some relations on S from a Cayley digraph of G. 

b. Find three relations on the set S ={a, b) of generators for the group described by Fig. 7.13(b). 

20. Draw digraphs of the two possible structurally different groups of order 4, taking as small a generating set as 
possible in each case. You need not label vertices. 

Theory 

21. Use Cayley digraphs to show that for n :::: 3, there exists a nonabelian group with 2n elements that is generated 
by two elements of order 2. 

22. Prove that there are at least three different abelian groups of order 8. [Hint: Find a Cayley digraph for a group 
of order 8 having one generator of order 4 and another of order 2. Find a second Cayley digraph for a group of 
order 8 having three generators each with order 2.] 
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SECTION 8 GROUPS OF P ERMUTATIONS 

Let </J : G ~ G' be a function mapping the group G to G' . Recall that the homomor­
phism property of an isomorphism states that for all a, b E G, </J(ab) = </J(a)</J(b). When­
ever a function has this property whether or not the function is one-to-one or onto, we 
say that </J is a group homomorphism. Of course any group isomorphism is a group 
homomorphism, but the reverse is not necessarily true. 

8.1 Definition Let G and G' be groups with </J : G ~ G' . The map </J is a homomorphism if the 
homomorphism property 

</J(ab) = </J(a)</J(b) 

holds for all a, b E G. 

8.2 Example Let </J : lR ~ U (the circle group) be defined by the formula 

</J(x) = cos(2nx) + isin(2nx) = e2
" ix . 

Then 

</J(a + b) = cos(2n(a + b)) + isin(2n(a + b)) = e2"i(a+bl. 

• 

Using either the usual properties of the exponential function or the formulas from 
trigonometry involving the sum of two angles, we see that 

</J(a + b) = (cos(2na) + isin(2na))(cos(2nb) + isin(2nb)) = e2
"

0 ie2"bi, 

so 

</J(a + b) = </J(a)</J(b), 

which says that </J is a group homomorphism. Although </J maps onto U, it is not one-to­
one, so </J is not an isomorphism. 

The identity 0 E lR maps to I , the identity in U. Furthermore, for any x ER 

</J(-x) = e-2rrix = _ I_. = (</J(x))-' . 
e2rrtx • 

77 
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8.3 Example Recall that U,, = {z E <C I z" = 1). Let <P: U28 --+ U4 be given by <P(z) = z1 . To check 
that <P is well defined, we see that if z E U28 , then z28 = 1. Therefore, (z7 )

4 = 1, which 
implies that z7 E U4 . We check that <P is a homomorphism. 

<P(z1z2) = (z1z2)7 = zizi = <P(z1)<P(z2). 

As in the previous example, <P maps the identity in U28, in this case 1, to the identity 1 
in U4 . Furthermore, 

8.4 Definition Let <P : X--+ Y and suppose that A <;; X and B <;; Y. The set </J [AJ = {</)(a) I a EA} is 
called the image of A in Y under the mapping</). The set <P-' [BJ = {a EA I </)(a) E B} 
is called the inverse image of B under the mapping</). • 

The four properties of a homomorphism given in the theorem that follows are obvious 
in the case of an isomorphism since we think of an isomorphism as simply relabeling 
the elements of a group. However, it is not obvious that these properties hold for all 
homomorphisms whether or not they are one-to-one or onto maps. Consequently, we 
give careful proofs of all four properties. 

8.5 Theorem Let <P be a homomorphism of a group G into a group G'. 

1. If e is the identity element in G, then </J(e) is the identity element e' in G' . 

2. If a E G, then <{J(a-1) = </)(a)-I. 

3. If His a subgroup of G, then </) [HJ is a subgroup of G' . 

4. If K' is a subgroup of G', then <P-' [K' J is a subgroup of G. 

Loosely speaking, <P preserves the identity element, inverses, and subgroups. 

Proof Let <P be a homomorphism of G into G' . Then 

<P(e) = <P(ee) = <{J(e)<{J(e). 

Multiplying on the left by <{J(e)- 1, we see that e' = <{J(e). Thus <{J(e) must be the identity 
element e' in G' . The equation 

e' = <{J(e) = <{J(aa- 1) = <{J(a)<{J(a- 1
) 

shows that <{J(a- 1) = <{J(a)- 1 for all a E G. 
Turning to Statement (3), let H be a subgroup of G, and let </)(a) and <P(b) be any 

two elements in </J[H]. Then <{J(a)<{J(b) = <{J(ab), so we see that <{J(a)<{J(b) E </)[HJ ; thus, 
</) [HJ is closed under the operation of G' . The fact that e' = <{J(e) and <{J(a- 1) = <{J(a)- 1 

completes the proof that </)[HJ is a subgroup of G' . 
Going the other way for Statement (4), let K' be a subgroup of G' . Suppose a 

and bare in <P- 1 [K']. Then <{J(a)<{J(b) E K' since K' is a subgroup. The equation <{J(ab) = 
<{J(a)<{J(b) shows that ab E <P- 1 [K']. Thus <P-' [K' J is closed under the binary operation in 
G. Also, K' must contain the identity element e' = <{J(e), so e E <P - 1 [K']. If a E <P- 1 [K' ], 
then </)(a) EK', so <{J(a)- 1 EK'. But <{J(a)- 1 = <{J(a- 1), so we must have a-1 E <P- ' [K' J. 
Hence <P- ' [K' J is a subgroup of G. + 

Let <P : G --+ G' be a homomorphism and let e' be the identity element of G' . Now 
{e' ) is a subgroup of G' , so <P-' [{e')J is a subgroup Hof G by Statement (4) in Theorem 
8.5. This subgroup is critical to the study of homomorphisms. 

8.6 Definition Let <P : G--+ G' be a homomorphism of groups. The subgroup <P-' [{e' )J = 
{x E G I <{J(x) = e' ) is the kernel of</), denoted by Ker(</)). • 
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We will use the kernel of a homomorphism when we define the alternating group 
later in this section. 

Another extreme is to let H = G in Statement (3) of Theorem 8.5. In this case, 
the theorem says that </>[G] is a subgroup of G' . We use this in the proof of Cayley's 
Theorem. 

8.7 Example In Example 8.2, the homomorphism 4> : lR ~ U is defined by </>(x) = cos(2rrx) + 
i sin(2JT x) = e2"ix _ The kernel of 4> is the set of integers since cos(2rrx) + i sin(2JT x) = 1 
if and only if x is an integer. 

Let n be a positive integer. Then ( ~) is a subgroup of lR and 

= {cos(2rrm/ n + isin(2rrm/n) ) Im E Z} 

=Un. 

8.8 Example Let 4> : Z,, ~ D,, be given by </>(k) = pk. We check that 4> is a homomorphism. Let 
a, b E Z,, . If a+ b < n, then a +n b =a+ b, so </>(a+,, b) =</>(a+ b) = pa+b = p0 pb 
= </>(a)</>(b). If a+ b :::: n, then </>(a+,, b) = </>(a+ b - n) = pa+b-11 = pa pb p-11 = 
pa pb = </>(a)</>(b). The image </>[Z,,] is (p) . A 

Cayley's Theorem 

Each of the groups we have seen so far is isomorphic to a subgroup of permutations on 
some set. For example, Zn is isomorphic with the cyclic group (( l, 2, 3, . .. , n)) :'.SS,, . 
The dihedral group D,, is defined to be the permutations in Sz,, with the property that 
the line segment between vertices i andj is an edge in P,,, a regular n-gon, if and only 
if the line segment between the images of i and j is also an edge. The infinite group 
GL(n, JR) can be thought of as invertible linear transformations of JR" . Each element of 
GL(n, JR) permutes the vectors in lR", which makes GL(n, JR) isomorphic with a permu­
tation group on vectors in lR" . We refer to a subgroup of a permutation group as a group 
of permutations. Cayley's Theorem states that any group is isomorphic with a group 
of permutations. 

At first Cayley's Theorem seems like a remarkable result that could be used to 
understand all groups. In fact, this is a nice and intriguing classic result. Unfortunately, 
approaching group theory by trying to determine all possible permutation groups is not 
feasible. On the other hand, Cayley's theorem does show the strength and generality of 
permutation groups and it deserves a special place in group theory for that reason. For 
example, if we wish to find a counterexample to a conjecture about groups, provided 
that there is one, it will occur in a permutation group. 

It may seem a mystery how we could start with an arbitrary group and come up with 
a permutation group that is isomorphic with the given group. The key is to think about 
the group table. Each row contains each element of the group exactly once. So each row 
defines a permutation of the elements of the group by placing the table head as the top 
row in the two-row representation of a permutation and placing the row corresponding 
to an element a in the group as the bottom row. Table 8.9 is the group table for D3. Note 
that the permutation obtained using the row J.LP is 
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8.9 Table 

D3 p p2 µ, µ,p µ,p2 

p p µ, µ,p µ,p 

p p p2 µ,p2 µ, µ,p 
p2 p2 p µ,p µ,p2 µ, 

µ, µ, µ,p µ,p2 L p p2 

µ,p µ,p µ,p2 µ, p2 L p 
µ,p2 µ,p2 µ, µ,p p p2 

All that remains to prove Cayley's Theorem, at least when the group is finite, is to 
check that the permutations obtained from the group table form a group isomorphism 
with the original group. Let Ax be the permutation of the elements of G given by the 
x row of the table for G. Then for any g E G, Ax(g) is the entry in the x row and g 
column of the group table. In other words, Ax(g) = xg, which is perfectly valid in the 
case of an infinite as well as a finite group. We formalize this connection between G and 
permutations on G in Definition 8.10. 

8.10 Definition Let G be a group. The function c/> : G ~ SG given by cp(x) = Ax where Ax(g) = xg for 
all g E G is called the left regular representation of G. • 

In order to be sure that Ax is a permutation, it should be verified that Ax is both one-to-one 
and onto. We see that Ax is one-to-one since if Ax(a) = Ax(b), xa = xb and cancellation 
gives a= b. Also, Ax maps onto G because for any b E G, Ax(X- 1b)) =b. We are now 
ready to prove Cayley's Theorem. 

8.11 Theorem (Cayley's Theorem) Every group is isomorphic to a group of permutations. 

Proof Let G be a group. The left regular representation provides a map cp : G ~ SG defined 
by cp(x) = Ax. We must verify that cp is a group homomorphism and that cp is one-to-one. 
Then cp[G] is a subgroup of SG by Theorem 8.5 and cp : G ~ cp[G] is an isomorphism. 

We first show that cp is one-to-one. Suppose that a, b E G and cp(a) = cp(b). Then 
the permutations Aa and AJJ are the same, so Aa(e) = Ab(e). Thus ae =be and a = b. So 
cp is one-to-one. 

We now need to show that cp is a group homomorphism. Let a, b E G. Then cp(ab) = 
Aab and c/>ac/>b = AaAb. We must show that the two permutations Aab and AaAb are the 
same. Let g E G. 

Thus Aab = AaAb, which implies that cp(ab) = cp(a)cp(b). So c/> is a one-to-one homomor­
phism, which completes the proof. + 

8.12 Example The proof of Cayley's Theorem shows that any group G is isomorphic with a subgroup 
of SG, but this is typically not the smallest symmetric group that has a subgroup isomor­
phic with G. For example, D11 is isomorphic with a subgroup of Sz,, while the proof of 
Cayley 's Theorem gives a subgroup of So,, and D 11 has 2n elements while Z11 has only n 
elements. On the surface, it may seem that Z6 cannot be isomorphic with a subgroup of 
S11 for n < 6, but (1, 2, 3)(4, 5) E S5 generates a subgroup isomorphic with Z6. • 

We defined the left regular representation in Definition 8.10. We now define the right 
regular representation. Instead of Ax representing the row for x in the group table, we 
use <Ix to represent the column with head x. Instead of using cp for the function that sends 
x to Ax, we use r , which sends x to <Ix-' . 
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• HISTORICAL NOTE 

A rthur Cayley (1821-1895) gave an abstract­
sounding definition of a group in a paper of 

1854: "A set of symbols, 1, a , {3 , · · ·, all of them 
different and such that the product of any two of 
them (no matter in what order) or the product of 
any one of them into itself, belongs to the set, 
is said to be a group." He then proceeded to de­
fine a group table and note that every line and 
column of the table "will contain all the symbols 
1, a, {3, · · · . " Cayley's symbols, however, always 
represented operations on sets; it does not seem 
that he was aware of any other kind of group. He 
noted, for instance, that the four matrix operations 
1, a= inversion, f3 = transposition, and y = af3, 
form, abstractly, the non-cyclic group of four ele­
ments. In any case, his definition went unnoticed 
for a quarter of a century. 

This paper of 1854 was one of about 300 writ­
ten during the 14 years Cayley was practicing law, 

being unable to find a suitable teaching post. In 
1863, he finally became a professor at Cambridge. 
In 1878, he returned to the theory of groups by 
publishing four papers, in one of which he stated 
Theorem 8. 11 of this text; his "proof' was simply 
to notice from the group table that multiplication by 
any group element permuted the group elements. 
However, he wrote, "this does not in any wise show 
that the best or the easiest mode of treating the gen­
eral problem [of finding all groups of a given order] 
is thus to regard it as a problem of [permutations]. 
It seems clear that the better course is to consider 
the general problem in itself." 

The papers of 1878, unlike the earlier one, 
found a receptive audience; in fact, they were an 
important influence on Walther von Dyck's 1882 
axiomatic definition of an abstract group, the defi­
nition that led to the development of abstract group 
theory. 

8.13 Definition Let G be a group. The map r : G ~ Sc given by r(x) = crx-1 where crx(g) = gx is called 
the right regular representation of G. • 

We could have used the right regular representation to prove Cayley's Theorem instead 
of the left regular representation. Exercise 54 asks for the details of the proof. 

Even and Odd Permutations 

It seems reasonable that every reordering of the sequence 1, 2, ... , n can be achieved 
by repeated interchange of positions of pairs of numbers. We discuss this a bit more 
formally. 

8.14 Definition A cycle of length 2 is a transposition. • 
Thus a transposition leaves all elements but two fixed, and maps each of these onto 

the other. A computation shows that 

(a1,a2, · · · ,an) = (a1 , an)(a1,a,,_1) · · · (a1,a3)(a1,a2). 

Therefore any cycle of length n can be written as a product of n - 1 transpositions. 
Since any permutation of a finite set can be written as a product of cycles, we have the 
following. 

8.15 Theorem Any permutation of a finite set containing at least two elements is a product of 
transpositions. + 

Naively, this theorem just states that any rearrangement of n objects can be achieved 
by successively interchanging pairs of them. 

8.16 Example Following the remarks prior to the theorem, we see that (1, 6) (2, 5, 3) is the product 
(1 , 6) (2, 3) (2, 5) of transpositions. .& 



82 Part II Structure of Groups 

8.17 Example In S11 for n:::: 2, the identity permutation is the product ( 1, 2) (I, 2) of transpositions . ... 
We have seen that every permutation of a finite set with at least two elements is a 

product of transpositions. The transpositions may not be disjoint, and a representation 
of the permutation in this way is not unique. For example, we can always insert at the 
beginning the transposition (I, 2) twice, because (I , 2) (I , 2) is the identity permutation. 
What is true is that the number of transpositions used to represent a given permutation 
must either always be even or always be odd. This is an important fact. The proof 
involves counting orbits and was suggested by David M. Bloom. 

Let CJ E SA and a EA. We let the orbit of a be the set {CJ k(a) I k E Z }. In the case 
of CJ E S,,, a simple way to think of the orbit of a is to think of the elements in the cycle 
containing a in the disjoint cycle representation of CJ. 

8.18 Example Let CJ = (1, 2, 6)(3, 5) E S6. Then the orbit of 1 is the set { 1, 2, 6), which is also the orbit 
of 2 and the orbit of 6. The set (3, 5) is the orbit of 3 and the orbit of 5. What about the 
orbit of 4? Recall that if we include I-cycles, CJ = (1 , 2, 6)(3, 5)( 4), which says the orbit 
of 4 is (4). .._ 

8.19 Theorem No permutation in S11 can be expressed both as a product of an even number of transpo­
sitions and as a product of an odd number of transpositions. 

Proof Let CJ E S11 and let r = (i,j) be a transposition in S11 • We claim that the number of orbits 
of CJ and of r CJ differ by 1. 

Case I Suppose i and j are in different orbits of CJ . Write CJ as a product of 
disjoint cycles, the first of which contains j and the second of which 
contains i , symbolized by the two circles in Fig. 8.20. We may write the 
product of these two cycles symbolically as 

(b,j, x , x, x)(a, i, x, x) 

where the symbols x denote possible other elements in these orbits. 

8.20 Figure 

Computing the product of the first three cycles in TCJ = (i,j)CJ, we obtain 

(i ,j)(b, j , x , x , x)(a ,i, x , x) = (a,j, x, x, x,b,i, x, x ). 

The original 2 orbits have been joined to form just one in TCJ as 
symbolized in Fig. 8.20. Exercise 42 asks us to repeat the computation 
to show that the same thing happens if either one or both of i and j 
should be the only element of their orbit in CJ. 

Case II Suppose i andj are in the same orbit of CJ. We can then write CJ as a 
product of disjoint cycles with the first cycle of the form 

(a, i , x, x, x,b,j, x, x) 



8.21 Figure 
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shown symbolically by the circle in Fig. 8.20. Computing the product of 
the first two cycles in r<Y = (i,j)<Y, we obtain 

(i,j)(a,i, x, x, x,b,j, x, x) = (a,j, x, x)(b,i, x , x, x). 

The original single orbit has been split into two as symbolized in 
Fig. 8.21. 

We have shown that the number of orbits of T<Y differs from the number of 
orbits of <Y by 1. The identity permutation t has n orbits, because each element is 
the only member of its orbit. Now the number of orbits of a given permutation 
<Y E S,, differs from n by either an even or an odd number, but not both. Thus it is 
impossible to write 

<Y = r1 r 2r3 · · · r111 t 

where the Tk are transpositions in two ways, once with m even and once with m 
odd. + 

8.22 Definition A permutation of a finite set is even or odd according to whether it can be expressed 
as a product of an even number of transpositions or the product of an odd number of 
transpositions, respectively. • 

8.23 Example The identity permutation t in S,, is an even permutation since we have t = (1, 2)(1 , 2). If 
n = 1 so that we cannot form this product, we define t to be even. On the other hand, 
the permutation (1, 4, 5, 6) (2, 1, 5) in S6 can be written as 

( 1, 4, 5, 6)(2, 1, 5) = (1, 6)(1, 5)(1, 4)(2, 5)(2, 1) 

which has five transpositions, so this is an odd permutation. 

The Alternating Groups 

We claim that for n '.'.: 2, the number of even permutations in S,, is the same as the 
number of odd permutations; that is, S,, is split equally and both numbers are (n!)/ 2. 
To show this, let A,, be the set of even permutations in S,, and let B,, be the set of odd 
permutations for n '.'.: 2. We proceed to define a one-to-one function from A,, onto B,,. 
This is exactly what is needed to show that A,, and B,, have the same number of elements. 

Let r be any fixed transposition in S,,; it exists since n '.'.: 2. We may as well suppose 
that r = (1, 2). We define a function 

by 

that is, <Y EA,, is mapped into (1, 2)<Y by Ar- Observe that since <Y is even, the per­
mutation (1, 2)<Y can be expressed as a product of a (1 + even number), or odd num­
ber, of transpositions, so (1, 2)<Y is indeed in B,,. If for <Y and µ, in A,, it is true that 
Ar(<Y) = Ar(µ,), then 

(1, 2)<Y = (1 , 2)µ,, 

and since S,, is a group, we have <Y = µ,. Thus Ar is a one-to-one function. Finally, 

r = (1,2) = r- 1
, 

so if p E B,,, then 

r- 1 p EA,,, 
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and 

Thus A< maps onto B11 • Hence the number of elements in A11 is the same as the number 
in B11 since there is a one-to-one correspondence between the elements of the sets. 

Note that the product of two even permutations is again even. Also since n ;:::: 2, S11 

has the transposition (1, 2) and i = (1, 2)(1, 2) is an even permutation. Finally, note that 
if rr is expressed as a product of transpositions, the product of the same transpositions 
taken in just the opposite order is rr- 1• Thus if rr is an even permutation, rr - 1 must 
also be even. Referring to Theorem 5.12, we see that we have proved the following 
statement. 

8.24 Theorem If n ;:::: 2, then the collection of all even permutations of { 1, 2, 3, · · · , n) forms a sub­
group of order n!/ 2 of the symmetric group S11 • 

We can define a function called the sign of a permutation, sgn : S11 --+ { 1, - I } by 
the formula 

( ) _ { 1 if rr is even 
sgn rr - -1 if rr is odd. 

Thinking of (1 , -1} as a group under multiplication, it is easy to see that sgn is a ho­
momorphism. Since I is the identity in the group {I , -1}, Ker(sgn) = sgn- 1 [ { 1}] is a 
subgroup of S11 consisting of all the even permutations. The homomorphism sgn is used 
in the standard way of defining the determinant of a square matrix. Exercise 52 asks you 
to prove some of the standard facts about determinants using this definition. 

8.25 Definition The subgroup of S11 consisting of the even permutations of n letters is the alternating 
group A11 on n letters. • 

Both S11 and A 11 are very important groups. Cayley's theorem shows that every finite 
group G is structurally identical to some subgroup of S11 for n = IGI. It can be shown 
that there are no formulas involving just radicals for solution of polynomial equations 
of degree n for n ;:::: 5. This fact is actually due to the structure of A 11 , surprising as that 
may seem! 

• EXERCISES 8 

Computations 

In Exercises 1 through 10 determine whether the given map is a group homomorphism. [Hint: To verify that a map 
is a homomorphism, you must check the homomorphism property. To check that a map is not a homomorphism 
you could either find a and b such that </J(ab) =f. </J(a)</J(b), or else you could determine that any of the properties in 
Theorem 8.5 fail.] 

1. Let <P : Z 10 --+ Z2 be given by </J(x) =the remainder when x is divided by 2. 

2. Let </J : 2:9 --+ Z2 be given by </J(x) = the remainder when x is divided by 2. 

3. Let </J : <Qi* --+ <Qi* be given by </J(x) = lxl . 
4. Let </J : lR --+ JR+ be given by </J(x) = Y 

5. Let </J : D4 --+ 2:4 be given by </J(pi) = </J(µpi) = i for 0 :S i :S 3. 
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6. Let F be the additive group of all functions mapping ~ to ~. Let <P : F --+ F be given by <Plf) = g where 
g(x) = f (x) + x. 

7. Let F be as in Exercise 6 and <P : F --+ F be defined by <Plf) =Sf. 

8. Let F be the additive group of all continuous functions mapping ~ to ~. Let <P : F --+ ~ be defined by </J(g) = 

fa' g(x)dx. 

9. Let Mn be the additive group of n x n matrices with real entries. Let <P : M11 --+ ~ be given by </J(A) = det(A), 
the determinant of A. 

10. Let M,, be as in Exercise 9 and <P : M,, --+ ~ be defined by </J(A) = tr(A) where tr(A) is the trace of A, which is 
the sum of the entries on the diagonal. 

In Exercises 11 through 16, compute the kernel for the given homomorphism </J . 

11. <P : Z --+ Zs such that </J( I) = 6. 

12. <P : Z --+ Z such that </J(l) = 12. 

13. <P : Z x Z --+ Z where </J( l ,0) = 3 and </J(O, 1) = -5. 

14. <P : Z x Z --+ Z where </J( l , 0) = 6 and </J(O, 1) = 9. 

15. <P: Z x Z --+ Z x Z where </J( l , 0) = (2, 5) and </J(O, 1) = (- 3, 2). 

16. Let D be the additive group of all differentiable functions mapping ~ to ~ and F the additive group of all 
functions from ~ to ~. <P : D--+ Fis given by </J(j) = f ' , the derivative off . 

In Exercises 17 through 22, find all orbits of the given permutation. 

nG~~ : ~~ ~a 2 3 4 5 6 7 8) 
6 2 4 8 3 1 7 

(2
1 2 3 4 5 6 7 78) 19· 3 5 4 6 8 

20. a : Z --+ Z where a(n) = n + 1 

21. a : Z --+ Z where a(n) = n + 2 22. a : Z --+ Z where a(n) = n - 3 

In Exercises 23 through 25, express the permutation of ( 1, 2, 3, 4, 5, 6, 7, 8) as a product of disjoint cycles, and 
then as a product of transpositions. 

G 2 3 4 5 6 7 n 24. G 2 3 4 5 6 7 ~) 23. 2 6 3 7 4 5 6 4 8 2 5 

25. G 2 3 4 5 6 7 n 3 2 8 4 7 6 

26. Figure 8.26 shows a Cayley digraph for the alternating group A4 using the generating set S = ((1, 2, 3), 
( 1, 2)(3, 4)). Continue labeling the other nine vertices with the elements of A4, expressed as a product of 
disjoint cycles. 

Concepts 

In Exercises 27 through 29, correct the definition of the italicized term without reference to the text, if correction 
is needed, so that it is in a form acceptable for publication. 

27. For a permutation a of a set A, an orbit of a is a nonempty minimal subset of A that is mapped onto itself 
by a . 

28. The left regular representation of a group G is the map of G into Sc whose value at g E G is the permutation 
of G that carries each x E G into gx. 

29. The alternating group is the group of all even permutations. 
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(I) (1 , 2,3) 

'V ' I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I I \ 
I I \ 

// ~I \, 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

/ // ', \ 

\l, / 'Y\ ( I, 2)(3, 4) 

-----------------
8.26 Figure 

30. Before the proof of Cayley's Theorem, it is shown that Ax is one-to-one. In the proof, one-to-one is shown 
again . Is it necessary to show one-to-one twice? Explain. 

31. Determine whether each of the following is true or false. 

a . Every permutation is a cycle. 
b. Every cycle is a permutation. 

c. The definition of even and odd permutations could have been given equally well before Theorem 8.19. 

d . Every nontrivial subgroup H of S9 containing some odd permutation contains a transposition. 

e. As has 120 elements. 
f. S11 is not cyclic for any n ~ l. 

g. A3 is a commutative group. 

h . S7 is isomorphic to the subgroup of all those elements of Ss that leave the number 8 fixed. 

i . S7 is isomorphic to the subgroup of all those elements of Ss that leave the number 5 fixed. 
j. The odd permutations in Ss form a subgroup of Sg. 

k . Every group G is isomorphic with a subgroup of Sc. 

32. The dihedral group is defined to be permutations with certain properties. Use the usual notation involvingµ 
and p for elements in D11. 

a. Identify which elements in D3 are even. Do the even elements form a cyclic group? 

b. Identify which of elements of D4 are even. Do the even elements form a cyclic group? 

c. For which values of n do the even permutations of D 11 form a cyclic group? 

Proof Synopsis 

33. Give a two-sentence synopsis of the proof of Cayley's Theorem. 

34. Give a two-sentence synopsis of the proof of Theorem 8.19. 

Theory 

35. Suppose that</>: G--+ G' is a group homomorphism and a E Ker</>. Show that for any g E G, gag- 1 E Ker</>. 

36. Prove that a homomorphism</> : G--+ G' is one-to-one if and only if Ker(</>) is the trivial subgroup of G. 

37. Let </> : G--+ G' be a group homomorphism. Show that </>(a)= </>(b) if and only if a - 1 b E Ker</>. 

38. Use Exercise 37 to prove that if </> : G --+ G' is a group homomorphism mapping onto G' and G is a fi nite 
group, then for anyb,c E G', l</>- 1[{b}] I = l</>- 1[{c}]I . Conclude that if lGI is a prime number, then either </> is 
an isomorphism or else G' is the trivial group. 
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39. Show that if <P : G ---+ G' and y : G' ---+ G" are group homomorphisms, then y o <P : G ---+ G" is also a group 
homomorphism. 

40. Let <P : G---+ G' be a group homomorphism. Show that </J[G] is abelian if and only if xyx- 1 y- 1 E Ker(</J) for 
all x,y E G. 

41. Prove the following about S,, if n ~ 3. 

a. Every permutation in S,, can be written as a product of at most n - 1 transpositions. 

b. Every permutation in S,, that is not a cycle can be written as a product of at most n - 2 transpositions. 

c. Every odd permutation in S,, can be written as a product of2n + 3 transpositions, and every even permuta­
tion as a product of 2n + 8 transpositions. 

42. a. Draw a figure like Fig. 8.20 to illustrate that if i and j are in different orbits of a and a(i) = i, then the 
number of orbits of (i,j)a is one less than the number of orbits of a. 

b. Repeat part (a) if a(j) = j also. 

43. Show that for every subgroup H of S,, for n ~ 2, either all the permutations in H are even or exactly half of 
them are even. 

44. Let a be a permutation of a set A. We shall say "a moves a E A" if a(a) f. a. If A is a finite set, how many 
elements are moved by a cycle a E SA of length n? 

4S. Let A be an infinite set. Let H be the set of all a E SA such that the number of elements moved by a (see 
Exercise 44) is finite. Show that His a subgroup of SA. 

46. Let A be an infinite set. Let K be the set of all a E SA that move (see Exercise 44) at most 50 elements of A. Is 
Ka subgroup of SA? Why? 

47. Consider S,, for a fixed n ~ 2 and let a be a fixed odd permutation. Show that every odd permutation in S,, is 
a product of a and some permutation in A,, . 

48. Show that if a is a cycle of odd length, then a 2 is a cycle. 

49. Following the line of thought opened by Exercise 48, complete the following with a condition involving n and 
r so that the resulting statement is a theorem: 

If a is a cycle of length n, then a' is also a cycle if and only if ... 

SO. Show that S,, is generated by ((1 ,2),(1,2,3,. · · , n)}. [Hint: Show that as r varies, (1, 2, 3,. · · ,nY(1,2) 
(I , 2, 3,. · · , n)"- r gives all the transpositions (I , 2), (2, 3), (3, 4), · · · , (n - 1, n), (n, 1 ). Then show that any 
transposition is a product of some of these transpositions and use Theorem 8.15.] 

Sl. Let a E S,, and define a relation on {l, 2, 3, . . . , n} by i ~ j if and only if j = ak (i) for some k E /Z. 

1. Prove that ~ is an equivalence relation. 
2. Prove that for any l .:::: i .:::: n, the equivalence class of i is the orbit of i. 

S2. The usual definition for the determinant of an n x n matrix A = (a;J) is 

det(A) = L sgn(a)a1 ,a( l)G2,a(2)G3,a (3) · · · Gn,0(11) 

a eSri 

where sgn(a) is the sign of a. Using this definition, prove the following properties of determinants. 

a. If a row of matrix A has all zero entries, then det(A) = 0. 

b. If two different rows of A are switched to obtain B, then det(B) = - det(A). 

c. If r times one row of A is added to another row of A to obtain a matrix B, then det(A) = det(B) 

d. If a row of A is multiplied by r to obtain the matrix B, then det(B) = rdet(A). 

S3. Prove that any finite group G is isomorphic with a subgroup of GL(n, IR) for some n. [Hint: For each a E S,,, 
find a matrix in GL(n, IR) that sends each basis vector e; to ea(i)- Use this to show that S,, is isomorphic with a 
subgroup of GL(n, IR).] 

S4. Prove Cayley's Theorem using the right regular representation rather than the left regular representation. 

SS. Let a E S,,. An inversion is a pair (i, )) such that i < j and a(i) > a(j). Prove Theorem 8.19 by showing that 
multiplying a permutation by a transposition changes the number of inversions by an odd number. 



88 Part II Structure of Groups 

56. The sixteen puzzle consists of 15 tiles numbered 1 through 15 arranged in a four-by-four grid with one 
position left blank. A move is sliding a ti le adjacent to the blank position into the blank position. The goal is to 
arrange the numbers in order by a sequence of moves. Is it possible to start with the configuration pictured in 
Figure 8.27(a) and solve the puzzle as indicated in Figure 8.27(b)? Prove your answer by finding a sequence 
of moves to solve the puzzle or by proving that it is impossible to solve. 

I 2 3 4 I 2 3 4 

5 6 7 8 5 6 7 8 

9 10 II 12 9 10 I I 12 

13 15 14 13 14 15 

a. b. 

8.27 Figure 

SECTION 9 FINITELY GENERATED ABELIAN GROUPS 

Direct Products 

Let us take a moment to review our present stockpile of groups. Starting with finite 
groups, we have the cyclic group Z 11 , the symmetric group S 11 , and the alternating group 
A 11 for each positive integer n. We also have the dihedral groups D11 and the Klein 
4-group V. Of course we know that subgroups of these groups exist. Turning to infi­
nite groups, we have groups consisting of sets of numbers under the usual addition or 
multiplication, as, for example, Z, JR, and tC under addition, and their nonzero elements 
under multiplication. We have the group U of complex numbers of magnitude 1 under 
multiplication, which is isomorphic to each of the groups lRc under addition modulo c, 
where c E JR+. We also have the group SA of all permutations of an infinite set A, as well 
as various groups formed from matrices such as GL(n, JR). 

One purpose of this section is to show a way to use known groups as building 
blocks to form more groups. The Klein 4-group will be recovered in this way from the 
cyclic groups. Employing this procedure with the cyclic groups gives us a large class 
of abelian groups that can be shown to include all possible structure types for a finite 
abelian group. We start by generalizing Definition 0.4. 

9.1 Definition The Cartesian product of sets B 1, B2 , · · · , B11 is the set of all ordered n-tuples 
(b1, b2 , · · · , b11 ), where b; E B; for i = 1, 2, · · · , n. The Cartesian product is denoted 
by either 

or by 
II 

flB;. 
i= I • 

We could also define the Cartesian product of an infinite number of sets, but the 
definition is considerably more sophisticated and we shall not need it. 

Now let G1, G2, · · · , G,, be groups, and let us use multiplicative notation for all 
the group operations. Regarding the G; as sets, we can form fl:~ , G;. Let us show that 
we can make TI;~ , G; into a group by means of a binary operation of multiplication by 
components. Note again that we are being sloppy when we use the same notation for a 
group as for the set of elements of the group. 
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9.2Theorem Let G1,G2,··· ,Gn be groups. For (a 1,a2 , · ·· ,a11 ) and (bi,b2,· · · , bn) in fT'=i G;, 
define (a i, a2, · · · ,a,,)(b1,b2, · · · ,b11) to be the element (a1b1,a2b2, · · · , a,,b,i). Then 
n;'= I G; is a group, the direct product of the groups G;, under this binary operation. 

Proof Note that since a; E G;, b; E G;, and G; is a group, we have a;b; E G;. Thus the definition 
of the binary operation on n;'=1 G; given in the statement of the theorem makes sense; 
that is, n;'=I G; is closed under the binary operation. 

The associative law in n;'=I G; is thrown back onto the associative law in each 
component as follows: 

(a1, a2, · · · , a11) [(b1, b2, · · · , b11)(c1, c2, · · · , c11)] 

= (a1,a2, · · · ,an)(b1c1,b2c2, · · · , bnC11) 

= (a1(b1c1),a2(b2c2), · · · ,a11(b11c11)) 

= ((a1 b1 )c1 , (a2b2)c2, · · · , (a11b11)c,,) 

= (a1b 1,a2b2, · · · ,a11bn)(c1,C2, · · · ,c" ) 

= [(a1, a2, · · · , a11)(b1, b2, · · · , b11)](c1 , c2, · · · , c"). 

If e; is the identity element in G;, then clearly, with multiplication by components, 
(e1, e2 , .. . , ell ) is an identity in n;'=I G;. Finally, an inverse of (a1, Gz, . . . , a,,) is 
(a;-1,a21, . .. ,a;;-1); compute the product by components. Hence n;'=I G; is a group . 

• 
In the event that the operation of each G; is commutative, we sometimes use addi­

tive notation in n;'=I G; and refer to n;'=I G; as the direct sum of the groups G;. The 
notation EBj~ 1 G; is sometimes used in this case in place of n:'=i G;, especially with 
abelian groups with operation+. The direct sum of abelian groups G1, G2, · · · , G11 may 
be written G 1 EB G2 EB · · · EB G11 . We leave to Exercise 46 the proof that a direct product 
of abelian groups is again abelian. 

It is quickly seen that if B; has r; elements for i = 1, · · · , n, then n;'=1 B; has 
r1 r2 · · · rn elements, for in an n-tuple, there are r1 choices for the first component from 
B1, and for each of these there are r2 choices for the next component from B2 , and so on. 

9.3 Example Consider the group Z2 x Z3 , which has 2 · 3 = 6 elements, namely (0, 0) , (0, 1), (0, 2), 
(I , 0), (I , I), and (I, 2). We claim that Z2 x Z3 is cyclic. It is only necessary to find a 
generator. Let us try (1, 1). Here the operations in Z2 and Z3 are written additively, so 
we do the same in the direct product Z2 x Z3 . 

(1 , 1) = (1 , 1) 

2(1, I) = (I , I) + (I , I ) = (0, 2) 

3(1, 1) = (1 , 1) + (1, 1) + (1 , 1) = (1, 0) 

4(1, 1) = 3(1, 1) + (1, 1) = (1,0) + (1, 1) = (0, 1) 

5(1, 1) = 4(1, I)+ (1, 1) = (0, 1) + (1, I)= ( I, 2) 

6(1, 1) = 5(1, 1) + (1 , 1) = (1 ,2) + (1, 1) = (0, 0) 

Thus (1, 1) generates all of Z2 x Z3 . Since there is, up to isomorphism, only one cyclic 
group structure of a given order, we see that Z2 x Z3 is isomorphic to Z6. .A. 

9.4 Example Consider Z3 x Z3. This is a group of nine elements. We claim that Z3 x Z3 is not cyclic. 
Since the addition is by components, and since in Z 3 every element added to itself three 
times gives the identity, the same is true in Z 3 x Z3. Thus no element can generate the 
group, for a generator added to itself successively could only give the identity after nine 
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summands. We have found another group structure of order 9. A similar argument shows 
that Z2 x Z2 is not cyclic. Thus Z2 x Z2 must be isomorphic to the Klein 4-group. .._ 

The preceding examples illustrate the following theorem: 

9.5 Theorem The group Z 111 x Z11 is cyclic and is isomorphic to Z,,111 if and only if m and n are rela­
tively prime, that is, the gcd of m and n is 1. 

Proof Consider the cyclic subgroup of Z 111 x Z11 generated by (1 , 1) as described by Theorem 
5.19. As our previous work has shown, the order of this cyclic subgroup is the smallest 
power of (1, 1) that gives the identity (0, 0). Here taking a power of (1, 1) in our additive 
notation will involve adding (1 , 1) to itself repeatedly. Under addition by components, 
the first component 1 E Z 111 yields 0 only after m summands, 2m summands, and so on, 
and the second component 1 E Z11 yields 0 only after n summands, 2n summands, and 
so on. For them to yield 0 simultaneously, the number of summands must be a multiple 
of both m and n. The smallest number that is a multiple of both m and n will be mn 
if and only if the gcd of m and n is 1; in this case, (1 , 1) generates a cyclic subgroup of 
order mn, which is the order of the whole group. This shows that Z 111 x Z11 is cyclic of 
order mn, and hence isomorphic to Z,,111 if m and n are relatively prime. 

For the converse, suppose that the gcd of m and n is d > 1. Then mn/ d is divisible 
by both m and n. Consequently, for any (r, s) in Zm x Z 11 , we have 

(r, s) + (r, s) + · · · + (r, s) = (0, 0). 

mn/ d summands 

Hence no element (r, s) in Z 111 x Z11 can generate the entire group, so Z111 x Z11 is 
not cyclic and therefore not isomorphic to Z,,111 • + 

This theorem can be extended to a product of more than two factors by similar 
arguments. We state this as a corollary without going through the detail s of the proof. 

9.6 Corollary The group fl;~ 1 Z111 , is cyclic and isomorphic to Z111 11112 ... 111 .. if and only if the numbers m ; 

for i = 1, · · · , n are such that the gcd of any two of them is 1. 

9.7 Example The preceding corollary shows that if n is written as a product of powers of distinct 
prime numbers, as in 

then Z11 is isomorphic to 

z(p, )"' x Zr.p»"' x . . . x z<P»"'. 
In particular, Z72 is isomorphic to Z8 x Z9 . 

We remark that changing the order of the factors in a direct product yields a group 
isomorphic to the original one. The names of elements have simply been changed via a 
permutation of the components in the n-tuples. 

Exercise 57 of Section 6 asked you to define the least common multiple of two 
positive integers r and s as a generator of a certain cyclic group. It is straightforward to 
prove that the subset of Z consisting of all integers that are multiples of both r and s is 
a subgroup of Z, and hence is a cyclic group. Likewise, the set of all common multiples 
of n positive integers r 1, r2 , · · · , r11 is a subgroup of Z, and hence is cyclic. 

9.8 Definition Let r 1, r2 , · · · , r11 be positive integers. Their least common multiple (abbreviated lcm) 
is the positive generator of the cyclic group of all common multiples of the r;, that is, 
the cyclic group of all integers divisible by each r; for i = 1, 2, · · · , n . • 
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From Definition 9.8 and our work on cyclic groups, we see that the lcm of 
r 1, r2, · · · , rll is the smallest positive integer that is a multiple of each r; for i = 
1, 2, · · · , n, hence the name least common multiple. 

9.9 Theorem Let (a1,a2, · · · ,all) En;~, G;. If a; is of finite order r; in G;, then the order of 
(a1, a1 , · · · , a11) inn;~ , G; is equal to the least common multiple of all the r;. 

Proof This follows by a repetition of the argument used in the proof of Theorem 9.5. For a 
power of (a1, a2, · · · , all) to give (e 1, e2, · · · , ell), the power must simultaneously be a 
multiple of r 1 so that this power of the first component a 1 will yield e 1, a multiple of r2 , 

so that this power of the second component a2 will yield e2 , and so on. + 

9.10 Example Find the order of (8, 4, 10) in the group Z 12 x Z6o x Z24. 

Solution Since the gcd of 8 and 12 is 4, we see that 8 is of order q. = 3 in Z 12. (See 
Theorem 6.15.) Similarly, we find that 4 is of order 15 in Z60 and 10 is of order 
12 in Z24 . The lcm of 3, 15, and 12 is 3 · 5 · 4 = 60, so (8, 4, 10) is of order 60 in the 
group Z12 x Z60 x Z24. .A 

9.11 Example The group Z x Z2 is generated by the elements (1, 0) and (0, 1). More generally, the 
direct product of n cyclic groups, each of which is either Z or Z 111 for some positive 
integer m, is generated by then n-tuples 

(l , 0, 0,··· , 0), (0, 1,0,··· ,0), (0,0, 1, ··· ,0), (0, 0, 0, ... , 1). 

Such a direct product might also be generated by fewer elements. For example, Z3 x 
Z4 x Z 35 is generated by the single element (1, 1, 1). .A 

Note that if n;~, G; is the direct product of groups G;, then the subset 

that is, the set of all n-tuples with the identity elements in all places but the ith , is a 
subgroup of n:~, G;. It is also clear that this subgroup G; is naturally isomorphic to G;; 
just rename 

(e1, e1, · · · , e;-1, a;, e;+1, · · · , ell) by a;. 

The group G; is mirrored in the ith component of the elements of G;, and the ej in 
the other components just ride along. We consider n;~ , G; to be the internal direct 
product of these subgroups G;. The direct product given by Theorem 9.2 is called the 
external direct product of the groups G;. The terms internal and external, as applied to a 
direct product of groups, just reflect whether or not (respectively) we are regarding the 
component groups as subgroups of the product group. We shall usually omit the words 
external and internal and just say direct product. Which term we mean will be clear 
from the context. 

The Structure of Finitely Generated Abelian Groups 

Some theorems of abstract algebra are easy to understand and use, although their proofs 
may be quite technical and time-consuming to present. This is one section in the text 
where we explain the meaning and significance of a theorem but omit its proof. The 
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• H ISTORI CAL NOTE 

I n his Disquisitiones Arithmeticae, Carl Gauss 
demonstrated various results in what is today the 

theory of abelian groups in the context of num­
ber theory. Not only did he deal extensively with 
equivalence classes of quadratic forms, but he also 
considered residue classes modulo a given integer. 
Although he noted that results in these two areas 
were similar, he did not attempt to develop an ab­
stract theory of abelian groups. 

In the 1840s, Ernst Kummer in dealing with 
ideal complex numbers noted that his results were 
in many respects analogous to those of Gauss. 
(See the Historical Note in Section 30.) But it 
was Kummer's student Leopold Kronecker (see the 
Historical Note in Section 39) who finally realized 
that an abstract theory could be developed out of 

the analogies. As he wrote in 1870, "these princi­
ples [from the work of Gauss and Kummer] be­
long to a more general, abstract realm of ideas. 
It is therefore appropriate to free their develop­
ment from all unimportant restrictions, so that one 
can spare oneself from the necessity of repeat­
ing the same argument in different cases. This 
advantage already appears in the development it­
self, and the presentation gains in simplicity, if 
it is given in the most general admissible man­
ner, since the most important features stand out 
with clarity." Kronecker then proceeded to de­
velop the basic principles of the theory of finite 
abelian groups and was able to state and prove 
a version of Theorem 9.12 restricted to finite 
groups. 

meaning of any theorem whose proof we omit is well within our understanding, and 
we feel we should be acquainted with it. It would be impossible for us to meet some of 
these fascinating facts in a one-semester course if we were to insist on wading through 
complete proofs of all theorems. The theorem that we now state gives us complete 
structural information about many abelian groups, in particular, about all finite abelian 
groups. 

9.12 Theorem (Primary Factor Version of the Fundamental Theorem of Finitely Generated 
Abelian Groups) Every finitely generated abelian group G is isomorphic to a direct 
product of cyclic groups in the form 

z(p,y• x z (p,Y' x ... x z(p,.)'" x z x z x ... x z, 
where the p; are primes, not necessarily distinct, and the r; are positive integers. 
The direct product is unique except for possible rearrangement of the factors; that is, 
the number (Betti number of G) of factors Z is unique and the prime powers (p;Y' are 
unique. 

Proof The proof is omitted here. • 
9.13 Example Find all abelian groups, up to isomorphism, of order 360. The phrase up to isomorphism 

signifies that any abelian group of order 360 should be structurally identical (isomor­
phic) to one of the groups of order 360 exhibited. 

Solution We make use of Theorem 9 .12. Since our groups are to be of the finite order 360, no 
factors Z will appear in the direct product shown in the statement of the theorem. 

First we express 360 as a product of prime powers 23325. Then using Theorem 9. 12, 
we get as possibilities 

1. Z2 x Z2 x Z2 x Z3 x Z3 x Zs 

2. Z2 x Z2 x Z2 x Z9 x Zs 

3. Z2 x Z4 x Z3 x Z3 x Zs 
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4. Z2 x Z4 x Z9 x Zs 

5. Z8 x Z3 x Z3 x Z5 

6. Z8 x Z9 x Z5 

Thus there are six different abelian groups (up to isomorphism) of order 360. ... 

There is another version of the Fundamental Theorem of Finitely Generated Abelian 
Groups. Each version can be proven from the other, so technically, if one version is 
used to prove something, the other version could also be used. However, it is sometimes 
more convenient to use one version rather than the other for a particular problem. 

9.14 Theorem (Invariant Factor Version of the Fundamental Theorem of Finitely Generated 
Abelian Groups) Every finitely generated abelian group is isomorphic to a direct 
product of cyclic groups of the form 

zd, x zd, x zd, x ... x zd, x z x z x ... x z, 

where each of the d; :::-: 2 is an integer and d; divides d;+1for1 :::; i:::; k - 1. Furthermore, 
the representation is unique. + 

The Betti number of a group is the number of factors of Z in both Theorem 9.12 
and 9.14. The numbers d; are called the invariant factors or the torsion coefficients. 
Theorem 9.12 implies Theorem 9.14 and the other way around. Here we show with an 
example how to start with a finite group that is in the form specified in Theorem 9.12 
and find its representation in the form of Theorem 9.14. 

9.15 Example Let us find the invariant factor form of the abelian group G = Z2 x Z2 x Z4 x Zs x 
Z 3 x Z9 x Z7 , which is in primary factor form. We make a table, one row for each 
prime number involved in G: 2, 3, and 7. We list the powers of each prime in the primary 
factor form starting with the highest power to the lowest power, filling the ends of the 
short rows with 1 = p0 . Table 9.16 is the table for G. The group G is the direct product 
of cyclic groups of the orders listed in the table. The products of the entries in the 
columns give the invariant factors. For G, the invariant factors are d4 = 8 · 9 · 7 = 504, 
d3 = 4 · 3 · 1 = 12, d2 = 2 · 1 · 1 = 2, and d1 = 2 · 1 · 1 = 2. The construction of the 
table insures that d1 divides d2, d2 divides d3, d3 divides d4 , and G is isomorphic with 
zd, x zd, x zd, x zd. = Z2 x Z2 x Z12 x &::504. ... 

9.16 Table 

8 
9 
7 

4 2 
3 1 
1 1 

2 
1 
1 

Example 9.15 shows how to create a table from a finitely generated abelian group that is 
in primary factor form. From the table we can find the invariant form of the group. This 
process can easily be reversed by factoring the invariants to find the primary factors. 

Applications 

Because of Theorems 9. 12 and 9.14, there is a plethora of theorems regarding finitely 
generated abelian groups that are fairly easily proven. We present a few examples. 

9.17 Definition A group G is decomposable if it is isomorphic to a direct product of two proper non-
trivial subgroups. Otherwise G is indecomposable. • 

9.18 Theorem The finite indecomposable abelian groups are exactly the cyclic groups with order a 
power of a prime. 

Proof Let G be a finite indecomposable abelian group. Then by Theorem 9 .12, G is isomorphic 
to a direct product of cyclic groups of prime power order. Since G is indecomposable, 
this direct product must consist of just one cyclic group whose order is a power of a 
prime number. 
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Conversely, Jet p be a prime. Then Zp' is indecomposable, for if Zp' were isomor­
phic to z", x Z"j' where i + j = r, then every element would have an order at most 
pmax(i,j) < p r . + 

9.19 Theorem If m divides the order of a finite abelian group G, then G has a subgroup of order m. 

Proof By Theorem 9.12, we can think of Gas being 

where not all primes p; need be distinct. Since (p 1Y ' (p2Y' · · · (p,,Y" is the order of G, 
then m must be of the form (p 1 )

5
' (p2) 52 

• • • (p,,)5
'', where 0 ::; s; ::; r;. By Theorem 6.15, 

(p;y,-s, generates a cyclic subgroup of Z(p;)'• of order equal to the quotient of (p;Y' by 
the gcd of (p;Y' and (p;y,-s,. But the gcd of (p;Y' and (p;y,-s, is (p;y;-s, . Thus (p; y,-s, 

generates a cyclic subgroup of Z(p,)'• of order 

[(p;Y' ]/ [(p;Y' - s' ] = (p;)s' . 

Recalling that (a) denotes the cyclic subgroup generated by a, we see that 

((p1r'-s') x ((p2)"2 - 52
) x · · · x ((p,,Y" - "") 

is the required subgroup of order m. • 
9.20 Theorem If m is a square-free integer, that is, m is not divisible by the square of any integer n ::: 2 

then every abelian group of order m is cyclic. 

Proof Let G be a finite abelian group of square-free order m. Then by Theorem 9.14, G is 
isomorphic to 

zd, x zd2 x ... x zdk' 
where each d ; ::: 2 divides d;+ 1 for I ::; i::; k - I. The order of G ism = d 1 • d2 • • • dk. 
If k ::: 2, then d~ divides m, which is a contradiction. Thus k = l and G is cyclic. + 

• EXERCISES 9 

Computations 

1. List the elements of Z2 x /Z4. Find the order of each of the elements. Is this group cyclic? 

2. Repeat Exercise l for the group Z3 x /Z4. 

In Exercises 3 through 7, find the order of the given element of the direct product. 
3. (2, 6) in ;z4 x ;z12 4. (3,4) in Z21 x Z 12 5. (40, 12) in /Z45 x Z 1s 

6. (3, 10, 9) in /Z4 x Z 12 x Z1s 7. (3, 6, 12, 16) in /Z4 x Z 12 x Z20 x Z24 

8. What is the largest order among the orders of all the cyclic subgroups of Z6 x Zs? of Z12 x Z 15? 

9. Find all proper nontrivial subgroups of Z2 x Z2. 

10. Find all proper nontrivial subgroups of Z2 x Z2 x Z2. 

11. Find all subgroups of Z2 x /Z4 of order 4. 

12. Find all subgroups of Z2 x Z2 x /Z4 that are isomorphic to the Klein 4-group. 

13. Disregarding the order of the factors , write direct products of two or more groups of the form Z,, so that the 
resulting product is isomorphic to Z60 in as many ways as possible. 

14. Fill in the blanks. 

a. The cyclic subgroup of Z24 generated by 18 has order_. 

b. Z3 x /Z4 is of order_. 
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c. The element (4, 2) of Z 12 x Zg has order_ . 
d. The Klein 4-group is isomorphic to z_ x z_. 
e. Z2 x Z x Z4 has_ elements of finite order. 

15. Find the maximum possible order for some element of Z4 x Z6. 

16. Are the groups Z2 x Z 12 and Z4 x Z6 isomorphic? Why or why not? 

17. Find the maximum possible order for some element of Zs x Z23 x Z24 . 

18. Are the groups Zg x Z 10 x Z24 and Z4 x Z 12 x Z40 isomorphic? Why or why not? 

19. Find the maximum possible order for some element of Z4 x Z 1s x Z 15. 

20. Are the groups Z4 x Z 1s x Z 15 and Z3 x Z36 x Z 10 isomorphic? Why or why not? 

In Exercises 21 through 25, proceed as in Example 9.1 3 to find all abelian groups, up to isomorphism, of the 
given order. For each group, find the invariant factors and find an isomorphic group of the form indicated in 
Theorem 9.14. 

21. Order 8 

24. Order 720 

22. Order 16 

25. Order 1089 

23. Order 32 

26. How many abelian groups (up to isomorphism) are there of order 24? of order 25? of order (24)(25)? 

27. Following the idea suggested in Exercise 26, let m and n be relatively prime positive integers. Show that if 
there are (up to isomorphism) r abelian groups of order m and s of order n, then there are (up to isomorphism) 
rs abelian groups of order mn. 

28. Use Exercise 27 to determine the number of abelian groups (up to isomorphism) of order (10)5. 

29. a. Let p be a prime number. Fill in the second row of the table to give the number of abelian groups of order pn, 
up to isomorphism. 

number of group: I 
2 

I 
3 

I 
4 

I 
5 

I 
6 

I 
7 

I 
8 

I 

b. Let p, q, and r be distinct prime numbers. Use the table you created to find the number of abelian groups, 
up to isomorphism, of the given order. 

i . p3q4r7 ii. (qr )? iii. q5r4q3 

30. Indicate schematically a Cayley digraph for Z,,, x Z,, for the generating set S = {( l , 0), (0, 1)). 

31. Consider Cayley digraphs with two arc types, a solid one with an arrow and a dashed one with no arrow, and 
consisting of two regular n-gons, for n :=::: 3, with solid arc sides, one inside the other, with dashed arcs joining 
the vertices of the outer n-gon to the inner one. Figure 7. ll (b) shows such a Cayley digraph with n = 3, 
and Figure 7. l 3(b) shows one with n = 4. The arrows on the outer n-gon may have the same (clockwise or 
counterclockwise) direction as those on the inner n-gon, or they may have the opposite direction. Let G be a 
group with such a Cayley digraph. 

a. Under what circumstances will G be abelian? 
b. If G is abelian, to what familiar group is it isomorphic? 

c. If G is abelian, under what circumstances is it cyclic? 
d. If G is not abelian, to what group we have discussed is it isomorphic? 

Concepts 

32. Determine whether each of the following is true or false. 

a. If G1 and G2 are any groups, then G1 x G2 is always isomorphic to G2 x G1. 

b. Computation in an external direct product of groups is easy if you know how to compute in each component 
group. 

c. Groups of finite order must be used to form an external direct product. 

d. A group of prime order could not be the internal direct product of two proper nontrivial subgroups. 



96 Part II Structure of Groups 

e. Z2 x Z4 is isomorphic to Zs . 

f. Z2 x Z4 is isomorphic to Ss. 

g. Z3 x Zs is isomorphic to S4. 

h. Every element in Z4 x Zs has order 8. 

i. The order of Z 12 x Z 1s is 60. 

j. Z 111 x Zn has mn elements whether m and n are relatively prime or not. 

33. Give an example illustrating that not every non trivial abelian group is the internal direct product of two proper 
nontrivial subgroups. 

34. a. How many subgroups of Zs x Z6 are isomorphic to Zs x Z6? 

b. How many subgroups of Z x Z are isomorphic to Z x Z? 

35. Give an example of a nontrivial group that is not of prime order and is not the internal direct product of two 
nontrivial subgroups. 

36. Determine whether each of the following is true or false. 

a. Every abelian group of prime order is cyclic. 

b. Every abelian group of prime power order is cyclic. 

c. Zs is generated by (4, 6). 

d. Zs is generated by (4, 5, 6). 

e. All finite abelian groups are classified up to isomorphism by Theorem 9 .12. 

f. Any two finitely generated abelian groups with the same Betti number are isomorphic. 

g. Every abelian group of order divisible by 5 contains a cyclic subgroup of order 5. 

h. Every abelian group of order divisible by 4 contains a cyclic subgroup of order 4. 

i. Every abelian group of order divisible by 6 contains a cyclic subgroup of order 6. 

j. Every finite abelian group has a Betti number of 0. 

37. Let p and q be distinct prime numbers. How does the number (up to isomorphism) of abelian groups of order p' 
compare with the number (up to isomorphism) of abelian groups of order q' ? 

38. Let G be an abelian group of order 72. 

a. Can you say how many subgroups of order 8 G has? Why, or why not? 

b. Can you say how many subgroups of order 4 G has? Why, or why not? 

39. Let G be an abelian group. Show that the elements of finite order in G form a subgroup. This subgroup is 
called the torsion subgroup of G. 

Exercises 40 through 43 deal with the concept of the torsion subgroup just defined. 

40. Find the order of the torsion subgroup of Z4 x Z x Z3; of Z 12 x Z x Z 12. 

41. Find the torsion subgroup of the multiplicative group ~* of nonzero real numbers. 

42. Find the torsion subgroup T of the multiplicative group ([* of nonzero complex numbers. 

43. An abelian group is torsion free if e is the only element of finite order. Use Theorem 9.12 to show that every 
finitely generated abelian group is the internal direct product of its torsion subgroup and of a torsion-free 
subgroup. (Note that {e} may be the torsion subgroup, and is also torsion free.) 

44. Find the torsion coefficients for each of the following groups. 

a.Z2x Z3 x Z4 c. Zs x Z2 x Z49 x Z1 

b. Z2 x Z4 x Zs x Z3 x Z21 d. Z2 x Z4 x Z2 x Z3 x Z3 x Z9 x Zs 

Proof Synopsis 

45. Give a two-sentence synopsis of the proof of Theorem 9.5. 
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Theory 

46. Prove that a direct product of abelian groups is abelian. 

47. Let G be an abelian group. Let H be the subset of G consisting of the identity e together with all elements of 
G of order 2. Show that H is a subgroup of G. 

48. Following up the idea of Exercise 47 determine whether H will always be a subgroup for every abelian group 
G if H consists of the identity e together with all elements of G of order 3; of order 4. For what positive 
integers n will H always be a subgroup for every abelian group G, if H consists of the identity e together with 
all elements of G of order n? Compare with Exercise 54 of Section 5. 

49. Find a counterexample of Exercise 47 with the hypothesis that G is abelian omitted. 

Let H and K be subgroups of a group G. Exercises 50 and 51 ask you to establish necessary and sufficient criteria 
for G to appear as the internal direct product of H and K. 

50. Let H and K be groups and let G = H x K. Recall that both H and K appear as subgroups of G in a natural 
way. Show that these subgroups H (actually H x {e}) and K (actually {e} x K) have the following properties. 

a. Every element of G is of the form hk for some h E H and k E K . 

b. hk = kh for all h E H and k EK. c. H n K = {e}. 

51. Let H and K be subgroups of a group G satisfying the three properties listed in the preceding exercise. Show 
that for each g E G, the expression g = hk for h E H and k E K is unique. Then let each g be renamed (h, k). 
Show that, under this renaming, G becomes structurally identical (isomorphic) to H x K. 

52. Show that a finite abelian group is not cyclic if and only if it contains a subgroup isomorphic to Zp x Zp for 
some prime p. 

53. Prove that if a finite abelian group has order a power of a prime p, then the order of every element in the group 
is a power of p. 

54. Let G, H , and K be finitely generated abelian groups. Show that if G x K is isomorphic to H x K, then G '.:::'.H. 

55. Using the notation of Theorem 9.14, prove that for any finite abelian group G, every cyclic subgroup of G has 
order no more than dk> the largest invariant factor for G. 

SECTION 10 COSETS AND THE THEOREM OF LAGRANGE 

You may have noticed that the order of a subgroup H of a finite group G seems always 
to be a divisor of the order of G. This is the theorem of Lagrange. We shall prove it by 
exhibiting a partition of G into cells, all having the same size as H. Thus if there are r 
such cells, we will have 

r( order of H) = (order of G) 

from which the theorem follows immediately. The cells in the partition will be called 
cosets of H , and they are important in their own right. In Section 12, we will see that if 
H satisfies a certain property, then each coset can be regarded as an element of a group 
in a very natural way. We give some indication of such coset groups in this section to 
help you develop a feel for the topic. 

Co sets 

Let H be a subgroup of a group G, which may be of finite or infinite order. We exhibit a 
partition a G by defining an equivalence relation, ~Lon G. 

10.1 Theorem Let H be a subgroup of G. Let the relation ~L be defined on G by 

a~Lb if and only if a-1bEH. 

Then ~L is an equivalence relation on G. 
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Proof When reading the proof, notice how we must constantly make use of the fact that H is a 
subgroup of G. 

Reflexive Let a E G. Then a - 1 a = e and e E H since His a subgroup. Thus 
a ~La. 

Symmetric Suppose a ~Lb. Then a- 1 b E H. Since His a subgroup, (a- 1 b)- 1 

is in Hand (a- 1b)- 1 = b- 1a, so b- 1a is in Hand b ~La. 

Transitive Let a ~ L b and b ~ L c. Then a- 1 b E Hand b- 1 c E H . Since H is 
a subgroup, (a- 1b)(b- 1c) = a- 1c is in H , so a ~L c. + 

The equivalence relation ~ L in Theorem 10.1 defines a partition of G, as described 
in Theorem 0.22. Let's see what the cells in this partition look like. Suppose a E G. The 
cell containing a consists of all x E G such that a ~L x, which means all x E G such 
that a- 1x E H. Now a-1x EH if and only if a- 1x = h for some h EH, or equivalently, 
if and only if x = ah for some h E H. Therefore the cell containing a is {ah I h E H}, 
which we denote by aH. 

10.2 Definition Let H be a subgroup of a group G. The subset aH = {ah I h EH) of G is the left coset 
of H containing a. • 

10.3 Example Exhibit the left coset of the subgroup 3Z of Z. 

Solution Our notation here is additive, so the left coset of 3Z containing m is m + 3Z. Taking 
m = 0, we see that 

3Z = {· · · , -9, -6, -3,0,3,6, 9, · · ·} 

is itself one of its left cosets, the coset containing 0. To find another left coset, we select 
an element of Z not in 3Z, say 1, and find the left coset containing it. We have 

1+3Z = {· · ·, -8, -5, -2, 1,4, 7, 10, · · · }. 

These two left cosets, 3Z and I + 3Z, do not yet exhaust Z . For example, 2 is in neither 
of them. The left coset containing 2 is 

2 + 3Z = {· · ·, -7, -4, - 1,2, 5, 8, 11, · · · }. 

It is clear that these three left cosets we have found do exhaust Z, so they constitute the 
partition of Z into left cosets of 3Z. .&. 

10.4 Example We find the partition of Z 12 into left cosets of H = (3). One coset is always the subgroup 
itself, so 0 + H = {O, 3, 6, 9). We next find I + H = {I , 4, 7, 10). We are still not done 
since we have not included every element of Z 12 in the two cosets we listed so far. 
Finally, 2 + H = {2, 5, 8, 11) and we have computed all the left cosets of Hin Z12 . .&. 

10.5 Example We now list the left cosets of the subgroup H = (µ,) = {t, µ,) of the nonabelian group 
n4 = {t, p, p2, p3, µ,, µ,p , µ,p2, µ,p 3). 

l{l, µ,) 
p{t , µ,) 

p2{t ,µ, ) 
p3{l , µ,) 

{l , µ,) 
{p, µ,p3) 
{p2, µ,p2) 
{p3,µ,p) 

We know this is a complete list of the left cosets since every element of D4 appears in 
exactly one of the listed sets. .&. 
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The Theorem of Lagrange 

In Example 10.4 each left coset of (3) ::: :Z.12 has four elements. In Example 10.5, each 
left coset has two elements. From the computation of the left cosets, it is no surprise that 
all left cosets of a subgroup have the same number of elements. Theorem 10.6 confirms 
this is what happens in general. 

10.6 Theorem Let H be a subgroup of G. Then for any a E G, the coset aH has the same cardinality 
as H. 

Proof Let f : H ~ aH be defined by the formula f(h) = ah. To show f is one-to-one, we 
suppose that b, c EH andf(b) = f(c). Then ab = ac and left cancellation gives b =c. 
So f is one-to-one. Now suppose that y E aH. Then there is an h E H such that y = ah 
by definition of the left coset aH. Thus y = f(h) and f is surjective. Since there is a 
one-to-one function mapping H onto aH , Hand aH have the same cardinality. + 

In the case of a finite subgroup H, Theorem 10.6 says that H and aH have the same 
number of elements for any a in the group G. This is precisely what we were seeking in 
order to prove Lagrange's Theorem. 

10.7 Theorem (Theorem of Lagrange) Let H be a subgroup of a finite group G. Then the order of 
His a divisor of the order of G. 

Proof Let n be the order of G, and let H have order m. Theorem 10.6 shows that every coset of 
H also has m elements. Let r be the number of cells in the partition of G into left cosets 
of H. Then n = rm, so m is indeed a divisor of n. + 

Note that this elegant and important theorem comes from the simple counting of 
cosets and the number of elements in each coset. We continue to derive consequences 
of Theorem 10.7, which should be regarded as a counting theorem. 

10.8 Corollary Every group of prime order is cyclic. 

Proof Let G be of prime order p, and let a be an element of G different from the identity. Then 
the cyclic subgroup (a) of G generated by a has at least two elements, a and e. But 
by Theorem 10.7, the order m '.'.: 2 of (a) must divide the prime p. Thus we must have 
m = p and (a) = G, so G is cyclic. + 

Since every cyclic group of order p is isomorphic to :Z.1" we see that there is only 
one group structure, up to isomorphism, of a given prime order p. Now doesn' t this 
elegant result follow easily from the theorem of Lagrange, a counting theorem? Never 
underestimate a theorem that counts something. Proving the preceding corollary is a 
favorite examination question. 

10.9 Theorem The order of an element of a finite group divides the order of the group. 

Proof Remembering that the order of an element is the same as the order of the cyclic subgroup 
generated by the element, we see that this theorem follows directly from Lagrange's 
Theorem. + 

10.10 Definition Let H be a subgroup of a group G. The number of left cosets of H in G is the index 
(G : H) of Hin G. • 

The index ( G: H) just defined may be finite or infinite. If G is finite, then obviously 
(G : H) is finite and (G : H) = IGl / IH I, since every coset of H contains IH I elements. 
We state a basic theorem concerning indices of subgroups, and leave the proof to the 
exercises (see Exercise 40). 
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10.11 Theorem Suppose Hand K are subgroups of a group G such that K :S H :S G, and suppose (H: K ) 
and (G: H) are both finite. Then (G: K) is finite, and (G: K) = (G: H)(H: K). 

Lagrange's Theorem says that for any subgroup H of a finite group G, the order 
of H divides the order of G. But if d is a divisor of the order of G, does G necessarily 
have a subgroup with exactly d elements? We will show in Section 13 that the answer is 
no for some groups. This suggests a new question: Under what conditions does G have 
a subgroup of every order d that is a divisor of G? We saw in Section 9 that for every 
divisor of the order of an abelian group, there is a subgroup of that order. The complete 
answer to this question is beyond the scope of this book, but we will come back to the 
question later. 

Cosets Left and Right! 

It is possible to do everything we have done in this section using right cosets instead of 
left cosets. All it takes is some minor and straightforward modifications to the defini­
tions and proofs. We briefly give the corresponding definitions that lead to right cosets 
and point out some of their properties. 

Let H be a subgroup of G. To start with, instead of ~L we could have used ~R 
defined by 

a ~Rb if and only if ab- 1 E H. 

With this definition, ~R is an equivalence relation and the equivalence classes are the 
right cosets. The right coset of H containing the element a E G is 

Ha= {ha f h EH}. 

Just like left cosets, each right coset of a subgroup H has the same cardinality as H. So 
left cosets and right cosets have the same cardinality. In abelian groups, the right and 
left cosets are the same, but there is no reason to think they would be the same in general 
for nonabelian groups. If the right and left cosets are the same, we can drop left or right 
and just refer to cosets. 

10.12 Example In Example 10.5 we computed the left cosets of the subgroup H = (µ,) = {i, µ,}of the 
group D4 = { i , p , p2, p 3, µ , µp, µp2, µp3}. We now compute the right cosets. 

{t , µ}l 
{t , µ}p 

{t, µ} p2 
{t, µ}p3 

{i , µ} 
{p ,µp } 
{p2, µp2} 

{p3' µp3} 

The right cosets and the left cosets are not the same. For example, pH = {p, µp 3} while 
Hp = {p,µp}. .&. 

If this were the whole story of left and right cosets, there would be no reason to even 
mention right cosets. We could just use left coset, prove Lagrange's Theorem, and call 
it a day. However, as we shall see in Part III, a curious thjng happens when the left and 
right cosets are the same. We illustrate with an example. 

10.13 Example The group &::6 is abelian. Find the partition of &::6 into cosets of the subgroup H = (0, 3}. 

Solution One coset is { 0, 3} itself. The coset containing 1 is 1 + (0, 3} = { 1, 4}. The coset con­
taining 2 is 2 + {O, 3} = {2, 5}. Since {O, 3}, {l , 4}, and {2, 5} exhaust all of &::6, these 
are all the cosets. .&. 
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We point out a fascinating thing that we will develop in detail in Section 12. Re­
ferring back to Example 10.13, Table 10.14 gives the binary operation for Z6 but with 
elements listed in the order they appear in the cosets (0, 3), { 1, 4), (2, 5). We shaded the 
table according to these cosets. 

10.14 Table 10.15 Table 

+6 0 3 1 4 2 5 

0 0 3 I 4 2 5 LT MD DK 

3 3 0 4 1 5 2 
LT LT MD DK 

1 1 4 2 5 3 0 

4 4 1 5 2 0 3 MD MD DK LT 

12 2 5 3 0 4 1 

15 5 2 0 3 1 4 DK DK LT MD 

Suppose we denote these cosets by LT(light), MD(medium), and DK(dark) ac­
cording to their shading. Table 10.14 then defines a binary operation on these shadings, 
as shown in Table 10.15. Note that if we replace LT by 0, MD by 1, and DK by 2 in 
Table 10.15, we obtain the table for Z 3. Thus the table of shadings forms a group! 

We will see in Section 12 that when left cosets and right cosets are the same, then 
the cosets form a group as in Example 10.13. If right and left cosets are different, the 
construction fails. 

10.16 Example Let H = {t, µ,) '.'S D3 . The group table for D3 is given below with the elements arranged 
so that left cosets are together. The double lines divide the cosets. 

The situation here is much different from the situation in Example 10.13. In Table 10.14 
the two-by-two blocks in the table each contain only elements of a left coset. In the 
present example, most blocks do not contain elements from only one left coset. Further­
more, even if we tried to use the two-by-two blocks of elements to form a three-by-three 
group table, the second row of blocks contains two blocks, both having the same ele­
ments, {p 2 , µ,p , µ,, t). So the table of blocks would have a row with the same element 
listed twice. In this case, there is no natural way of making the left cosets a group. .A 

If G is an abelian group, then the left and right cosets are the same. Theorem 10.17 
gives another condition when left and right cosets are the same. Recall that if if> : G --+ 
G' is a group homomorphism, then Ker(ef>) = ef>- 1 [{e}] '.'S G is the kernel of if>. 

10.17 Theorem Let if> : G--+ G' be a group homomorphism. Then the left and right cosets of Ker(ef>) 
are identical. Furthermore, a, b E G are in the same coset of Ker(ef>) if and only if 
ef>(a) = ef>(b). 
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Proof We first assume that a and bare in the same left cosets of Ker(<f>) and show they are also 
in the same right cosets. Then a-1b E Ker(<f>). So <f>(a- 1b) = e, the identity element. 
Because <t> is a homomorphism, <f>(a)-1</>(b) = e, which implies that <f>(a) = <f>(b). 
Therefore, <f>(ab- 1) = <f>(a)<f>(b)- 1 = <f>(a)<f>(a)- 1 = e. Thus ab- 1 E Ker(<f>), which says 
that a and b are in the same right coset. Note that in the process we showed that if a and 
bare in the same left coset of Ker(<f> ), then <f>(a) = <f>(b). 

Now suppose that <f>(a) = <f>(b). Then <f>(b- 1a) = <f>(b)- 1<f>(a) =e. Thus b-1a E 

Ker( <t> ), which implies that a and b are in the same left coset. 
To complete the proof, we need to show that if a and b are in the same right coset, 

then they are also in the same left coset. The proof is essentially the same as above, so 
we leave this detail to the reader. + 

10.18 Example Consider the determinant map det : GL(2, JR) --+ JR*. In linear algebra you learn that 
det(AB) = det(A) det(B), so the determinant is a group homomorphism. The kernel of 
det is the set of all 2 x 2 matrices with determinant L Two matrices A, B E GL(2, JR) 
are in the same left coset of Ker(det) if and only if they are in the same right coset of 
Ker(det) if and only if det(A) = det(B). In particular, the two matrices 

[ ~ ~ J and [ ~ ; J 
each have determinant 2, so they are in the same left (and right) cosets of Ker(det). .A. 

10.19 Corollary A homomorphism <t> : G--+ G' is one-to-one if and only if Ker(</>) is the trivial subgroup 
of G. 

Proof We first assume that Ker( <t>) = { e}. Every coset of Ker( <t>) has only one element. Suppose 
that <f>(a) = <f>(b ). Then a and b are in the same coset of Ker( <f>) by Theorem 10.17. Thus 
a= b. 

Now suppose that <t> is one-to-one. Then only the identity e is mapped to the identity 
in G' . So Ker(</>)= {e}. + 

Corollary 10.19 says that to check if a homomorphism <t> : G --+ G' is one-to-one 
one merely needs to check that Ker(</>) is the trivial subgroup. In other words, show 
that the only solution to <f>(x) = e' is e, where e and e' are the identities in G and G' , 
respectively. 

10.20 Example Let <f> : lR--+ JR+ be defined by <f>(x) = 2x_ Since <f> is a homomorphism, we can check 
that <t> is one-to-one by solving <f>(x) = 1. The equation 2x = <f>(x) = 1 has only the 
solution 0 since for x > 0, 2x > 1 and for x < 0, 2x < 1. Thus <f> is one-to-one. .A. 

• EXERCISES 10 

Computations 

1. Find all cosets of the subgroup 41:: of Z . 

2. Find all cosets of the subgroup 41:: of 21::. 

3. Find all cosets of the subgroup (3) in Z is-

4. Find all cosets of the subgroup (6) in Z 1s­

S. Find all cosets of the subgroup ( 18) of 1::36· 

6. Find all left cosets of (µp) in D4-

7. Repeat the preceding exercise, but find the right cosets this time. Are they the same as the left cosets? 
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8. Are the left and right cosets the same for the subgroup { t, p4 , µ.,, µ.,p4} of Ds? If so, display the cosets. If not, 
find a left coset that is not the same as any right coset. 

9. Find all the left cosets of (p2 ) :::= D4. 

10. Repeat the previous exercise, but find the right cosets. Are the left and right cosets the same? If so, make the 
group table for D4, ordering the elements so that the cosets are in blocks, see if the blocks form a group with 
four elements, and determine what group of order 4 the blocks form. 

11. Find the index of (p2 ) in the group D6. 

12. Find the index of (3) in the group Z24. 

13. Find the index of l 2Z in Z. 

14. Find the index of 12Z in 3Z. 

15. Let a = (1 , 2 , 5, 4)(2, 3) in S5. Find the index of (a ) in S5. 

16. Letµ., = (I, 2, 4, 5)(3, 6) in 56. Find the index of (µ.,) in 56. 

Concepts 

In Exercises 17 through 19, correct the definition of the italicized term without reference to the text, if correction 
is needed, so that it is in a form acceptable for publication. 

17. Let G be a group and let H ~ G. The left coset of H containing a is aH ={ah I h EH}. 

18. Let G be a group and let H :::= G. The index of H in G is the number of right cosets of Hin G. 

19. Let 4>: G--+ G'. Then the kernel of 4> is Ker(</>)= {g E G I ef>(g) = e) . 

20. Determine whether each of the following is true or false. 

a. Every subgroup of every group has left cosets. 

b. The number of left cosets of a subgroup of a finite group divides the order of the group. 

c. Every group of prime order is abelian. 

d. One cannot have left cosets of a finite subgroup of an infinite group. 

e. A subgroup of a group is a left coset of itself. 

f. Only subgroups of finite groups can have left cosets. 

g. A11 is of index 2 in S11 for n > 1. 

h . The theorem of Lagrange is a nice result. 

i. Every finite group contains an element of every order that divides the order of the group. 

j. Every finite cyclic group contains an element of every order that divides the order of the group. 

k. The kernel of a homomorphism is a subgroup of the range of the homomorphism. 

I. Left cosets and right cosets of the kernel of a homomorphism are the same. 

In Exercises 2 1 through 26, give an example of the desired subgroup and group if possible. If impossible, say why 
it is impossible. 

21. A subgroup H :::= G with G infinite and H having only a finite number of left cosets in G 

22. A subgroup of an abelian group G whose left cosets and right cosets give different partitions of G 

23. A subgroup of a group G whose left cosets give a partition of G into just one cell 

24. A subgroup of a group of order 6 whose left cosets give a partition of the group into 6 cells 

25. A subgroup of a group of order 6 whose left cosets give a partition of the group into 12 cells 

26. A subgroup of a group of order 6 whose left cosets give a partition of the group into 4 cells 

Proof Synopsis 

27. Give a one-sentence synopsis of the proof of the Theorem of Lagrange. 
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Theory 

28. Prove that the relation ~R that is used to define right cosets is an equivalence relation. 

29. Let H be a subgroup of a group G and let g E G. Define a one-to-one map of H onto Hg. Prove that your map 
is one-to-one and is onto Hg. 

30. Let H be a subgroup of a group G such that g- 1 hg E H for all g E G and all h E H . Show that every left coset 
gH is the same as the right coset Hg. 

31. Let H be a subgroup of a group G. Prove that if the partition of G into left cosets of H is the same as the 
partition into right cosets of H, then g- 1 hg E H for all g E G and all h E H. (Note that this is the converse of 
Exercise 30.) 

Let H be a subgroup of a group G and let a, b E G. In Exercises 32 through 35 prove the statement or give a 
counterexample. 

32. If aH = bH, then Ha = Hb. 

33. If Ha = Hb, then b E Ha. 

34. If aH = bH, then Ha- 1 = Hb- 1• 

35. If aH = bH , then a2H = b2H. 

36. Let G be a group of order pq, where p and q are prime numbers. Show that every proper subgroup of G is 
cyclic. 

37. Show that there are the same number of left as right cosets of a subgroup H of a group G; that is, exhibit 
a one-to-one map of the collection of left cosets onto the collection of right cosets. (Note that this result is 
obvious by counting for finite groups. Your proof must hold for any group.) 

38. Exercise 29 of Section 2 showed that every finite group of even order 2n contains an element of order 2. 
Using the theorem of Lagrange, show that if n is odd, then an abelian group of order 2n contains precisely one 
element of order 2. 

39. Show that a group with at least two elements but with no proper nontrivial subgroups must be finite and of 
prime order. 

40. Prove Theorem 10.11 [Hint: Let {a;H Ii = 1, · · · , r ) be the collection of distinct left cosets of H in G and 
{ bj K I j = 1, · · · , s} be the collection of distinct left cosets of K in H . Show that 

{(a;bj)K f i= 1,- ·· ,r; j= 1,- ·· , s) 

is the collection of distinct left cosets of K in G.] 

41. Show that if His a subgroup of index 2 in a finite group G, then every left coset of His also a right coset of H. 

42. Show that if a group G with identity e has fi nite order n, then an = e for all a E G. 

43. Show that every left coset of the subgroup Z of the additive group of real numbers contains exactly one element 
x such that 0 :'.": x < 1. 

44. Show that the function sine assigns the same value to each element of any fixed left coset of the subgroup (2rr ) 
of the additive group lR of real numbers. (Thus sine induces a well-defined function on the set of cosets; the 
value of the function on a coset is obtained when we choose an element x of the coset and compute sin x.) 

45. Let H and K be subgroups of a group G. Define ~ on G by a ~ b if and only if a = hbk for some h E H and 
some k E K. 

a. Prove that ~ is an equivalence relation on G. 

b. Describe the elements in the equivalence class containing a E G. (These equivalence classes are called 
double cosets.) 

46. Let SA be the group of all permutations of the set A, and let c be one particular element of A. 

a. Show that {a E SA I a(c) = c} is a subgroup Sc,c of SA . 

b. Let d =I- c be another particular element of A. Is Sc,d = {a E SA I a(c) = d ) a subgroup of SA? Why or why 
not? 

c. Characterize the set Sc,d of part (b) in terms of the subgroup Sc,c of part (a). 
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47. Show that a finite cyclic group of order n has exactly one subgroup of each order d dividing n, and that these 
are all the subgroups it has. 

48. The Euler phi-function is defined for positive integers n by rp(n) = s, where s is the number of positive 
integers less than or equal ton that are relatively prime ton. Use Exercise 47 to show that 

n = I: rp<d). 
d i n 

the sum being taken over all positive integers d dividing n. [Hint: Note that the number of generators of Z d is 
rp(d) by Corollary 6. 17.] 

49. Let G be a finite group. Show that if for each positive integer m the number of solutions x of the equation 
x" = e in G is at most m, then G is cyclic. [Hint: Use Theorem 10.9 and Exercise 48 to show that G must 
contain an element of order n = IGI .] 

50. Show that a finite group cannot be written as the union of two of its proper subgroups. Does the statement 
remain true if "two" is replaced by "three"? (This was problem B-2 on the 1969 Putnam Exam.) 

SECTION 11 t pLANE ISOMETRIES 

Consider the Euclidean plane IR2 . An isometry of IR2 is a permutation </J : IR2 ---+ IR2 

that preserves distance, so that the distance between points P and Q is the same as 
the distance between the points </J(P) and </J(Q) for all points P and Q in IR2 . If 1/1 is 
also an isometry of IR2 , then the distance between 1/1(</J(P)) and 1/1(</J(Q)) must be the 
same as the distance between </J(P) and </J(Q), which in tum is the distance between P 
and Q, showing that the composition of two isometries is again an isometry. Since the 
identity map is an isometry and the inverse of an isometry is an isometry, we see that 
the isometries of IR2 form a subgroup of the group of all permutations of IR2

. 

Given any subset S of IR2
, the isometries of IR2 that carry S onto itself form a 

subgroup of the group of isometries. This subgroup is the group of symmetries of Sin 
IR2 . Although we defined the dihedral group D11 as one-to-one maps from the vertices 
of a regular n-gon onto itself that preserves edges, we can extend each map in D11 to an 
isometry of the whole plane; µ, is reflection across the x-axis and p is rotation about the 
origin by Zrr. So we can think of D11 as the group of isometries of a regular n-gon in IR2 . 

11 

Everything we have defined in the two preceding paragraphs could equally well 
have been done for n-dimensional Euclidean space IR", but we will concern ourselves 
chiefly with plane isometries here. 

It can be proved that every isometry of the plane is one of just four types (see Artin 
[5]). We will list the types and show, for each type, a labeled figure that can be carried 
into itself by an isometry of that type. In each of Figs. 11.1, 11.3, and 11.4, consider the 
line with spikes shown to be extended infinitely to the left and to the right. We also give 
an example of each type in terms of coordinates. 

translation r: Slide every point the same distance in the same direction. See 
Fig. 11. 1. (Example: r(x,y) = (x, y) + (2, -3) = (x + 2,y - 3).) 

rotation p: Rotate the plane about a point P through an angle e. See Fig. 11.2. 
(Example: p(x,y) = (-y,x) is a rotation through 90° counterclockwise about the 
origin (0, 0).) 

reflection µ,: Map each point into its mirror image (µ, for mirror) across a line 
L, each point of which is left fixed by µ. See Fig. 11.3. The line L is the axis of 
reflection. (Example: µ,(x,y) = (y,x) is a reflection across the line y = x.) 

t This section is not used in the remainder of the text. 



106 Part II Structure of Groups 

glide reflection y: The product of a translation and a reflection across a line 
mapped into itself by the translation. See Fig. 11.4. (Example: y(x, y) = (x + 4, - y) 
is a glide reflection along the x-axis.) 

Notice the little curved arrow that is carried into another curved arrow in each of 
Figs. 11.1 through 11.4. For the translation and rotation, the counterclockwise directions 
of the curved arrows remain the same, but for the reflection and glide reflection, the 
counterclockwise arrow is mapped into a clockwise arrow. We say that translations and 
rotations preserve orientation, while the reflection and glide reflection reverse orien­
tation. We do not classify the identity isometry as any definite one of the four types 
listed; it could equally well be considered to be a translation by the zero vector or a 
rotation about any point through an angle of 0°. We always consider a glide reflection to 
be the product of a reflection and a translation that is different from the identity isometry . 

p -r(P) 

Q -r(Q) 

11.1 Figure Translation r . 

p µ,(Q) R 

s 
---~--1-~~~--+~~-1-~ L 

µ,(S) 

u 
µ,(P) Q µ,(R) 

11.3 Figure Reflection µ . 

. ,~~. 
p-l(Q) 

p 

11.2 Figure Rotation p . 

y-l (P) y(P) 

u/ Q I 
\ 0 \ y(Q) \ 

p 

11.4 Figure Glide reflection y. 

The theorem that follows describes the possible structures of finite subgroups of 
the full isometry group. 

11.5 Theorem Every fin ite group G of isometries of the plane is isomorphic to either the Klein 4-group, 
Z11 for n '.'.: 1, or D11 for some n '.'.: 3. 

Proof (Outline) First we show that there is a point in the plane that is fi xed by every element 
of G. We let G = {</>1 , </Ji, </>J, . . . , </>111 ) and (x;, y;) = </>;(O, 0). Then the point 

P = (:X,y) = ( X 1 + x2 +x: + · · · +xm, YI+ YI + Y: + · · · + Ym ) 

is the center of mass of the set S = {(x;,y;) 11 ~ i ~ m) where each point is weighted 
by the number of</>; that map (0, 0) to that point It is easy to see that the isometries in G 
permute the points in S since for each i andj, </>; o </>j = </>k for some k. Thus </>;(xj ,yj ) = 
(xk>yk )- This implies the center of mass of </>(S) is the same as the center of mass of S. 
It can be shown that given the distances from the center of mass to the points of the set 
S, the center of mass is the only point having these distances from the points of S. This 
says that (:X,y) is fixed by every isometry in G. 
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The orientation preserving isometries of G form a subgroup Hof G which is either 
all of G or else of order m/2. You are asked to prove this in Exercise 22. Of course H 
consists of the identity and possibly rotations about the point (:X, y). If H has only one 
element, then G has one or two elements and is therefore isomorphic with Z 1 or Z2 . If 
H has two elements, then G has two or four elements and is therefore isomorphic with 
either the Klein 4-group, Z4 , or Z2 . So we can assume that H has at least three elements. 

If we choose a rotation p in H that rotates through the smallest positive angle e 
among all the elements of H , p generates H. The proof of this fact is similar to the proof 
that a subgroup of a cyclic group is cyclic and you are asked to provide the details of 
the proof in Exercise 23. If G = H , then G is isomorphic with Z 111 • So we now assume 
that G contains a reflection, say µ. Then the coset µH contains only isometries of G 
that reverse orientation. Each coset H and µH contains half the elements of G, so 
G = H UµH. 

Consider now a regular n-gon (recall that we are assuming that n :::: 3) with center 
the point (x,y) and having a vertex v0 on the line fixed byµ . Each element of G per­
mutes the vertices of the n-gon and preserves edges. Furthermore, no two elements of 
G permute the vertices in the same way. Thus G is isomorphic with a subgroup of the 
dihedral group D11 • Since IGI = ID11 I, G is isomorphic with D11 • + 

In Theorem 11.5 the Klein 4-group, V, seems like an exception. However, V fits 
into the family of dihedral groups since V has two elements of order 2, a and b, with the 
property that ab = ba- 1• Sometimes V is denoted D2 and considered a dihedral group. 
The isometries of the plane that map a line segment to itself are isomorphic with V. 

The preceding theorem gives the complete story about finite plane isometry groups. 
We turn now to some infinite groups of plane isometries that arise naturally in decorating 
and art. Among these are the discrete frieze groups. A discrete frieze consists of a pattern 
of finite width and height that is repeated endlessly in both directions along its baseline 
to form a strip of infinite length but finite height; think of it as a decorative border strip 
that goes around a room next to the ceiling on wallpaper. We consider those isometries 
that carry each basic pattern onto itself or onto another instance of the pattern in the 
frieze. The set of all such isometries is called the ''frieze group." All discrete frieze 
groups are infinite and have a subgroup isomorphic to Z generated by the translation 
that slides the frieze lengthwise until the basic pattern is superimposed on the position 
of its next neighbor pattern in that direction. As a simple example of a discrete frieze, 
consider integral signs spaced equal distances apart and continuing infinitely to the left 
and right, indicated schematically like this. 

···fffffffffffffffffffffffffffffffffff ·· 
Let us consider the integral signs to be one unit apart. The symmetry group of this frieze 
is generated by a translation r sliding the plane one unit to the right, and by a rotation p 
of 180° about a point in the center of some integral sign. There are no horizontal or 
vertical reflections, and no glide reflections. This frieze group is nonabelian; we can 
check that rp = pr - 1• This relation between rand p looks very familiar. The dihedral 
group D11 is also generated by two elements p andµ that satisfy the relation pµ = µp- 1

• 

If r and p in the frieze group are replaced by p and µ, respectively, we have the same 
relation. In D,,, µ has order 2, as does p in the frieze group, but the element p in D 11 

has order n while r has infinite order. Thus it is natural to use the notation D00 for this 
nonabelian frieze group. 

As another example, consider the frieze given by an infinite string of D's. 

···DDDDDDDDDDD··· 
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Its group is generated by a translation r one step to the right and by a vertical reflection 
µ, across a horizontal line cutting through the middle of all the D's. We can check that 
these group generators commute this time, that is, r µ, = µ, r , so this frieze group is 
abelian and is isomorphic to Z x Z2 . 

It can be shown that if we classify such discrete friezes only by whether or not their 
groups contain a 

rotation horizontal axis reflection 
vertical axis reflection nontrivial glide reflection 

then there are a total of seven possibilities. A nontrivial glide reflection in a symmetry 
group is one that is not equal to a product of a translation in that group and a reflection 
in that group. The group for the string of D's above contains glide reflections across 
the horizontal line through the centers of the D's, but the translation component of each 
glide reflection is also in the group so they are all considered trivial glide reflections in 
that group. The frieze group for 

D D D D D 
D D D D D 

contains a nontrivial glide reflection whose translation component is not an element of 
the group. The exercises exhibit the seven possible cases, and ask you to tell, for each 
case, which of the four types of isometries displayed above appear in the symmetry 
group. We do not obtain seven different group structures. Each of the groups obtained 
can be shown to be isomorphic to one of 

Equally interesting is the study of symmetries when a pattern in the shape of a 
square, parallelogram, rhombus, or hexagon is repeated by translations along two non­
parallel vector directions to fill the entire plane, like patterns that appear on wallpaper. 
These groups are called the wallpaper groups or the plane crystallographic groups. 
While a frieze could not be carried into itself by a rotation through a positive angle less 
than 180°, it is possible to have rotations of 60°, 90°, 120°, and 180° for some of these 
plane-filling patterns. Figure 11.6 provides an illustration where the pattern consists of 
a square. We are interested in the group of plane isometries that carry this square onto 
itself or onto another square. Generators for this group are given by two translations 
(one sliding a square to the next neighbor to the right and one to the next above), by a 
rotation through 90° about the center of a square, and by a reflection in a vertical (or 
horizontal) line along the edges of the square. The one reflection is all that is needed to 
"turn the plane over"; a diagonal reflection can also be used. After being turned over, 
the translations and rotations can be used again. The isometry group for this periodic 
pattern in the plane surely contains a subgroup isomorphic to Z x Z generated by the 
unit translations to the right and upward, and a subgroup isomorphic to D4 generated by 
those isometries that carry one square (it can be any square) into itself. 

If we consider the plane to be filled with parallelograms as in Fig. 11.7, we do not 
get all the types of isometries that we did for Fig. 11.6. The symmetry group this time is 
generated by the translations indicated by the arrows and a rotation through 180° about 
any vertex of a parallelogram. 

It can be shown that there are 17 different types of wallpaper patterns when they are 
classified according to the types of rotations, reflections, and nontrivial glide reflections 
that they admit. We refer you to Gallian [8] for pictures of these 17 possibilities and 
a chart to help you identify them. The exercises illustrate a few of them. The situation 
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11.6 Figure 

11.7 Figure 

in space is more complicated; it can be shown that there are 230 three-dimensional 
crystallographic groups. The final exercise we give involves rotations in space. 

M. C. Escher (1898- 1973) was an artist whose work included plane-filling patterns. 
In the exercises you are asked to analyze two of his works of this type. 

• EXERCISES 11 

1. This exercise shows that the group of symmetries of a certain type of geometric figure may depend on the 
dimension of the space in which we consider the fi gure to lie. 

a. Describe all symmetries of a point in the real line lR; that is, describe all isometries of IR that leave one point 
fixed . 

b. Describe all symmetries (translations, reflections, etc.) of a point in the plane JR2. 

c. Describe all symmetries of a line segment in JR. 
d. Describe all symmetries of a line segment in JR2 . 

e. Describe some symmetries of a line segment in JR3 . 

2. Let P stand for an orientation preserving plane isometry and R for an orientation reversing one. Fill in the table 
with P or R to denote the orientation preserving or reversing property of a product. 
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3. Fill in the table to give all possible types of plane isometries given by a product of two types as indicated in 
Tables 11 .1 through 11 .4. For example, a product of two rotations may be a rotation, or it may be another type. 
Fill in the box corresponding to pp with both letters. Use your answer to Exercise 2 to eliminate some types. 
Eliminate the identity from consideration. 

T p µ, y 

T 

p 

µ, 

y 

4. Draw a plane figure that has a one-element group as its group of symmetries in JR2 . 

5. Draw a plane figure that has a two-element group as its group of symmetries in JR2 . 

6. Draw a plane figure that has a three-element group as its group of symmetries in JR2 . 

7. Draw a plane figure that has a four-element group isomorphic to Z4 as its group of symmetries in IR2 . 

8. Draw a plane figure that has a four-element group isomorphic to the Klein 4-group V as its group of symmetries 
in IR2 . 

9. For each of the four types of plane isometries (other than the identity), give the possibilities for the order of an 
isometry of that type in the group of plane isometries. 

10. A plane isometry cf> has a fixed point if there exists a point Pin the plane such that cf>(P) = P. Which of the four 
types of plane isometries (other than the identity) can have a fi xed point? 

11. Referring to Exercise 10, which types of plane isometries, if any, have exactly one fi xed point? 

12. Referring to Exercise I 0, which types of plane isometries, if any, have exactly two fixed points? 

13. Referring to Exercise 10, which types of plane isometries, if any, have an infinite number of fixed points? 

14. Argue geometrically that a plane isometry that leaves three noncolinear points fixed must be the identity map. 

15. Using Exercise 14, show algebraically that if two plane isometries cf> and 1/t agree on three noncolinear points, 
that is, if cf>(P;) = 1/t(P;) for noncolinear points P1 , P2, and P3, then cf> and 1/t are the same map. 

16. Do the rotations, together with the identity map, form a subgroup of the group of plane isometries? Why or 
why not? 

17. Do the translations, together with the identity map, form a subgroup of the group of plane isometries? Why or 
why not? 

18. Do the rotations about one particular point P, together with the identity map, form a subgroup of the group of 
plane isometries? Why or why not? 

19. Does the refl ection across one particular line L, together with the identity map, form a subgroup of the group 
of plane isometries? Why or why not? 

20. Do the glide reflections, together with the identity map, form a subgroup of the group of plane isometries? 
Why or why not? 

21. Which of the four types of plane isometries can be elements of a finite subgroup of the group of plane isome­
tries? 

22. Completing a detail of the proof of Theorem 11.5, let G be a finite group of plane isometries. Show that 
the rotations in G, together with the identity isometry, form a subgroup H of G, and that either H = G or 
IGI = 21HI. [Hint: Use the same method that we used to show that IS,,! = 21Anl·l 
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23. Completing a detail in the proof of Theorem 11.5, let G be a finite group consisting of the identity isometry 
and rotations about one point P in the plane. Show that G is cyclic, generated by the rotation in G that turns 
the plane counterclockwise about P through the smallest angle e > 0. [Hint: Follow the idea of the proof that 
a subgroup of a cyclic group is cyclic.] 

Exercises 24 through 30 illustrate the seven different types of friezes when they are classified according to their 
symmetries. Imagine the figure shown to be continued infinitely to the right and left. The symmetry group of a 
frieze always contains translations. For each of these exercises answer these questions about the symmetry group 
of the frieze. 

24. 

25. 

26. 

27. 

28. 

29. 

a. Does the group contain a rotation? 

b. Does the group contain a reflection across a horizontal line? 

c. Does the group contain a reflection across a vertical line? 

d. Does the group contain a nontrivial glide reflection? 

e. To which of the possible groups Z, D00 , Z x Z 2 , or D00 x Z 2 do you think the symmetry group of the 
frieze is isomorphic? 

FFFFFFFFFFFFFFF 
TTTTTTTTTT 
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zzzzzzzzzzzz 
HHHHHHHHHH 
J J J J J 

l l l l 

30. n u 
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Exercises 31 through 37 describe a pattern to be used to fill the plane by translation in the two directions given by 
the specified vectors. Answer these questions in each case. 

a . Does the symmetry group contain any rotations? If so, through what possible angles e where 0 < e ::: 
180°? 

b. Does the symmetry group contain any reflections? 

c. Does the symmetry group contain any nontrivial glide reflections? 

31. A square with horizontal and vertical edges using translation directions given by vectors (1, 0) and (0, 1). 

32. A square as in Exercise 31 using translation directions given by vectors (1, 1/ 2) and (0, 1). 

33. A square as in Exercise 31 with the letter Lat its center using translation directions given by vectors (I, 0) and 
(0, 1). 

34. A square as in Exercise 31 with the letter Eat its center using translation directions given by vectors ( 1, 0) and 
(0, 1). 

35. A square as in Exercise 31 with the letter Hat its center using translation directions given by vectors (1, 0) 
and (0, 1 ). 

36. A regular hexagon with a vertex at the top using translation directions given by vectors (1 , 0) and (1, .J3). 
37. A regular hexagon with a vertex at the top containing an equilateral triangle with vertex at the top and centroid 

at the center of the hexagon, using translation directions given by vectors (1, 0) and (1, .J3). 
Exercises 38 and 39 are concerned with art works ofM. C. Escher. Find images of the indicated art by searching on 
the internet. Neglect the shading and colors in the figures and assume the markings in each human figure, reptile, 



112 Part II Structure of Groups 

or horseman are the same, even though they may be invisible due to shading. Answer the same questions (a), (b), 
and (c) that were asked for Exercises 31 through 36, and also answer this part (d). 

d. Assuming horizontal and vertical coordinate axes with equal scales as usual, give vectors in the two 
nonparallel directions of vectors that generate the translation subgroup. Do not concern yourself with 
the length of these vectors. 

38. The Study of Regular Division of the Plane with Horsemen. 

39. The Study of Regular Division of the Plane with Reptiles. 

40. Let</> : ~ --+ Ube given by </>(8) = cos((J) + i sin((J) and S = </>[Z]. 

a. Show that any rotation mapping S to S is a rotation by an angle n E Z where angles are measured in radians. 

b. Show that reflection across the x-axis maps S to S. 
c. What is the group of symmetries of S? 

41. Show that the rotations of a cube in space form a group isomorphic to S4. [Hint: A rotation of the cube permutes 
the diagonals through the center of the cube.] 
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Recall from Section 10 that for some group tables we can arrange the head on top and on 
the left so that the elements are grouped into left cosets of a subgroup in such a way that 
the coset blocks form a group table. We start this section by looking more closely at why 
the cosets of (0, 3) ::: Z 6 form a group and why the cosets of the subgroup {t, µ,) ::: D3 

do not. Table 12.1 is the group table for Z6 with the heads at the top and left sorted by 
cosets of (0, 3). 

12.1 Table 

+6 0 3 1 4 2 5 

0 0 3 1 4 2 5 

3 3 0 4 1 5 2 

I I 4 2 5 3 0 

4 4 1 5 2 0 3 

2 2 5 3 0 4 1 

5 5 2 0 3 1 4 

According to Table 12.1 the coset (1 ,4) plus the coset (2,5) is the coset (0,3). This 
means that if we add either I or 4 to either 2 or 5 in Z6, we should get either 0 or 3. This 
is easily checked by adding the four possibilities. 

1 +62 = 3 
1+65 = 0 
4+6 2 = 0 
4+6 5 = 3 

We observe that if we wish to break up a group into its left cosets so the group table 
shows an operation on the left cosets, we need to be sure that if a 1, a2 are in the same 

113 
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left coset and b1,b2 are in the same left coset, then a 1b 1 and a2b2 are in the same left 
coset. If this condition is satisfied for a subgroup H ::: G, we say that the operation on 
the left cosets of H is induced by the operation of G or that the operation of G induces 
an operation on the left cosets of H. In this case for any a, b E G we write 

(aH)(bH) = (ab)H 

to mean that the product of any element in aH multiplied by any element in bH must be 
in the left coset (ab)H. 

12.2 Example We show that the operation + in the group Z induces an operation on the cosets of 
SZ ::: Z. We first list the left cosets. 

sz = {· .. - 10, -S,O,S, 10, . .. } 
1 + sz = {· .. - 9, -4, 1, 6, 11, . . . } 
2 + sz = {· .. - 8, -3, 2, 7, 12, . . . } 
3+SZ = {·· · -7,-2, 3,8,13, ... ) 
4 + sz = {· .. - 6, -1 , 4, 9, 14, ... } 

Let a 1 and a2 be in the same left coset of SZ. Then a2 = a 1 +Sr for some r E Z . We 
also let b 1, b2 be in the same left coset of SZ. Then b2 = b1 + Ss for some s E Z . We 
compute a1 + b2. 

a1 + b2 = (a1 +Sr)+ (b1 + Ss) 

= a 1 + Sr+ b1 + Ss 

= a 1 + b 1 +Sr+ Ss 

= (a1 + b1) + S(r + s) 

E (a1 + b1) + SZ 

(1) 

(2) 

So a2 + b2 is in the same coset as a 1 + b1, which says that addition in Z induces an 
operation on the five left cosets SZ, 1 + SZ, 2 + SZ, 3 + SZ, 4 + SZ. Looking back at 
the calculations, we see that only properties shared by all groups were used in each step 
except in line (I) where we used the fact that Z is abelian. Furthermore, line (2) is not 
necessary since SZ is a subgroup of Z so we know that SZ is closed under addition. 
From this example, it appears that as long as G is an abelian group, the operation of G 
induces an operation on the left cosets of any subgroup of G. .A. 

In Equation (1) of Example 12.2 we used the fact that Sr+ b1 = b1 +Sr. If we were 
doing the same computation in multiplicative notation and using any group G and 
subgroup Hof G, this would correspond to hb 1 = b1h. If the group G is not abelian, 
then this computation fails. However, we can weaken the abelian condition slightly and 
still get an induced operation on the left cosets. All we really need is that hbi = b 1h' 
for some h' E H. This happens when the left coset b 1H is the same set as the right coset 
Hb, . 

12.3 Definition Let H be a subgroup of G. We say that His a normal subgroup of G if for all g E G, 
gH =Hg. If His a normal subgroup of G, we write H ~G. • 

Recall that Theorem 10.17 states that if <P : G --+ G' is a group homomorphism and 
e' is the identity element in G' , then Ker(</J) = {g E G I </J(g) = e') has the property that 
left and right cosets of Ker(</J) are the same. So the kernel of any homomorphism is a 
normal subgroup. 

12.4 Example The subgroup of even permutations An ::: Sn is normal since An is the kernel of the 
homomorphism sgn: Sn--+ (1, - 1). .A. 
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12.5 Example If H .:::; G and G is an abelian group, then H is a normal subgroup of G. 

12.6 Example Let H = {A E GL(n, JR) I det(A) = 1}. The determinant map satisfies det(AB) = 
det(A) det(B), which means that the determinant map is a homomorphism, det : 
GL(n, JR) --+ JR* . Thus H =Ker(det), which says that H ~ GL(n, JR). This subgroup 
H is called the special linear group and it is denoted by SL(n, JR). .&. 

12.7 Theorem Let H be a subgroup of a group G. Then left coset multiplication is well defined by the 
equation 

(aH)(bH) = (ab)H 

if and only if H is a normal subgroup of G. 

Proof Suppose first that (aH)(bH) = (ab)H does give a well-defined binary operation on left 
cosets. Let a E G. We want to show that aH and Ha are the same set. We use the standard 
technique of showing that each is a subset of the other. 

Let x E aH. Choosing representatives x E aH and a- 1 E a- 1H , we have 
(xH)(a- 1H) = (xa- 1)H. On the other hand, choosing representatives a E aH and 
a - 1 E a - 1 H , we see that (aH)(a- 1 H ) = eH =H. Using our assumption that left coset 
multiplication by representatives is well defined, we must have xa- 1 = h E H. Then 
x = ha, so x E Ha and aH <; Ha. We leave the symmetric proof that Ha <; aH to 
Exercise 26. 

We turn now to the converse: If H is a normal subgroup, then left coset multiplica­
tion by representatives is well-defined. Due to our hypothesis, we can simply say cosets, 
omitting left and right. Suppose we wish to compute (aH)(bH). Choosing a E aH and 
b E bH, we obtain the coset (ab)H. Choosing different representatives ah 1 E aH and 
bh2 E bH, we obtain the coset ah1bh2H. We must show that these are the same cosets. 
Now h1b E Hb = bH, so h1b = bh3 for some h3 E H. Thus 

and (ab)(h3h2) E (ab)H. Therefore, ah 1bh2 is in (ab)H. • 
Theorem 12.7 shows that we have an operation on the left cosets of H :S G induced 

by the operation on G if and only if H is a normal subgroup of G. We next verify that 
this operation makes G/ H, the cosets of Hin G, a group. 

12.8 Corollary Let H be a normal subgroup of G. Then the cosets of H form a group G / H under the 
binary operation (aH)(bH) = (ab)H. .&. 

Proof Computing, (aH)[(bH )(cH)] = (aH)[(bc)H] = [a(bc)]H, and similarly, we have 
[(aH)(bH)](cH) = [(ab)c]H , so associativity in G/ H follows from associativity in 
G. Because (aH)(eH) = (ae)H = aH = (ea)H = (eH )(aH), we see that eH = H is 
the identity element in G/ H . Finally, (a- 1H)(aH) = (a- 1a)H = eH = (aa- 1)H = 
(aH)(a- 1 H) shows that a- 1 H = (aH)- 1. + 

12.9 Definition The group G / H in the preceding corollary is the factor group (or quotient group) of 
GbyH. • 

12.10 Example Since Z is an abelian group, nZ is a normal subgroup. Corollary 12.8 allows us to 
construct the factor group Z/nZ . For any integer m, the division algorithm says that 
m = nq + r for some 0 :S r < n. Therefore, m E r + nZ . So Z/nZ = {k + nZ I 0 :S k < 
n). Thus (1 + nZ ) = Z/nZ , which implies that Z/nZ is cyclic and isomorphic with Z,, . 

.&. 
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12.11 Example Consider the abelian group IR under addition, and let c E JR+ . The cyclic subgroup (c) 
of IR contains as elements 

· · · - 3c, -2c, -c, 0, c, 2c, 3c, · · · . 

Every coset of (c) contains just one element x such that 0 ::::: x < c. If we choose these 
elements as representatives of the cosets when computing in IR/ (c), we find that we are 
computing their sum modulo c as discussed for the computation in !Re in Section 3. 
For example, if c = 5.37, then the sum of the cosets 4.65 + (5.37) and 3.42 + (5.37) 
is the coset 8.07 + (5.37), which contains 8.07 - 5.37 = 2.7, which is 4.65 +537 3.42. 
Working with these coset elements x where 0 ::::: x < c, we thus see that the group !Re 
of Section 3 is isomorphic to IR/ (c) under an isomorphism 1/f where 1/f (x) = x + (c) for 
all x E !Re. Of course, IR/ (c) is then also isomorphic to the circle group U of complex 
numbers of magnitude l under multiplication. .&. 

We have seen that the group Z/ (n) is isomorphic to the group Z 11 , and as a set, 
Z11 = (0, l, 3, 4, · · · , n - l}, the set of nonnegative integers less than n. Example 12. l l 
shows that the group IR/ (c) is isomorphic to the group !Re. In Section 3, we choose the 
notation !Re rather than the conventional [0, c) for the half-open interval of nonnegative 
real numbers less than c. We did that to bring out now the comparison of these factor 
groups of Z with these factor groups of R 

Homomorphisms and Factor Groups 

We learned that the kernel of any homomorphism </J : G ---+ G' is a normal subgroup of 
G. Do all normal subgroups arise in this way? That is, for any normal subgroup H '.Sl G, 
is there a group homomorphism </J : G ---+ G' for some group G' such that H is the kernel 
of G? The answer to the question is yes as we see in Theorem 12.12. 

12.12 Theorem Let H be a normal subgroup of G. Then y : G---+ G/ H given by y(x) = xH is a 
homomorphism with kernel H. 

Proof Letx,y E G. Then 

y(xy) = (xy)H = (xH)(yH) = y(x)y(y), 

soy is a homomorphism. Since xH = H if and only if x EH, we see that the kernel of 
y is indeed H. + 

Since the kernel of any homomorphism </J : G ---+ G' is a normal subgroup, it is 
natural to ask how the factor group G/ Ker(</J) is related to G' . Theorem 12.12 and the 
next example illustrate that there is a very strong connection. 

12.13 Example (Reduction Modulo n) Let </J : Z---+ Z 11 be defined by letting </J(m) be the remainder 
when m is divided by n. We check that </J is a group homomorphism. Let m 1, m2 E Z 
and suppose that the division algorithm gives us 

m1 = nq1 + r1 and 

m2 = nq2 + r2. 

Then m1 + m2 = n(q1 + q2) + r1 + r2. If r1 + r2 < n, then 

</J(m1 + m2) = r1 + r2 = </J(m1) +11 </J(m2). 

On the other hand, if r1 + r2 ::'.'.: n, then m1 + m2 = n(q1 + q2 + 1) + (r1 + r2 - n) and 
0 :S r1 + r2 - n < n, which implies 
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The kernel of </J is the set of all the multiples of n, nZ . So Z/Ker(</J) = Z/nZ, which 
is isomorphic to Z,,. ..A. 

The previous example is a special case of the Fundamental Homomorphism 
Theorem. 

12.14 Theorem (The F undamental Homomorphism Theorem) Let </J : G --+ G' be a group ho­
momorphism with kernel H. Then </J[G] is a group, and µ..: G/ H--+ </J[G] given by 
µ..(gH) = </J(g) is an isomorphism. If y : G--+ G/ H is the homomorphism given by 
y(g) = gH , then </J(g) = µ..oy (g) for each g E G. 

Proof Theorem 8.5 says that </J[G] is a subgroup of G' . Theorem 10.17 shows that the map 
µ.. : G / H --+ </J [ G] is well defined. We show µ.. is a homomorphism. Let aH, bH E G / H. 
Then µ..((aH)(bH)) = µ..((ab)H) = </J(ab) = </J(a)</J(b) = µ.. (aH)µ.. (bH). Since </J maps G 
onto </J[G], µ.. maps G/ H onto </J[G]. To show thatµ.. is one-to-one, we compute the 
kernel ofµ... Since µ..(aH) = </J(a), the kernel ofµ.. is {aH I </J(a) = e'}. But </J(a) = e' if 
and only if a E Ker(</J) =H. So Ker(µ..) = {H} which is the trivial subgroup of G / H . By 
Corollary 10. 19 µ..is one-to-one, which completes the proof thatµ.. is an isomorphism. 

We next turn to the final statement of the theorem. Let g E G. Then 

</J(g) = µ..(gH) = µ..(y(g)) = µ..oy(g). 

• 
The Fundamental Homomorphism Theorem is sometimes called the First Isomor­

phism Theorem. As the name suggests, there are other related theorems. In fact we 
will prove two others, the Second Isomorphism Theorem and the Third Isomorphism 
Theorem, in Section 16. 

Theorem 12.14 states that </J(g) = µ..oy(g). This can be visualized in Figure 12.15. 
If we start with an element g E G, and map it to </J(g), we get the same result as first 
mapping g to y(g) and then mapping y(g) to µ.. oy (g). When we have a situation like 
this, we say that the map </J can be factored as </J = µ..oy. 

The isomorphism µ.. in Theorem I 2. I 4 is referred to as a natural or canonical iso­
morphism, and the same adjectives are used to describe the homomorphism y. There 
may be other isomorphisms and homomorphisms for these same groups, but the maps 
µ..and y have a special status with </J and are uniquely determined by Theorem 12.14. 

In summary, every homomorphism with domain G gives rise to a factor group G/ H , 
and every factor group G/ H gives rise to a homomorphism mapping G into G/ H. Ho­
momorphisms and factor groups are closely related. We give an example indicating how 
useful this relationship can be. 

G ----------------+--If c/> [G] 

/ 
/ 

/ 
,/ 

GIK 

12.15 Figure 

/ 
/ 

/ 
/ 

/ 
/ 

///µ(i somorphism) 
/ 
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12.16 Example Classify the group (:Z.4 x :Z.2)/((0} x Z2) according to the fundamental theorem of 
finitely generated abelian groups (Theorem 9.12). 

Solution The projection map rr1 : Z4 x Z2 ---+ Z4 given by rr1 (x, y) = x is a homomorphism of 
Z4 x Z2 onto Z4 with kernel {O} x Z2 . By Theorem 12.14, we know that the given 
factor group is isomorphic to Z4 . • 

Normal Subgroups and Inner Automorphisms 

We derive some alternative characterizations of normal subgroups, which often provide 
us with an easier way to check normality than finding both the left and the right coset 
decompositions. 

Suppose that H is a subgroup of G such that ghg- 1 E H for all g E G and all h E H. 
Then gHg-1 = (ghg- 1 I h EH} <; H for all g E G. We claim that actually gHg-1 =H. 
We must show that H <; gHg- 1 for all g E G. Leth EH. Replacing g by g- 1 in the re­
lation ghg- 1 EH, we obtain g- 1h(g- 1r 1 = g- 1hg = h1 where h1 EH. Consequently, 
h = gh1g- 1 E gHg- 1, and we are done. 

Suppose that gH =Hg for all g E G. Then gh = h 1g, so ghg- 1 EH for all g E G 
and all h EH. By the preceding paragraph, this means that gHg- 1 = H for all g E G. 
Conversely, if gHg-1 = H for all g E G, then ghg- 1 = h1 so gh = h1g E Hg, and 
gH <; Hg. But also, r 1 Hg = H giving g- 1 hg = hz , so that hg = gh2 and Hg <; 
gH. 

The comments after Definition 12.3 show that the kernel of any homomorphism is 
a normal subgroup of the domain. Also, Theorem 12.12 says that any normal subgroup 
is the kernel of some homomorphism. 

We summarize our work as a theorem. 

12.17 Theorem The following are four equivalent conditions for a subgroup H of a group G to be a 
normal subgroup of G. 

1. ghg- l E H for all g E G and h E H. 

2. gHg- 1 = H for all g E G. 

3. There is a group homomorphism</>: G---+ G' such that Ker(</>)= H. 

4. gH = Hg for all g E G. 

Condition (2) of Theorem 12.17 is often taken as the definition of a normal subgroup 
Hof a group G. + 

12.18 Example Every subgroup H of an abelian group G is normal. We need only note that gh = hg for 
all h EH and all g E G, so, of course, ghg- 1 = h EH for all g E G and all h E H. • 

If G is a group and g E G, then the map i8 : G ---+ G defined by i8(x) = gxg- 1 is 
a group homomorphism since i8(xy) = gxyg- 1 = gxg- 1 gyg- 1 = i8(x)i8(x). We see that 
gag- 1 = gbg- 1 if and only if a = b, so i8 is one-to-one. Since g(g- 1 yg)g- 1 = y, we see 
that i8 is onto G, so it is an isomorphism of G with itself. 

12.19 Definition An isomorphism </> : G ---+ G of a group G with itself is an automorphism of G. The 
automorphism i8 : G---+ G, where i8 (x) = gxg- 1 for all x E G, is the inner automor­
phism of G by g. Performing i8 on x is called conjugation of x by g. • 

The equivalence of conditions ( 1) and (2) in Theorem 12.17 shows that gH = Hg 
for all g E G if and only if i8 [H ] = H for all g E G, that is, if and only if His invariant 
under all inner automorphisms of G. It is important to realize that i8 [H] = H is an 
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equation in sets; we need not have i8 (h) = h for all h E H. That is i8 may perform a 
nontrivial permutation of the set H. We see that the normal subgroups of a group G are 
precisely those that are invariant under all inner automorphisms. A subgroup K of G is 

a conjugate subgroup of H if K = i8 [H] = gHg- 1 for some g E G. 

• EXERCISES 12 

Computations 

In Exercises 1 through 8, find the order of the given factor group. 

1. ?.6/(3) 

3. (?.4 x Z2)/ ((2, 1)) 

s. (?.3x?.6)/((1,1)) 

7. (?.26 x ?.15)/ ((1, 1)) 

2. (?.4 x Z 12)/((2) x (2)) 

4. (?.3 x ?-5)/({0} x ?.5) 

6. (?.50 x ?.15)/ ((15, 15)) 

8. (Zs x S3)/((2, (l,2,3))) 

In Exercises 9 through 15, give the order of the element in the factor group. 

9. 5 + (4) in Z 12/(4) 

11. (2, 1) + (( 1, 1)) in (?.3x?.6)/((1, 1)) 

13. (2, 3) + ((0, 3)) in (Z 10 x ?.4)/ ((0, 3)) 

15. (2,0) + ((4,4)) in (?.6 x Zs)/((4,4)) 

10. 26 + (12) in Z6o/( 12) 

12. (3, 1) + ((1, 1)) in (?.4 x?-4)/(( l , 1)) 

14. (2,5) + ((1,2) ) in (?.3 x ?.6)/((1,2)) 

16. Compute ip [H] for the subgroup H = {i, µ,)of the dihedral group DJ . 

Concepts 

In Exercises 17 through 19, correct the definition of the italicized term without reference to the text, if correction 
is needed, so that it is in a form acceptable for publication. 

17. A normal subgroup Hof G is one satisfying hG = Gh for all h E H. 

18. A normal subgroup Hof G is one satisfying g- 1 hg E H for all h E H and all g E G. 

19. An automorphism of a group G is a homomorphism mapping G into G. 

20. What is the importance of a normal subgroup of a group G? 

Students often write nonsense when first proving theorems about factor groups. The next two exercises are designed 
to call attention to one basic type of error. 

21. A student is asked to show that if H is a normal subgroup of an abelian group G, then G / H is abelian. The 
student's proof starts as follows: 

We must show that G / H is abelian. Let a and b be two elements of G / H. 

a. Why does the instructor reading this proof expect to find nonsense from here on in the student's paper? 

b. What should the student have written? 

c. Complete the proof. 

22. A torsion group is a group all of whose elements have finite order. A group is torsion free if the identity is 
the only element of finite order. A student is asked to prove that if G is a torsion group, then so is G/ H for 
every normal subgroup Hof G. The student writes 

We must show that each element of G / H is of finite order. Let x E G / H. 

Answer the same questions as in Exercise 21. 

23. Determine whether each of the following is true or false . 

a . It makes sense to speak of the factor group G / N if and only if N is a normal subgroup of the 
group G. 

b. Every subgroup of an abelian group G is a normal subgroup of G. 

c. The only automorphism of an abelian group is the identity map. 
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d. Every factor group of a finite group is again of finite order. 

e. Every factor group of a torsion group is a torsion group. (See Exercise 22.) 

f. Every factor group of a torsion-free group is torsion free. (See Exercise 22.) 

g. Every factor group of an abelian group is abelian. 

h . Every factor group of a nonabelian group is nonabelian. 

i. Z/n'Z is cyclic of order n. 

j . IR/n!R is cyclic of order n, where n!R = {nr I r E IR} and IR is under addition. 

Theory 

24. Let G1 and G1 be groups and n 1 : G1 x G1 ---+ G1 be the function defined by n 1 (a, b) =a. Prove that n 1 is a 
homomorphism, find Ker(n 1 ), and prove (G1 x G1)/Ker(n1) is isomorphic to G1 . 

25. Let G1 and Gz be groups and <t> : G1 x G1 ---+ G1 x G1 be the function defined by <j>(a, b) = (a, e1 ) where e1 is 
the identity in G1. Prove that <t> is a homomorphism, find Ker(<j>), and prove (G1 x G1)/ Ker(<j>) is isomorphic 
to G1. 

26. Complete the proof of Theorem 12.7 by showing that if H is a subgroup of a group G and if left coset 
multiplication (aH)(bH) = (ab)H is well defined, then Ha ~ aH. 

27. Prove that the torsion subgroup T of an abelian group G is a normal subgroup of G, and that G/ T is torsion 
free. (See Exercise 22.) 

28. A subgroup H is conjugate to a subgroup K of a group G if there exists an inner automorphism ig of G such 
that ig [H] = K . Show that conjugacy is an equivalence relation on the collection of subgroups of G. 

29. Characterize the normal subgroups of a group G in terms of the cells where they appear in the partition given 
by the conjugacy relation in the preceding exercise. 

30. Find all subgroups of D3 that are conjugate to H = (1, µ. ).(See Exercise 28.) 

31. (Evalua tion Homomorphism) Let F be the set of all functions mapping the real numbers to the real num­
bers and let c E JR. The sum of two functions!+ g is the function defined by (f + g)(x) = f(x) + g(x). Func­
tion addition makes Fa group. Let <Pc : F---+ IR be defined by <Pelf) = f(c). 

a. Show that <Pc is a group homomorphism. 

b. Find Ker(<t>c). 

c. Identify the coset of Ker(<t>c) that contains the constant functionf(x) = I . 

d. Find a well-known group that is isomorphic with F / Ker(<j>c). Use the Fundamental Homomorphism Theo­
rem to prove your answer. 

32. Let H be a normal subgroup of a group G, and let m = (G : H ). Show that am E H for every a E G. 

33. Show that an intersection of normal subgroups of a group G is again a normal subgroup of G. 

34. Given any subset S of a group G, show that it makes sense to speak of the smallest normal subgroup that 
contains S. [Hint: Use Exercise 33.] 

35. Let G be a group. An element of G that can be expressed in the form aba- lb- l for some a,b E G is a 
commutator in G. The preceding exercise shows that there is a smallest normal subgroup C of a group G 
containing all commutators in G; the subgroup C is the commutator subgroup of G. Show that G/ C is an 
abelian group. 

36. Show that if a finite group G has exactly one subgroup H of a given order, then His a normal subgroup of G. 

37. Show that if H and N are subgroups of a group G, and N is normal in G, then H n N is normal in H . Show by 
an example that H n N need not be normal in G. 

38. Let G be a group containing at least one subgroup of a fixed fini te order s. Show that the intersection of all 
subgroups of G of order s is a normal subgroup of G. [Hint: Use the fact that if H has order s, then so does 
x-1 Hx for all x E G.] 



Section 13 Factor-Group Computations and Simple Groups 121 

39. a. Show that all automorphisms of a group G form a group under function composition. 

b. Show that the inner automorphisms of a group G form a normal subgroup of the group of all automorphisms 
of G under function composition. [Warning: Be sure to show that the inner automorphisms do form a 
subgroup.] 

40. Show that the set of all g E G such that ig : G -+ G is the identity inner automorphism ie is a normal subgroup 
of a group G. 

41. Let G and G' be groups, and let H and H' be normal subgroups of G and G' , respectively. Let </> be a homo­
morphism of G into G'. Show that</> induces a natural homomorphism</>* : (G/ H) -+ (G' / H ' ) if <f>[H] ~ H ' . 
(This fact is used constantly in algebraic topology.) 

42. Use the properties det(AB) = det(A) · det(B) and det(J11 ) = l for n x n matrices to show the n x n matrices 
with determinant± l form a normal subgroup of GL(n, ~). 

43. Let G be a group, and let 9 (G) be the set of all subsets of G. For any A, B E 9 (G), let us define the product 
subsetAB = {ab I a E A,b E B}. 

a. Show that this multiplication of subsets is associative and has an identity element, but that 9 (G) is not a 
group under this operation. 

b. Show that if N is a normal subgroup of G, then the set of cosets of N is closed under the above operation 
on 9 (G), and that this operation agrees with the multiplication given by the formula in Corollary 12.8. 

c. Show (without using Corollary 12.8) that the cosets of Nin G form a group under the above operation. Is 
its identity element the same as the identity element of 9 (G)? 

SECTION 13 FACTOR-GROUP COMPUTATIONS AND SIMPLE GROUPS 

Factor groups can be a tough topic for students to grasp. There is nothing like a bit 
of computation to strengthen understanding in mathematics. We start by attempting to 
improve our intuition concerning factor groups. Since we will be dealing with normal 
subgroups throughout this section, we often denote a subgroup of a group G by N rather 
than by H. 

Let N be a normal subgroup of G. In the factor group G/ N , the subgroup N acts 
as identity element. We may regard N as being collapsed to a single element, either to 
0 in additive notation or to e in multiplicative notation. This collapsing of N together 
with the algebraic structure of G require that other subsets of G, namely, the cosets of 
N, also each collapse into a single element in the factor group. A visualization of this 
collapsing is provided by Fig. 13.1. Recall from Theorem 12.12 that y : G-+ G/ N 
defined by y(a) = aN for a E G is a homomorphism of G onto G/ N. We can view 
the " line" G / N at the bottom of Figure 13 .1 as obtained by collapsing to a point each 
coset of Nin a copy of G. Each point of G/ N thus corresponds to a whole vertical line 

e 

G 
b 

a cb ab 

c 
'Y 

GIN 
aN N bN (cN )(bN) (ab)N cN 

= (cb)N = (aN)(bN) 

13.1 Figure 
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segment in the shaded portion, representing a coset of N in G. It is crucial to remember 
that multiplication of cosets in G/ N can be computed by multiplying in G, using any 
representative elements of the cosets as shown in the figure. 

Additively, two elements of G will collapse into the same element of G/ N if they 
differ by an element of N. Multiplicatively, a and b collapse together if ab- 1 is in N. 
The degree of collapsing can vary from nonexistent to catastrophic. We illustrate the 
two extreme cases by examples. 

13.2 Example The trivial subgroup N = {O} of Z is, of course, a normal subgroup. Compute Z/{O}. 

Solution Since N = {O} has only one element, every coset of N has only one element. That is, the 
cosets are of the form {m} form E Z. There is no collapsing at all, and consequently, 
Z/{O}:::::: Z . Each m E Z is simply renamed {m} in Z/{O}. .A. 

13.3 Example Let n be a positive integer. The set nR = {nr I r E R} is a subgroup of R under addition, 
and it is normal since R is abelian. Compute R/nR 

Solution A bit of thought shows that actually nR = R, because each x E R is of the form n(x/n) 
and x/ n E R Thus R/nR has only one element, the subgroup nR The factor group is a 
trivial group consisting only of the identity element. .A. 

As illustrated in Examples 13.2 and 13.3 for any group G, we have G/ {e} :::::: G 
and G/ G:::::: {e}, where {e} is the trivial group consisting only of the identity element e. 
These two extremes of factor groups are of little importance. We would like knowledge 
of a factor group G/ N to give some information about the structure of G. If N = {e}, 
the factor group has the same structure as G and we might as well have tried to study 
G directly. If N = G, the factor group has no significant structure to supply information 
about G. If G is a finite group and N ofa {e} is a normal subgroup of G, then G/N is a 
smaller group than G, and consequently may have a more simple structure than G. The 
multiplication of cosets in G / N reflects the multiplication in G, since products of cosets 
can be computed by multiplying in G representative elements of the cosets. 

We give two examples showing that even when G / N has order 2, we may be able 
to deduce some useful results. If G is a finite group and G / N has just two elements, then 
we must have [G[ = 2[N[. Note that every subgroup H containing just half the elements 
of a finite group G must be a normal subgroup, since for each element a in G but not in 
H , both the left coset aH and the right coset Ha must consist of all elements in G that are 
not in H. Thus the left and right cosets of H coincide and His a normal subgroup of G. 

13.4 Example Because [Sil l= 2[All[, we see that All is a normal subgroup of Sil, and Sil/All has order 
2. Let a be an odd permutation in Sil , so that Sil/All = {All , a All }. Renaming the element 
All "even" and the element a All "odd," the multiplication in Sll/A11 shown in Table 13.5 
becomes 

13.5 Table 
(even)(even) = even 
(even)(odd) = odd 

(odd)(even) = odd 
(odd)(odd) = even. An 

A,, An 

aAn 

aAn 

An 
Thus the factor group reflects these multiplicative properties for all the permutations in 
~. .... 

Example 13.4 illustrates that while knowing the product of two cosets in G/ N does 
not tell us what the product of two elements of G is, it may tell us that the product in G 
of two types of elements is itself of a certain type. 
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13.6 Example (The Converse of the Theorem of Lagrange is False) Recall that the Theorem of 
Lagrange states that the order of a subgroup of a finite group G must divide the order of 
G. We are now in a position to demonstrate that although the group A4 has 12 elements 
and 6 divides 12, A4 has no subgroup of order 6. 

Suppose that H were a subgroup of A4 having order 6. As observed before in Ex­
ample 13.4, it would follow that H would be a normal subgroup of A4 . Then A4 / H 
would have only two elements, H and a- H for some a- E A 4 not in H. Since in a group 
of order 2, the square of each element is the identity, we would have HH = H and 
(o-H)(o-H) =H. Now computation in a factor group can be achieved by computing 
with representatives in the original group. Thus, computing in A4 , we find that for each 
a EH we must have a 2 EH and for each f3 E o-H we must have {32 EH. That is, the 
square of every element in A4 must be in H . But in A4, we have 

(1, 2, 3) = (1, 3, 2)2 and (1, 3, 2) = (1, 2, 3)2 

so (1 , 2, 3) and (1, 3, 2) are in H. A similar computation shows that (1, 2, 4), (1 , 4, 2), 
(1 , 3, 4), (1, 4, 3), (2, 3, 4), and (2, 4, 3) are all in H. This shows that there must be at 
least 8 elements in H , contradicting the fact that H was supposed to have order 6. ..A. 

We now turn to several examples that compute factor groups. If the group we start 
with is finitely generated and abelian, then its factor group will be also. Computing such 
a factor group means classifying it according to the fundamental theorem (Theorem 9.12 
or Theorem 9.14). 

13.7 Example Let us compute the factor group (Z4 x Z6)/((0, 1)). Here ((0, 1)) is the cyclic subgroup 
Hof Z4 x Z6 generated by (0, 1). Thus 

H = {(O, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)). 

Since Z4 x Z6 has 24 elements and H has 6 elements, all cosets of H must have 
6 elements, and (Z4 x Z6 )/ H must have order 4. Since Z4 x Z6 is abelian, so is 
(Z4 x Z6)/H (remember, we compute in a factor group by means of representatives 
from the original group). In additive notation, the cosets are 

H = (0,0)+H, (l,O)+H, (2, 0) + H , (3,0)+ H. 

Since we can compute by choosing the representatives (0, 0), (1, 0), (2, 0), and (3, 0), it 
is clear that (Z 4 x Z6)/ His isomorphic to Z 4. Note that this is what we would expect, 
since in a factor group modulo H, everything in H becomes the identity element; that is, 
we are essentially setting everything in H equal to zero. Thus the whole second factor 
Z6 of Z4 x Z6 is collapsed, leaving just the first factor Z4. ..a. 

Example 13.7 is a special case of a general theorem that we now state and prove. 
We should acquire an intuitive feeling for this theorem in terms of collapsing one of the 
factors to the identity element. 

13.8 Theorem Let G = H x K be the direct product of groups H and K. Then Fi= {(h, e) I h EH} 
is a normal subgroup of G. Also G/H is isomorphic to Kin a natural way. Similarly, 
G / K :::::: H in a natural way. 

Proof Consider the homomorphism rr2 : H x K ~ K, where rr2 (h, k) = k. Because Ker(rr2 ) = 
Fi, we see that Fi is a normal subgroup of H x K. Because rr2 is onto K, Theorem 12.14 
tells us that (H x K) / H :::::: K. + 

We continue with additional computations of abelian factor groups. To illustrate 
how easy it is to compute in a factor group if we can compute in the whole group, we 
prove the following theorem. 
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13.9 Theorem If G is a cyclic group and N is a subgroup of G, then G/ N is cyclic. 

Proof Let G be a cyclic group, so (a ) = G for some a E G. Let N be any subgroup of G. Since 
G is abelian, N is a normal subgroup of G. We compute the cyclic subgroup of G/ N 
generated by aN. 

(aN) = {(aN)" In E Z } = (a"N In E Z } 

Since {a" In E Z} = G, 

(a"Nln E Z } = {gNlg E G). 

So (aN) contains every coset of G and we see that G/N is cyclic with generator (aN ) . 

• 
13.10 Example Let us compute the factor group (2.4 x Z.6)/((0, 2)). Now (0, 2) generates the subgroup 

H = ((0, 0), (0, 2), (0, 4)) 

of 2.4 x 2.6 of order 3. Here the first factor 2.4 of 2.4 x 2.6 is left alone. The 2.6 factor, 
on the other hand, is essentially collapsed by a subgroup of order 3, giving a factor group 
in the second factor of order 2 that must be isomorphic to Z2. Thus (2.4 x 2.6) / ( (0, 2)) 
is isomorphic to 2.4 x Z2 . 

We can verify that (Z4 x Z6)/ ((0, 2)) is isomorphic to Z4 x Z2 by using Theo­
rem 12. 14. We need a homomorphism ifJ : Z4 x Z6 --* Z4 x Z2 that is onto, with kernel 
((0, 2)). Defining cp by cp(a, b) = (0, r) where r is the remainder when bis divided by 2 
does the trick. .A. 

13.11 Example Let us compute the factor group (Z4 x 2.6)/((2, 3)). Be careful! There is a great temp­
tation to say that we are setting the 2 of 2.4 and the 3 of Z6 both equal to zero, so that 
2.4 is collapsed to a factor group isomorphic to Z2 and Z6 to one isomorphic to 2.3 , 
giving a total factor group isomorphic to Z2 x Z3. This is wrong! Note that 

H = ((2,3)) = ((0, 0), (2,3)) 

is of order 2, so (Z4 x Z6)/ ((2, 3)) has order 12, not 6. Setting (2, 3) equal to zero does 
not make (2, 0) and (0, 3) equal to zero individually, so the factors do not collapse 
separately. 

The possible abelian groups of order 12 are Z4 x Z3 and Z2 x Z2 x Z3, and we 
must decide to which one our factor group is isomorphic. These two groups are most 
easily distinguished in that Z4 x Z3 has an element of order 4, and Z2 x Z2 x Z3 does 
not. We claim that the coset ( 1, 0) + H is of order 4 in the factor group (Z4 x Z6) / H. 
To find the smallest power of a coset giving the identity in a factor group modulo H , we 
must, by choosing representatives, find the smallest power of a representative that is in 
the subgroup H. Now, 

4(1, 0) = (1, 0) + (1, 0) + (1, 0) + (1 , 0) = (0, 0) 

is the first time that (1, 0) added to itself gives an element of H. Thus (Z4 x Z6)/ ((2, 3)) 
has an element of order 4 and is isomorphic to Z4 x Z3 or 2.12. 

We can use Theorem 12.14 to verify that (Z4 x 2.6)/((2, 3)) is isomorphic to 2.12, 
although it is a little challenging to see what the homomorphism cp : Z4 x Z6 --* 2.12 
should be. We define ifJ: 2.4 x Z6--* Z 12 by setting cp(a,b) = 3a + 12 (12 - 2b). Here 
we interpret 3a and 2b as integer multiplication, so 0 .::: 3a < 12 and 0 .::: 2b < 12. 
The map ifJ is a homomorphism, but this takes some checking, which we leave to 
the reader. Also, Ker(c/J) = {(a, b) E Z4 x Z6 I 3a = 2b) = ((0, 0), (2, 3)) = ((2, 3)). We 
also see that ifJ(l, 1) = 1, which implies that cp maps onto 2.12. By the Fundamental 
Homomorphism Theorem, (Z4 x Z6)/ ((2, 3)) is isomorphic to 2.12. .A. 
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13.12 Example Let us compute (that is, classify as in Theorem 9.12) the group (Z x Z)/((l, 1)). We may 
visualize Z x Z as the points in the plane with both coordinates integers, as indicated 
by the dots in Fig. 13.13. The subgroup ((1, 1)) consists of those points that lie on the 
45° line through the origin, indicated in the figure. The coset (1, 0) + ((1, 1)) consists of 
those dots on the 45° line through the point (1 , 0), also shown in the figure. Continuing, 
we see that each coset consists of those dots lying on one of the 45° lines in the figure. 
We may choose the representatives 

... , (-3, 0), (-2, 0), (-1, 0), (0, 0), (1, 0), (2, 0), (3 , 0), ... 

of these cosets to compute in the factor group. Since these representatives correspond 
precisely to the points of Z on the x-axis, we see that the factor group (Z x Z)/ ((1, 1)) 
is isomorphic to Z. 

Again, we can use the Fundamental Homomorphism Theorem as another method 
of computing this group. We let </J : Z x Z --+ Z be defined by </J(n, m) = n - m. 
It is easy to verify that </J is a homomorphism, </J maps onto Z, and Ker(</J) = 
{(n, m) E Z x Z In= m) = ((1, 1)). So by the Fundamental Homomorphism Theo­
rem, (Z x Z)/((l , 1)) is isomorphic to Z. Furthermore, an isomorphism is given by 
µ,( (n, m) + ( (1 , 1))) = n-m. This is the same isomorphism that we saw above. .A 

y 

13.13 Figure 

13.14 Example We now compute (Z x Z)/((2, 4)) . This is similar to Example 13.12, but there is a little 
twist to this one. In this example, we know that the factor group has an element with or­
der 2, since (1, 2) !j ((2, 4)), but (1, 2) + (1 , 2) E ((2, 4)). Furthermore, (Z x Z)/ ((2, 4)) 
has an element ( 1, 0) + ( (2, 4)) with infinite order since (n, 0) !j ( (2, 4)) for any n E z+. 
Figure 13.15 illustrates the situation. Along the line y = 2x only every other lattice point 
is in ( (2, 4)). These points are filled dots in the figure. Each line with slope two contains 
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two cosets, one indicated with solid dots and one with hollow dots. Adding (1 , 2) moves 
the solid dot cosets to the hollow dot cosets and the hollow dot cosets to the solid dot 
cosets while staying on the same line. Adding (0, 1) moves a coset from one line to the 
next. We may choose coset representatives 

. . . ' (0, -3), (0, -2), (0, -1), (0, 0), (0, 1), (0, 2), (0, 3), ... 

for the solid dot cosets and 

. . . ' (1, -3), ( 1, -2), ( 1, -1 ), ( 1, 0), (1, 1 ), (1, 2), ( 1, 3), ... 

for the hollow dot cosets. So it seems that we have two copies of the integers, one with 
a zero in the first coordinate and one with a one in the first coordinate. This leads us to 
guess that (Z x Z)/ ((2, 4)) is isomorphic with Z2 x Z. 

To verify that our guess is correct, we seek a homomorphism <P : Z x Z ~ Z2 x Z 
that maps onto Z2 x Z and whose kernel is ((2, 4)). We let </J(a, b) = (r, 2a - b) where 
r is the remainder when a is divided by 2. It is easy to check that <P is a homomorphism. 
Furthermore, </J(O, -1) = (0, 1) and </J(l , 2) = (1, 0), which implies that <P maps onto 
Z x Z2. It remains to compute Ker(</J ). 

Ker(</J) = {(a , b) I b = 2a and a is even}= {(2n, 4n) In E Z} = ((2,4)). 

Thus (Z x Z) / ( (2, 4)) is isomorphic to Z x Z2 by the Fundamental Homomorphism 
Theorem. Furthermore, an isomorphism µ, : (Z x Z)/ ((2, 4)) ~ Z2 x Z is defined by 
the formula µ,((a, b) + ((2, 4) )) = (r, 2a - b) where r is the remainder when a is divided 
~2. ~ 
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13.15 Figure 

Simp le Groups 

As we mentioned in the preceding section, one feature of a factor group is that it gives 
crude information about the structure of the whole group. Of course, sometimes there 
may be no nontrivial proper normal subgroup. For example, Lagrange's Theorem shows 
that a group of prime order can have no nontrivial proper subgroup of any sort. 
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13.16 Definition A group is simple if it is nontrivial and has no proper nontrivial normal subgroup. • 

13.17 Theorem The alternating group A 11 is simple for n :=: 5. 

Proof See Exercise 41. • 
There are many simple groups other than those given above. For example, A5 is of 

order 60 and A6 is of order 360, and there is a simple group of nonprime order, namely 
168, between these orders. 

The complete determination and classification of all finite simple groups is one 
of the mathematical triumphs of the twentieth century. Hundreds of mathematicians 
worked on this task from 1950 to 1980. It can be shown that a finite group has a sort of 
factorization into simple groups, where the factors are unique up to order. The situation 
is similar to the factorization of positive integers into primes. The knowledge of all 
finite simple groups can be used to solve some problems of finite group theory and 
combinatorics. 

We have seen in this text that a finite simple abelian group is isomorphic to Zp 
for some prime p. In 1963, Thompson and Feit [21] published their proof of a long­
standing conjecture of Burnside, showing that every finite nonabelian simple group is 
of even order. Further great strides toward the complete classification were made by 
Aschbacher in the 1970s. Early in 1980, Griess announced that he had constructed a 
predicted "monster" simple group of order 

808, 017, 424,794,5 12,875,886,459,904,961,710,757, 005,754,368, 

OOO, OOO, OOO. 

Aschbacher added the final details of the classification in August 1980. The research 
papers contributing to the entire classification fill roughly 5000 journal pages. 

We tum to the characterization of those normal subgroups N of a group G for which 
G/N is a simple group. First we state an addendum to Theorem 8.5 on properties of a 
group homomorphism. The proof is left to Exercises 37 and 38. 

13.18 Theorem Let <P : G-+ G' be a group homomorphism. If N is a normal subgroup of G, then </J[N] 
is a normal subgroup of </J[G]. Also, if N' is a normal subgroup of </J[G], then </J- 1 [N' ] is 
a normal subgroup of G. + 

Theorem 13.18 should be viewed as saying that a homomorphism <P : G-+ G' pre­
serves normal subgroups between G and </J[G]. It is important to note that </J [N] may 
not be normal in G' , even though N is normal in G. For example, <P : Z2 -+ S3, where 
</J(O) =land </J(l) = (1, 2) is a homomorphism, and Z2 is a normal subgroup of itself, 
but {i, ( 1, 2)) is not a normal subgroup of S3. 

We can now characterize when G / N is a simple group. 

13.19 Definition A maximal normal subgroup of a group G is a normal subgroup M not equal to G 
such that there is no proper normal subgroup N of G properly containing M . • 

13.20 Theorem M is a maximal normal subgroup of G if and only if G / M is simple. 

Proof Let M be a maximal normal subgroup of G. Consider the canonical homomorphism 
y : G -+ G/ M given by Theorem 12.12. Now y - 1 of any nontrivial proper normal sub­
group of G/M is a proper normal subgroup of G properly containing M. But Mis max­
imal, so this cannot happen. Thus G/ M is simple. 

Conversely, Theorem 13.18 shows that if N is a normal subgroup of G properly 
containing M , then y [N ] is normal in G/ M. If also N f=. G, then 

y [N] f=. G/M and y [N] f=. {M). 
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Thus, if G / M is simple so that no such y [N] can exist, no such N can exist, and M is 
maximal. + 

The Center and Commutator Subgroups 

Every nonabelian group G has two important normal subgroups, the center Z(G) of 
G and the commutator subgroup C of G. (The letter Z comes from the German word 
zentrum, meaning center.) The center Z(G) is defined by 

Z(G) = {z E G I zg = gz for all g E G}. 

Exercise 59 of Section 5 shows that Z( G) is an abelian subgroup of G. Since for each g E 

G and z E Z(G) we have gzg- 1 = zgg- 1 = ze = z, we see at once that Z(G) is a normal 
subgroup of G. If G is abelian, then Z(G) = G; in this case, the center is not useful. 

13.21 Example The center of a group G always contains the identity element e. It may be that Z(G) = 
{e}, in which case we say that the center of G is trivial. For example, examination of 
Table 4.15 for the group S3 shows us that Z(S3) = {t}, so the center of S3 is trivial. (This 
is a special case of Exercise 40, which shows that the center of every nonabelian group 
of order pq for primes p and q is trivial.) Consequently, the center of S3 x Z5 must be 
{t} x Z5, which is isomorphic to Z5. • 

Turning to the commutator subgroup, recall that in forming a factor group of G 
modulo a normal subgroup N, we are essentially putting every element in G that is in 
N equal to e, for N forms our new identity in the factor group. This indicates another 
use for factor groups. Suppose, for example, that we are studying the structure of a non­
abelian group G. Since Theorem 9.12 gives complete information about the structure 
of all finitely generated abelian groups, it might be of interest to try to form an abelian 
group as much like Gas possible, an abelianized version of G, by starting with G and 
then requiring that ab = ba for all a and b in our new group structure. To require that 
ab = ba is to say that aba-1 b- 1 = e in our new group. An element aba- 1 b-1 in a group 
is a commutator of the group. Thus we wish to attempt to form an abelianized ver­
sion of G by replacing every commutator of G by e. By the first observation of this 
paragraph, we should then attempt to form the factor group of G modulo the smallest 
normal subgroup we can find that contains all commutators of G. 

13.22 Theorem Let G be a group. The set of all commutators aba- 1b-1 for a,b E G generates a sub­
group C (the commutator subgroup) of G. This subgroup C is a normal subgroup of G. 
Furthermore, if N is a normal subgroup of G, then G/ N is abelian if and only if C :S N. 

Proof The commutators certainly generate a subgroup C; we must show that it is normal in 
G. Note that the inverse (aba- 1 b- 1

)-
1 of a commutator is again a commutator, namely, 

bab- 1a- 1
• Also e = eee- 1e- 1 is a commutator. Theorem 7.7 then shows that C consists 

precisely of all finite products of commutators. For x E C, we must show that g- 1 xg E C 
for all g E G, or that if x is a product of commutators, so is g- 1xg for all g E G. By 
inserting e = gg- 1 between each product of commutators occurring in x, we see that it 
is sufficient to show for each commutator cdc 1 d- 1 that g- 1 (cdc- 1d- 1 )g is in C. But 

g- 1(cdc- 1d- 1)g = (g- 1cdc- 1)(e)(r 1g) 

= (g- 1cdc- 1)(gr 1dg- 1)(r 1g) 

= [(g- 1c)d(g- 1c)- 1d- 1][dg- 1r 1g], 

which is in C. Thus C is normal in G. 
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The rest of the theorem is obvious if we have acquired the proper feeling for factor 
groups. One doesn't visualize in this way, but writing out that G/ C is abelian follows 
from 

(aC)(bC) = abC = ab(b- 1a- 1ba)C 

= (abb- 1a- 1)baC = baC = (bC)(aC). 

Furthermore, if N is a normal subgroup of G and G/ N is abelian, then (a- 1 N)(b- 1 N) = 
(b- 1 N)(a- 1 N); that is, aba- 1 b- 1 N = N , so aba- 1b- 1 EN, and C _:::: N. Finally, if C _:::: 
N, then 

(aN)(bN) = abN = ab(b- 1a- 1ba)N 

= (abb- 1a- 1)baN = baN = (bN)(aN). • 
13.23 Example Using cycle notation in the symmetric group S3, one commutator is 

(I , 2, 3)(2, 3)(1, 2, 3)- 1 (2, 3)- 1 = (I , 2, 3)(2, 3)(1 , 3, 2)(2, 3) = (I, 3, 2). 

So the commutator subgroup C contains ((1, 3, 2)) = A3 , the alternating group. Since 
S3/A3 is abelian (isomorphic with Z2), Theorem 13.22 says that C _:::: A3. Therefore, A3 
is the commutator subgroup. A 

• EXERCISES 13 

Computations 

In Exercises I through 14, classify the given group according to the fundamental theorem of finitely generated 
abel ian groups. 

1. (Z2 x Z4)/ ((0, 1)) 

3. (Z2 x Z4)/(( l,2) ) 

S. (Z4 x Z4 x Zs)/ ((1, 2, 4)) 

7. (Z x Z)/((0, 2)) 

9. (Z x Z x Z4)/((3,0,0)) 

11. (Z x Z)/((2, 2)) 

13. (ZxZ)/((2,6)) 

2. (Z2 x Z4)/ ((0, 2)) 

4. (Z4 x Zs)/((1,2)) 

6. (Z x Z)/ ((0, 1)) 

8. (Z x Z x Z)/ ((1, 1, 1)) 

10. (Z x Z x Zs)/ ((0, 4, 0)) 

12. (Z x Z x Z)/((3, 3, 3)) 

14. (Z x Z x Z2)/((I , 1, I)) 

15. Find both the center and the commutator subgroup of D4-

16. Find both the center and the commutator subgroup of Z3 x S3. 

17. Find both the center and the commutator subgroup of S3 x D4. 

18. Describe all subgroups of order _:::: 4 of Z4 x Z4, and in each case classify the factor group of Z4 x Z4 modulo 
the subgroup by Theorem 9. 12. That is, describe the subgroup and say that the factor group of Z4 x Z4 modulo 
the subgroup is isomorphic to Z2 x Z4, or whatever the case may be. [Hint: Z4 x Z4 has six different cyclic 
subgroups of order 4. Describe them by giving a generator, such as the subgroup ((1, 0)). There is one subgroup 
of order 4 that is isomorphic to the Klein 4-group. There are three subgroups of order 2.] 

Concepts 

In Exercises 19 and 20, correct the definition of the italicized term without reference to the text, if correction is 
needed, so that it is in a form acceptable for publication. 

19. The center of a group G contains all elements of G that commute with every element of G. 

20. The commutator subgroup ofa group G is {a- 1b- 1ab I a, b E G}. 
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21. Determine whether each of following is true or false. 

a. Every factor group of a cyclic group is cyclic. 
b. A factor group of a noncyclic group is again noncyclic. 

c. IR/Z under addition has no element of order 3. 

d. IR/Q under addition has no element of order 2. 

e. IR/Z under addition has an infinite number of elements of order 4. 

f. If the commutator subgroup C of a group G is {e}, then G is abelian. 
g. If G / H is abelian, then the commutator subgroup C of G contains H. 

h. The commutator subgroup of a simple group G must be G itself. 
i. The commutator subgroup of a nonabelian simple group G must be G itself. 

j. All nontrivial finite simple groups have prime order. 

In Exercises 22 through 25, let F be the additive group of all functions mapping IR into IR, and let F* be the 
multiplicative group of all elements of F that do not assume the value 0 at any point of JR. 

22. Let K be the subgroup of F consisting of the constant functions. Find a subgroup of F to which F / K is 
isomorphic. 

23. Let K* be the subgroup of F* consisting of the nonzero constant functions. Find a subgroup of F* to which 
F* / K* is isomorphic. 

24. Let K be the subgroup of continuous functions in F. Can you find an element of F / K having order 2? Why or 
why not? 

25. Let K* be the subgroup of F* consisting of the continuous functions in F*. Can you find an element of F* / K* 
having order 2? Why or why not? 

In Exercises 26 through 28, let Ube the multiplicative group {z E IC I lzl = 1 }. 

26. Let zo E U. Show that zoU = {zoz I z E U} is a subgroup of U, and compute U /zoU. 

27. To what group we have mentioned in the text is U / (- 1) isomorphic? 

28. Let ~,, = cos(2n /n) + i sin(2n / n) where n E z+. To what group we have mentioned is U / (~11) isomorphic? 

29. To what group mentioned in the text is the additive group IR/Z isomorphic? 

30. Give an example of a group G having no elements of finite order greater than I and a normal subgroup H :9 G, 
H f= G, so that in G/ H every element has finite order. 

31. Let H and K be normal subgroups of a group G. Give an example showing that we may have H :::::: K while 
G/ His not isomorphic to G/ K. 

32. Describe the center of every simple 

a. abelian group 

b. nonabelian group. 

33. Describe the commutator subgroup of every simple 

a. abelian group 
b. nonabelian group. 

Proof Synopsis 

34. Give a one-sentence synopsis of the proof of Theorem 13.9. 

35. Give at most a two-sentence synopsis of the proof of Theorem 13.20. 

Theory 

36. Show that if a finite group G contains a nontrivial subgroup of index 2 in G, then G is not simple. 

37. Let <P : G --+ G' be a group homomorphism, and let N be a normal subgroup of G. Show that </J[N] is a normal 
subgroup of </J [G]. 
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38. Let </J : G--+ G' be a group homomorphism, and let N' be a normal subgroup of G' . Show that </J - I [N' ] is a 
normal subgroup of G. 

39. Show that if G is nonabelian, then the factor group G/ Z(G) is not cyclic. [Hint: Show the equivalent contra­
positive, namely, that if G/ Z(G) is cyclic then G is abelian (and hence Z(G) = G).] 

40. Using Exercise 39, show that a nonabelian group G of order pq where p and q are primes has a trivial center. 

41. Prove that A,, is simple for n 2: 5, following the steps and hints given. 

a. Show A,, contains every 3-cycle if n ::: 3. 

b. Show A,, is generated by the 3-cycles for n 2: 3. [Hint: Note that (a , b)(c, d) = (a, c, b)(a, c, d) and 
(a, c)(a, b) = (a, b, c).] 

c. Let rand s be fixed elements of { 1, 2, · · · , n) for n ::: 3. Show that A,, is generated by then "special" 3-
cycles of the form (r, s, i) for 1 :5 i :5 n [Hint: Show every 3-cycle is the product of "special" 3-cycles by 
computing 

(r, s, i)2 , (r, s,j)(r, s, i)2 , (r, s,j)2(r, s, i), 

and 

(r, s, i)2(r, s, k)(r, s,j)2 (r, s, i). 

Observe that these products give all possible types of 3-cycles.] 

d. Let N be a normal subgroup of A,, for n::: 3. Show that if N contains a 3-cycle, then N =A,,. [Hint: Show 
that (r, s, i) EN implies that (r, s, j) EN for j = 1, 2, · · · , n by computing 

((r, s)(i,j))(r, s, i)2((r, s)(i,j W 1 .] 

e. Let N be a nontrivial normal subgroup of A,, for n 2: 5. Show that one of the following cases must hold, 
and conclude in each case that N =A,,. 

Case I N contains a 3-cycle. 

Case II N contains a product of disjoint cycles, at least one of which has length greater than 3. [Hint: Sup­
pose N contains the disjoint product a = µ(a1, a2, · · · , a , ). Show a - 1 (a1 , a2, a 3)a(a1, a 2, a3)-1 is 
in N, and compute it.] 

Case III N contains a disjoint product of the form a = µ(a4, a5, a6)(a1, a2, a3). [Hint: Show a-1 (a1 , a2, a4) 
a(a1, a2,a4)- 1 is in N, and compute it.] 

Case IV N contains a disjoint product of the form a = µ(a 1, a2, a3) whereµ is a product of disjoint 2-
cycles. [Hint: Show a 2 E N and compute it.] 

Case V N contains a disjoint product a of the form a = µ(a3, a4)(a1, a 2), whereµ is a product of an even 
number of disjoint 2-cycles. [Hint: Show that a- 1 (a1, a 2, a3)a(a1 , a 2, a3)- 1 is in N , and compute 
it to deduce that a= (a2, a4)(a1, a 3) is inN. Using n 2: 5 forthe first time, find i =f. a 1, a2, a3, a4 in 
{I, 2, · · · , n). Let ,B = (a1, a3, i).Show that ,B- 1a,Ba E N , and compute it.] 

42. Let N be a normal subgroup of G and let H be any subgroup of G. Let HN = {hn I h E H , n E N}. Show that 
HN is a subgroup of G, and is the smallest subgroup containing both N and H. 

43. With reference to the preceding exercise, let M also be a normal subgroup of G. Show that NM is again a 
normal subgroup of G. 

44. Show that if Hand K are normal subgroups of a group G such that H n K = {e}, then hk = kh for all h E H 
and k E K. [Hint: Consider the commutator hkh- 1k- 1 = (hkh- 1 )k- 1 = h(kh- 1 k- 1) .) 

45. With reference to the three preceding exercises, let H and K be normal subgroups of a group G such that 
HK= G and H n K = {e} . Prove that G is isomorphic with H x G. 
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SECTION 14 t GROUP ACTION ON A SET 

We have seen examples of how groups may act on things, like the group of symmetries 
of a triangle or of a square, the group of rotations of a cube, the general linear group 
acting on R", and so on. In this section we give the general notion of group action and 
apply it to learn more about finite groups. The next section will give applications to 
counting. 

The Notion of a Group Action 

Definition 1. 1 defines a binary operation * on a set S to be a function mapping S x S into 
S. The function * gives us a rule for "multiplying" an element s 1 in Sand an element s2 

in S to yield an element s 1 * s2 in S. 
More generally, for any sets A, B, and C, we can view a map * : A x B --+ C as 

defining a "multiplication," where any element a of A times any element b of B has as 
value some element c of C. Of course, we write a* b = c, or simply ab = c. In this 
section, we will be concerned with the case where X is a set, G is a group, and we have 
a map* : G x X--+ X. We shall write *(g,x) as g * x or gx. 

14.1 Example Let G = GL(n, R) and X the set of all column vectors in R" . Then for any matrix A E G 
and vector v E X, Av is a vector in X. So multiplying is an operation * : G x X --+ X. 
From linear algebra, we know that if Bis also a matrix in G, then (AB)v = A(Bv). Fur­
thermore, for the identity matrix/, Iv= v. .& 

14.2 Example Let G be the dihedral group D ,, . Then elements of D,, permute the set Z,, = 
{O, 1, 2, 3, ... , n - l }. For example, p(k) = k +,, 1. Thus we have an operation * : 
D,, x Z,, --+ Z 11 • Furthermore, if a , y ED,, and k E Z,,, then (ay)(k) = a (y(k)) and 
t(k) = k. ... 

The two previous examples share the same properties, which we formalize in 
Definition 14.3. 

14.3 Definition Let X be a set and Ga group. An action of G on X is a map * : G x X --+ X such that 

1. ex = x for all x E X, 

2. (g1g2)(x) = g,(g2x) for all x EX and all g 1, g2 E G. 

Under these conditions, X is a G-set. • 
14.4 Example Let X be any set, and let H be a subgroup of the group Sx of all permutations of X. 

Then X is an H-set, where the action of a EH on X is its action as an element of 
Sx, so that ax = a(x) for all x EX. Condition 2 is a consequence of the definition of 
permutation multiplication as function composition, and Condition l is immediate from 
the definition of the identity permutation as the identity function. Note that, in particular, 
{l , 2, 3, · · · , n) is an S,,-set. .& 

Our next theorem will show that for every G-set X and each g E G, the map 
a8 : X --+ X defined by a8(x) = gx is a permutation of X, and that there is a homo­
morphism </> : G --+ Sx such that the action of G on X is essentially the Example 14.4 
action of the image subgroup H = </>[G] of Sx on X. So actions of subgroups of Sx 
on X describe all possible group actions on X. When studying the set X , actions using 
subgroups of Sx suffice. However, sometimes a set X is used to study G via a group 
action of G on X. Thus we need the more general concept given by Definition 14.3. 

t This section is a prerequisite only for Sections 15 and 17. 
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14.5 Theorem Let X be a G-set. For each g E G, the function CJ8 : X--+ X defined by CJ8 (x) = gx for 
x EX is a permutation of X. Also, the map if> : G --+ Sx defined by if>(g) = CJ8 is a ho­
momorphism with the property that if>(g)(x) = gx. 

Proof To show that CJ8 is a permutation of X , we must show that CJ8 is a one-to-one map 
of X onto itself. Suppose that CJ8(x1) = CJ8 (x2) for x1, x2 EX. Then gx1 = gx2. Con­
sequently, g-1(gx1) = r 1(gx2). Using Condition 2 in Definition 14.3, we see that 
(g- 1g)x1 = (g- 1g)x2, so ex1 = ex2. Condition I of the definition then yields x 1 = x2, 
so CJ8 is one-to-one. The two conditions of the definition show that for x E X , we have 
Clg(g- 1x) = g(g- 1)x = (gg- 1)x =ex= x, so CJg maps X onto X. Thus CJ8 is indeed a 
permutation. 

To show that if> : G--+ Sx defined by if>(g) = CJ8 is a homomorphism, we must 
show that if>(g1g2) = if>(g 1)if>(g2) for all g 1,g2 E G. We show the equality of these two 
permutations in Sx by showing they both carry an x E X into the same element. Using 
the two conditions in Definition 14.3 and the rule for function composition, we obtain 

if>(g1g2)(x) = CJ8 ,8,(x) = (g1g2 )x = g1(g2x) = g1CJ82 (x) = CJ81(CJ82(x)) 

= (CJ8 , o CJ82 )(x) = (CJ8 , CJ82 )(x) = (if>(g1)if>(g2))(x). 

Thus if> is a homomorphism. The stated property of if> follows at once since by our 
definitions, we have if>(g)(x) = CJ8(x) = gx. + 

It follows from the preceding theorem and Theorem 12.17 that if X is a G-set, then 
the subset of G leaving every element of X fixed is a normal subgroup N of G, and we 
can regard X as a G / N-set where the action of a coset gN on X is given by (gN)x = gx 

for each x EX. If N = {e}, then the identity element of G is the only element that leaves 
every x E X fixed; we then say that G acts faithfully on X. A group G is transitive on 
a G-set X if for each x1, x2 E X, there exists g E G such that gx1 = x2. 

We continue with more examples of G-sets. 

14.6 Example Every group G is itself a G-set, where the action on g2 E G by g 1 E G is given by left 
multiplication. That is, *(g 1, g2) = g 1 g2. If H is a subgroup of G, we can also regard G 
as an H-set, where *(h, g) = hg. ..&. 

14.7 Example Let H be a subgroup of G. Then G is an H-set under conjugation where *(h, g) = hgh-1 

for g E G and h E H. Condition 1 is obvious, and for Condition 2 note that 

*(h1h2,g) = (h1h2)g(h1h2)-1 = h1(h2gh2_ 1 )h~ 1 = *(h1,*(h2,g)). 

We always write this action of Hon G by conjugation as hgh-1. The abbreviation hg 

described before the definition would cause terrible confusion with the group operation 
~a .._ 

14.8 Example Let H be a subgroup of G, and let LH be the set of all left cosets of H. Then LH is 
a G-set, where the action of g E G on the left coset xH is given by g(xH) = (gx)H. 

Observe that this action is well defined: if yH = xH , then y = xh for some h EH, and 
g(yH) = (gy)H = (gxh)H = (gx)(hH) = (gx)H = g(xH). A series of exercises shows 
that every G-set is isomorphic to one that may be formed using these left coset G-sets 
as building blocks. (See Exercises 22 through 25.) ..&. 

14.9 Example Let us look closer at the the dihedral group D4, which permutes the vertices of the square 
as labeled in Figure 14.10. As indicated in the figure, we label the vertices 0, 1, 2,3 
as usual; the sides so, s 1, s2, s3; the midpoints of the sides Po, P 1, P2 , P 3 ; the diagonals 
d 1, d2 ; the lines joining opposite side midpoints m 1, m2 ; and we label the intersection of 
the lines d1,d2,m1,m2 with C. 
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s, 

3 

14.10 Figure 

We can think of the set 

as a D4-set in a natural way. Table 14.11 shows the action of D4 on X. Recall that t is the 
identity, p k is rotation by kn / 2, and µ is reflection across the line d2 . We can see from 
the table that µp is reflection across the line m1, µp2 is reflection across the line d1, and 
µp3 is reflection across the line m2 . It is worthwhile to spend a little time to understand 
how Table 14.11 was constructed before continuing. .&. 

14.11 Table 

0 2 3 so SJ s2 s3 m 1 m2 d 1 d2 c Po P 1 P2 P3 
0 1 2 3 so Sj s2 s3 m 1 m2 d1 d2 c Po P 1 P2 P3 

p 2 3 0 SJ s2 s3 so m2 m 1 d2 d1 c P1 P2 P3 Po 
p2 2 3 0 s2 S3 so s1 m 1 m2 d1 d2 c P2 P3 Po P 1 
p3 3 0 2 s3 so Sj s2 m2 m1 d2 d1 c P3 Po P1 P2 
J.l 0 3 2 1 s3 s2 Sj so m2 m 1 d1 d2 c P3 P2 P1 Po 
J.lP 3 2 1 0 s2 Sj so s3 m 1 m2 d2 d 1 c P2 P 1 Po P3 
J.lP2 2 I 0 3 s1 so s3 s2 m2 m1 d1 d2 c P1 Po P3 P2 
J.lP3 0 3 2 so s3 s2 Sj m1 m2 d2 d1 c Po P3 P2 P1 

Isotropy Subgroups 

Let X be a G-set. Let x E X and g E G. It will be important to know when gx = x . We 
let 

Xg = {x EX I gx = x} and Gx = (g E G I gx = x} . 

14.12 Example For the D4-set X in Example 14.9, we have 

Xp = {C}, 

Also, using the same D4 action on X , 

Go= {t, µ}, 

We leave the computations of the other sets of the form Xa and Gx to Exercises 1 
and 2. .&. 

Note that the subsets Gx given in the preceding example were, in each case, sub­
groups of G. This is true in general. 
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14.13 Theorem Let X be a 0-set. Then Ox is a subgroup of 0 for each x E X. 

Proof Let x EX and let g1,g2 E Ox. Then g1x = x and gzx = x. Consequently, (g 1g2 )x = 
g1(g2x) = g1x = x, so g1g2 E Ox, and Ox is closed under the induced operation of 0. 
Of course, ex= x, so e E Ox. If g E O.n then gx = x, so x =ex = (g- 1 g)x = g- 1(gx) = 
g- 1x, and consequently g-1 E Ox. Thus Ox is a subgroup of 0. + 

14.14 Definition Let X be a 0-set and let x E X. The subgroup Ox is the isotropy subgroup of x. • 

Orbits 

For the D4-set X of Example 14.9 with action table in Table 14.11 , the elements in the 
subset {O, 1, 2, 3) are carried into elements of this same subset under action by D4 . 

Furthermore, each of the elements 0, 1, 2, and 3 is carried into all the other elements of 
the subset by the various elements of D4 . We proceed to show that every 0-set X can be 
partitioned into subsets of this type. 

14.15 Theorem Let X be a 0-set. For x1, x2 E X, let x1 ~ x2 if and only if there exists g E 0 such that 
gx1 = x2. Then~ is an equivalence relation on X. 

Proof For each x E X, we have ex = x, so x ~ x and ~ is reflexive. 
Suppose x1 ~x2, so gx1 =x2 for some gEO. Then g- 1x2=g-1(gx 1)= 

(g-1 g)x1 = ex1 = x1, so x2 ~ x1, and ~ is symmetric. 
Finally, if x1 ~ x2 and x2 ~ x3, then g1x1 = x2 and gzx2 = x3 for some g1, gz E 0. 

Then (g2g 1 )x1 = gz(g1x1) = gzx2 = x3, so x1 ~ x3 and~ is transitive. + 

14.16 Definition Let X be a 0-set. Each cell in the partition of the equivalence relation described in 
Theorem 14.15 is an orbit in X under 0. If x EX, the cell containing x is the orbit 
of x. We let this cell be Ox. • 

The relationship between the orbits in X and the group structure of 0 lies at the 
heart of many applications. The following theorem gives this relationship. Recall that 
for a set X, we use IXI for the number of elements in X, and (0: H) is the index of a 
subgroup H in a group 0. 

14.17 Theorem Let X be a 0-set and let x E X. Then IOxl = (0: Ox). If 101 is finite, then IOxl is a 
divisor of 101. 

Proof We define a one-to-one map 1/f from Ox onto the collection of left cosets of Ox in 0. 
Let x1 E Ox. Then there exists g1 E 0 such that g1x = x1. We define 1/f(x1) to be the left 
coset g1 Ox of Ox. We must show that this map 1/f is well defined, independent of the 
choice of g1 E 0 such that g1x = x1. Suppose also that g1 'x = x1. Then, g1x = g1 'x, so 
g!1(g1x) = g!1(g1'x), from which we deduce x = (g!1g1')x. Therefore g!1g 1' E Ox, so 
g1' E g1 Ox, and g1 Ox = g1'0 x. Thus the map 1/f is well defined. 

To show the map 1/f is one-to-one, suppose x1, x2 E Ox, and 1/f(x1) = 1/f (x2 ). Then 
there exist g1, gz E 0 such that x1 = g1x, x2 = gzx, and gz E g1 Ox. Then gz = gig for 
some g E On so x2 = g2x = g1 (gx) = g1x = x1. Thus 1/f is one-to-one. 

Finally, we show that each left coset of Ox in 0 is of the form 1/f (x1) for some 
x1 E Ox. Let g1 Ox be a left coset. Then if g1x = x1, we have g1 Ox = 1/f (x1 ). Thus 1/f 
maps Ox one-to-one onto the collection of left cosets so IOxl = (0 : Ox). 

If 101 is finite, then the equation 10 1 = IOxl(O: Ox) shows that IOxl = (0: Ox) is 
a divisor of 101. + 
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14.18 Example Let X be the D4-set in Example 14.9, with action table given by Table 14.11. With 
G = D4 , we have Go = {l, µ,).Since IGI = 8, we have IGOI = (G: Go)= 4. From Table 
14.11, we see that GO= (0, 1, 2, 3), which indeed has four elements. .A. 

We should remember not only the cardinality equation in Theorem 14.17 but also 
that the elements of G carrying x into g 1x are precisely the elements of the left coset 
g 1 Gx. Namely, if g E Gx, then (gig)x = g 1 (gx) = gix. On the other hand, if g2x = g 1x, 

then g! 1(g2x) = x so (g! 1 g2)x = x. Thus g! 1 g2 E Gx so g2 E g1 Gx. 

Applications of G-Sets to Finite Groups 

Theorem 14.17 is a very useful theorem in the study of finite groups. Suppose that X is 
a G-set for a finite group G and we pick out one element from each orbit of X to make 
the set S = {x1,x2 , .. . ,xr) where we indexed the elements of X so that if i ~j, then 
IGx;I :=:: IGxj l· That is, we arrange by orbit size, largest first and smallest last. Every 
element in X is in precisely one orbit, so 

IXI = L IGx;I . (1) 
i= l 

We let Xc = {x EX I gx = x for all g E G}. That is, Xc is the set of all elements of X 
whose orbit size is 1. So by equation (1), 

IXI = IXcl + L IGx;I (2) 
i= l 

where we simply place all the orbits with one element into Xc and we are left with s 

orbits each containing at least two elements. Although Equation (2) is simply saying 
that if you add up the sizes of all the orbits you account for all the elements of X, when 
coupled with Theorem 14.17, it gives some very interesting results. We give a few in 
the remainder of this section. In Section 17 we will use Equation 2 extensively to prove 
the Sylow Theorems. 

For the remainder of this section, we assume that p is a prime number. 

14.19 Theorem Let G be a group with p" elements. If X is a G-set, then IXI = IXcl mod p. 

Proof Using Equation 2, 

IXI = IXcl + L IGx;I . 
i = l 

Since for each i ~ s, IGx;I :'.:: 2 and IGx;I = (G: Gx) is a divisor of IGI = p" , by Theo-
s 

rem 14.17 p divides each term in the sum L IGx;I. Thus IXI = IXc l mod p. + 
i=l 

Knowing that k divides the order of a group is not sufficient information to assume that 
the group has a subgroup of order k. For example, we saw that A4 has no subgroup of 
order 6 and that in general, A,, has no subgroup of index 2 if n :=:: 4. On the positive side, 
in Exercise 29 in Section 2, you were asked to show that if a group has an even number 
of elements, then it has an element of order two. Theorem 14.20 generalizes this result 
to show that if a prime number p divides the order of a group, then the group has an 
element of order p. The proof of this theorem relies on Theorem 14.19. 

14.20 Theorem (Cauchy's Theorem) Let G be a group such that p divides the order of G. Then G has 
an element of order p and therefore a subgroup of order p. 
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Proof We let 

X = {(go, g1, g1, ... , gp- 1) I go,g1, .. . , gp- 1 E G and gog1 g2 .. . g,,- 1 = e). 

That is, X is the set of all p-tuples with entries in G so that when the entries are mul­
tiplied together (in order) their product is the identity e. Since the product is e, g0 = 
(g1g2 ... g,,- 1 )- 1 and given any gi, g1, ... , g,,-1 E G, by picking go = (g 1g2 ... g,,- 1 )- 1 

we have an element in X. Thus IXI = IGl"- 1 and in particular, p divides the order of X 
since p divides the order of G. 

Suppose that (go, g 1, g1, ... , gp- 1) E X. Since go = (g1g2 ... g,,- 1 )- 1, it follows that 
(g1, g1, ... g,,- 1, go) is in X. Repeating this process, noting that g 1 = (g2g3 ... g,,-1 go)-1 

we conclude that (g2, gJ, g4, · · · , g,,_ 1, go , g 1) E X. Continuing in this manner we have 
that for any k E z,,, 

(gk> gk+" 1, gk+p2' · · · , gk+p(p- J)) E X. 

We check that this gives a group action of z,, onX. Letk E Zp and (go, g1, g2, ... , g,,_ 1) E 

X. Then 

Since 

k(l(go,g1,g2, ... ,gp- 1)) = k(g1 , g1+"1,g1+"2, ... ,g1+p(p- I) ) 

= (gk+pl' gk+pl+p ), . . . , gk+pl+p(p-J )) 

= (k +,, l)(go,g1,g2, ... , g,,_ 1) 

this is indeed a group action. 
By Theorem 14.19, 0 = IXI = IX:;>) modp. The p-tuple (e,e,e, .. . ,e) is in Xz" 

because rearranging the entries does not change the p-tuple. Since Xz" contains at least 
one element and p divides IXz" I, Xz" must contain at least one element other than 
(e, e, e, ... , e).That element must have the form (a, a, a, .. . , a) with a op e and aP = e. 
So a has order p and the subgroup it generates is a subgroup of G with order p. + 

14.21 Definition A p-group is a group such that each element in the group has order a power of p. A 
p-subgroup of a group is a subgroup that is a p-group. • 

14.22 Example The group D 16 is a 2-group since the order of any element of D 16 divides ID161 = 32 . 
... 

14.23 Example Using the Fundamental Theorem of Finitely Generated Abelian Groups, a finite abelian 
group is a p-group if and only if it is isomorphic to 

This is because if there were a factor of the form Z,1 where q opp is a prime number 
and s :::: 1, then there would be an element in G with order qs which is not a power of p. 

In Exercise 30, you are asked to show that for G a finite group, G is a p-group if 
and only if the order of G is a power of p. 

The next theorem assures us that any finite p-group has a nontrivial normal sub-
group, namely the center of the group. .A 

14.24 Theorem Let G be a finite p-group. Then the center of G, Z(G), is not the trivial group. 

Proof We let X = G and we make X into a G-set using conjugation. That is, * (g, a) = gag- 1. 
Equation 2 states that 0 = IXI = IXGI mod p. For all g E G, geg- 1 = e. So X G has at 
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least one element, namely e. Since the number of elements in Xc must be at least p, 
there is an element a EX such that a .:p e and gag- 1 =a for all g E G. Thus ga = ag 
for all g E G, which says that a E Z(G). So Z(G) is not the trivial subgroup. + 
When studying p-groups, the fact that the center is nontrivial is often very helpful. We 
conclude this section with a theorem that illustrates the utility of Theorem 14.24. 

14.25 Theorem Every group of order p2 is abelian. 

Proof Let G be a group of order p 2 with center Z(G). By Theorem 14.24, Z(G) is not the 
trivial group so it is either all of G or else it has order p. We wish to show that Z(G) = G 
using proof by contradiction. So we assume that Z(G) hasp elements. Since Z(G) is a 
normal subgroup of G, we can form G/ Z(G). The group G/ Z(G) also hasp elements 
and so both Z(G) and G/Z(G) are cyclic. Let (a) = Z(G) and (bZ(G) ) = G/Z(G). Let 
x, y E G. Then x = b;ai and y = b' as for some integers i , j, r, s since the cosets of Z( G) 
partition G. Then 

since (a) is the center of G. So 

xy = bi+r aj+s = b'biasaj = b' a5 biaj = yx. 

Since every element in G commutes with every other element, Z(G) = G, which con­
tradicts our assumption that the center has only p elements. So the center of G must be 
G, which means that G is abelian. + 

14.26 Example Since every group of order p2 is abelian, the Fundamental Homomorphism Theorem 
says that every group with p2 elements is isomorphic to either Z P2 or Zp x Z/1. The two 
groups of order 4 are Z4 and the Klein 4-group. The two groups of order 9 are Z9 and 
~x~. ~ 

• EXERCISES 14 

Computations 

In Exercises l through 3, let 

be the D4-set of Example 14.9. Find the following , where G = D4. 

1. The fixed sets X0 for each a E D4. 

2. The isotropy subgroups Gx for each x E X, that is, Go, G1 , · · · , Gp2 , Gp3 • 

3. The orbits in X under D4. 

4. Theorem 14.24 states that every p-group has nontrivial center. Find the center of Dg. 

5. Find the center of D7. 

6. Let G = X = S3 and make X a G-set using conjugation. That is, *(a, r) = ara- 1. Find all the orbits of X 
using this action. (Write permutations in disjoint cycle notation.) 

7. Let G = D4 and X be the set of all subgroups of D4 with order two. The set X is a G-set using conjugation, 
*(a, H) =a Ha- 1• Find all the orbits of this group action. 

8. Let G = U = {z E C I lzl = 1} be the circle group. Then X = C, the set of complex numbers, is a G-set with 
group action given by complex number multiplication. That is, if z E U and w E C, *(Z, w) = zw. Find all the 
orbits of this action. Also, fi nd Xc . 
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9. Let G be a group of order 3 and suppose that IXI = 6. For each possible action of G on X, give a list of the 
orbit sizes. List the orbit sizes from largest to smallest. (Recall that the orbits partition the set X.) 

10. Let G be a group of order 9 and suppose that IXI = 10. For each possible action of G on X, give a list of the 
orbit sizes. List the orbit sizes from largest to smallest. 

11. Let G be a group of order 8 and suppose that IXI = 10. For each possible way to make X a G-set the orbits 
partition X. For each possible action of G on X, give a list of the orbit sizes. List the orbit sizes from largest to 
smallest. 

Concepts 

In Exercises 12 and 13, correct the definition of the italicized term without reference to the text, if correction is 
needed, so that it is in a form acceptable for publication. 

12. A group G acts faithfully on X if and only if 8X = x implies that 8 = e. 

13. A group G is transitive on a G-set X if and only if, for some 8 E G, 8X can be every other x. 

14. Let X be a G-set and let S ~ X. If Gs ~ S for all s E S, then S is a sub-G-set. Characterize a sub-G-set of a 
G-set X in terms of orbits in X under G. 

15. Characterize a transitive G-set in terms of its orbits. 

16. Determine whether each of the following is true or false. 

a. Every G-set is also a group. 
b. Each element of a G-set is fixed by the identity of G. 

c. If every element of a G-set is fixed by the same element 8 of G, then 8 must be the identity e. 

d. Let X be a G-set with x 1 ,x2 E X and 8 E G. If 8Xl = 8X2, then x1 = x2. 

e. Let X be a G-set with x EX and 81, 82 E G. If 81X = 82X, then 8 1 = 82· 
f. Each orbit of a G-set X is a transitive sub-G-set. (See Exercise 14.) 

g. Let X be a G-set and let H :::: G. Then X can be regarded in a natural way as an H-set. 
h. With reference to (g), the orbits in X under Hare the same as the orbits in X under G. 

i. If X is a G-set, then each element of G acts as a permutation of X. 

j. Let X be a G-set and let x EX. If G is finite, then IGI = IGxl · IGxl· 

17. Let X and Y be G-sets with the same group G. An isomorphism between G-sets X and Y is a map</>: X--+ Y 
that is one-to-one, onto Y, and satisfies 8</>(x) = </>(8x) for all x E X and 8 E G. Two G-sets are isomorphic if 
such an isomorphism between them exists. Let X be the D4-set of Example 14.9. 

a. Find two distinct orbits of X that are isomorphic sub-D4-sets. (See Exercise 14.) 

b. Show that the orbits (0, 1, 2, 3} and {so,s1,s2,s3} are not isomorphic sub-D4-sets. [Hint: Find an element 
of G that acts in an essentially different fashion on the two orbits.] 

c. Are the orbits you gave for your answer to part (a) the only two different isomorphic sub-D4-sets of X? 

18. Let X be the D4-set in Example 14.9. 

a. Does D4 act faithfully on X? 

b. Find all orbits in X on which D4 acts faithfully as a sub-D4-set. (See Exercise 14.) 

Theory 

19. Let X be a G-set. Show that G acts faithfully on X if and only if no two distinct elements of G have the same 
action on each element of X. 

20. Let X be a G-set and let Y ~ X. Let Gy = (8 E G I 8Y = y for ally E Y}. Show Gr is a subgroup of G, gener­
alizing Theorem 14.13. 

21. Let G be the additive group of real numbers. Let the action of e E G on the real plane JH:.2 be given by rotating 
the plane counterclockwise about the origin through e radians. Let P be a point other than the origin in the 
plane. 

a. Show JH:.2 is a G-set. 

b. Describe geometrically the orbit containing P. 

c. Find the group Gp. 
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Exercises 22 through 25 show how all possible G-sets, up to isomorphism (see Exercise 17), can be formed from 
the group G. 

22. Let {X; I i E /} be a disjoint collection of sets, so X; n Xj = 0 for i f= j. Let each X; be a G-set for the same 
group G. 

a. Show that LJ;E1X; can be viewed in a natural way as a G-set, the union of the G-sets X;. 

b. Show that every G-set X is the union of its orbits. 

23. Let X be a transitive G-set, and let xo E X. Show that X is isomorphic (see Exercise 17) to the G-set L of all 
left cosets of Gx0 , described in Example 14.8. [Hint: For x EX, suppose x = gxo, and define</> : X--+ L by 
<f>(x) = gGxo· Be sure to show</> is well defined!] 

24. Let X; for i E I be G-sets for the same group G, and suppose the sets X; are not necessarily disjoint. Let 
x; = {(x, i) Ix EX;} for each i E /.Then the sets x; are disjoint, and each can still be regarded as a G-set in 
an obvious way. (The elements of X; have simply been tagged by i to distinguish them from the elements of 
Xj for if= j .) The G-set LJ;E1X! is the disjoint union of the G-sets X;. Using Exercises 22 and 23, show that 
every G-set is isomorphic to a disjoint union of left coset G-sets, as described in Example 14.1 2. 

25. The preceding exercises show that every G-set X is isomorphic to a disjoint union of left coset G-sets. The 
question then arises whether left coset G-sets of distinct subgroups H and K of G can themselves be isomor­
phic. Note that the map defined in the hint of Exercise 23 depends on the choice of xo as "base point." If xo is 
replaced by goxo and if Gx0 f= Gg0x0 , then the collections LH of left cosets of H = Gx0 and L K of left cosets of 
K = Ggoxo form distinct G-sets that must be isomorphic, since both LH and LK are isomorphic to X. 

a. Let X be a transitive G-set and let xo EX and go E G. If H = Gx0 , describe K = G80x0 in terms of H 
and go. 

b. Based on part (a), conjecture conditions on subgroups H and K of G such that the left coset G-sets of H 
and K are isomorphic. 

c. Prove your conjecture in part (b). 

26. Up to isomorphism, how many transitive Z4-sets X are there? (Use the preceding exercises.) Give an example 
of each isomorphism type, listing an action table of each as in Table 14.11 . Take lowercase names a, b, c, and 
so on for the elements in the set X. 

27. Repeat Exercise 26 for the group Z6. 

28. Repeat Exercise 26 for the group S3. List the elements of S3 in the order L, (1, 2, 3), (1, 3, 2), (2, 3), (1 , 3), 
( 1, 2). 

29. Prove that if G is a group of order p3, where p is a prime number, then IZ(G)I is either p or p3 . Give an example 
where IZ(G)I = p and an example where IZ(G)I = p3 . 

30. Let p be a prime number. Prove that a finite group G is a p-group if and only if IGI = p" for some integer 
n ~ 0. 

31. Let G be a group that acts on X = {H I H .::: G} by conjugation. That is, g * H = gHg- 1• State and prove an 
equivalent condition for a subgroup H .::: G to be a normal subgroup of G in terms of 

a. GH, the isotropy subgroup of H. 

b. GH, the orbit of H. 

SECTION 15 t APPLICATIONS OF G -SETS TO COUNTING 

This section presents an application of our work with G-sets to counting. Suppose, for 
example, we wish to count how many distinguishable ways the six faces of a cube can 
be marked with from one to six dots to form a die. The standard die is marked so that 

when placed on a table with the 1 on the bottom and the 2 toward the front, the 6 is on 

top, the 3 on the left, the 4 on the right, and the 5 on the back. Of course, other ways of 
marking the cube to give a distinguishably different die are possible. 

t This section is not used in the remainder of the text. 
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Let us distinguish between the faces of the cube for the moment and call them the 
bottom, top, left, right, front, and back. Then the bottom can have any one of six marks 
from one dot to six dots, the top any one of the five remaining marks, and so on. There 
are 6! = 720 ways the cube faces can be marked in all. Some markings yield the same 
die as others, in the sense that one marking can be carried into another by a rotation 
of the marked cube. For example, if the standard die described above is rotated 90° 
counterclockwise as we look down on it, then 3 will be on the front face rather than 2, 
but it is the same die. 

There are 24 possible positions of a cube on a table, for any one of six faces can be 
placed down, and then any one of four to the front, giving 6 · 4 = 24 possible positions. 
Any position can be achieved from any other by a rotation of the die. These rotations 
form a group G, which is isomorphic to a subgroup of Ss. We let X be the 720 possible 
ways of marking the cube and let G act on X by rotation of the cube. We consider 
two markings to give the same die if one can be carried into the other under action by 
an element of G, that is, by rotating the cube. In other words, we consider each orbit 
in X under G to correspond to a single die, and different orbits to give different dice. 
The determination of the number of distinguishable dice thus leads to the question of 
determining the number of orbits under G in a G-set X. 

The following theorem gives a tool for determining the number of orbits in a G-set 
X under G. Recall that for each g E G we let Xg be the set of elements of X fixed by g, so 
that Xg = {x EX I gx = x ). Recall also that for each x EX, we let Gx = (g E G I gx = 
x ), and Gx is the orbit of x under G. 

15.1 Theorem (Burnside's Formula) Let G be a finite group and X a finite G-set. If r is the number 
of orbits in X under G, 

r· IG I = L IXgl · (1) 
gEG 

Proof We consider all pairs (g,x) where gx = x, and let N be the number of such pairs. For 
each g E G there are IXg I pairs having g as first member. Thus, 

(2) 

On the other hand, for each x EX there are IGx l pairs having x as second member. Thus 
we also have 

N = L IGx l· 
xeX 

By Theorem 14.17 we have IGxl = (G: Gx). But we know that (G: Gx) = IGl/ IGx l, so 
we obtain IGxl = IGl/IG4 Then 

N = L _lg_ = 101 (I: -1 
) · 

xeX IGxl xeX IGxl 
(3) 

Now l / IGxl has the same value for all x in the same orbit, and if we let 0 be any orbit, 
then 

1 1 
L IGxl = L TOI = I. 
xeO xeO 

Substituting (4) in (3), we obtain 

N = IGI (number of orbits in X under G) = IGI · r. 

Comparison of Eq. 2 and Eq. 5 gives Eq. 1. 

(4) 

(5) 

• 
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15.2 Corollary If G is a fin ite group and X is a finite G-set, then 

1 
(number of orbits in X under G) = - · L IX8 1. 

IGI geG 

Proof The proof of this corollary follows immediately from the preceding theorem. + 
Let us continue our computation of the number of distinguishable dice as our first 

example. 

15.3 Example We let X be the set of 720 different markings of faces of a cube using from one to six 
dots. Let G be the group of 24 rotations of the cube as discussed above. We saw that 
the number of distinguishable dice is the number of orbits in X under G. Now IGI = 24. 
For g E G where g # e, we have IX8 1 = 0, because any rotation other than the identity 
element changes any one of the 720 markings into a different one. However, IX, I = 720 
since the identity element leaves all 720 markings fixed. Then by Corollary 15.2, 

1 
(number of orbits) = 

24 
· 720 = 30, 

so there are 30 distinguishable dice. 

Of course, the number of distinguishable dice could be counted without using the 
machinery of the preceding corollary, but by using elementary combinatorics as often 
taught in a freshman finite math course. In marking a cube to make a die, we can, 
by rotation if necessary, assume the face marked 1 is down. There are five choices 
for the top (opposite) face . By rotating the die as we look down on it, any one of the 
remaining four faces could be brought to the front position, so there are no different 
choices involved for the front face. But with respect to the number on the front face, 
there are 3 · 2 · 1 possibilities for the remaining three side faces. Thus there are 5 · 3 · 
2 · 1 = 30 possibilities in all. 

The next two examples appear in some finite math texts and are easy to solve by 
elementary means. We use Corollary 15.2 so that we have more practice thinking in 
terms of orbits. 

15.4 Example How many distinguishable ways can seven people be seated at a round table, where 
there is no distinguishable "head" to the table? Of course there are 7! ways to assign 
people to the different chairs. We take X to be the 7 ! possible assignments. A rotation of 
people achieved by asking each person to move one place to the right results in the same 
arrangement. Such a rotation generates a cyclic group G of order 7, which we consider 
to act on X in the obvious way. Again, only the identity e leaves any arrangement fixed, 
and it leaves all 7! arrangements fixed. By Corollary 15.2 

1 
(number of orbits)= - · 7! = 6! = 720. 

7 

15.5 Example How many distinguishable necklaces (with no clasp) can be made using seven different­
colored beads of the same size? Unlike the table in Example 15.4, the necklace can be 
turned over as well as rotated. Thus we consider the full dihedral group D7 of order 
2 · 7 = 14 as acting on the set X of 7 ! possibilities. Then the number of distinguishable 
necklaces is 

1 
(number of orbits) = 

14 
· 7! = 360. 

In using Corollary 15.2, we have to compute IGI and IX8 1 for each g E G. In the 
examples and the exercises, IGI will pose no real problem. Let us give an example 
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where IXgl is not as trivial to compute as in the preceding examples. We will continue 
to assume knowledge of very elementary combinatorics. 

15.6 Example Let us find the number of distinguishable ways the edges of an equilateral triangle can 
be painted if four different colors of paint are available, assuming only one color is used 
on each edge, and the same color may be used on different edges. 

Of course there are 43 = 64 ways of painting the edges in all, since each of the three 
edges may be any one of four colors. We consider X to be the set of these 64 possible 
painted triangles. The group G acting on X is the group of symmetries of the triangle, 
which is isomorphic to S3 and which we consider to be S3. We need to compute IXg l for 
each of the six elements g in S3 . 

1x,1 =64 

IX(l .2,3) I = 4 

IX(l ,3,2) I = 4 

IX(l ,2)1 = 16 

Then 

Thus 

Every painted triangle is fixed by i. 

To be invariant under (1,2,3) all edges must be the 
same color, and there are 4 possible colors. 

Same reason as for (l,2,3). 

The edges that are interchanged must be the same 
color (4 possibilities) and the other edge may 
also be any of the colors (times 4 possibilities). 

Same reason as for (1,2). 

L IXgl = 64 + 4 + 4 + 16 + 16 + 16 = 120. 
g ES3 

1 
(number oforbits) = 6 · 120 = 20, 

and there are 20 distinguishable painted triangles. 

15.7 Example We repeat Example 15.6 with the assumption that a different color is used on each edge. 
The number of possible ways of painting the edges is then 4 · 3 · 2 = 24, and we Jet X be 
the set of 24 possible painted triangles. Again, the group acting on X can be considered 
to be S3. Since all edges are a different col or, we see IX, I = 24 while IX8 I = 0 for g -=j:. L. 

Thus 

. l 
(number of orbits) = 6 · 24 = 4, 

so there are four distinguishable triangles. 

We will use group actions in Section 17 to develop the Sylow Theorems, which 
give a tremendous amount of information about finite groups. In this section, we barely 
scratch the surface of how to count using Burnside's Formula. To explore this fascinat­
ing topic further, search the Internet using key words such as "cycle index" and "Polya's 
Enumeration Theorem." Given a group action on a set, the cycle index is a polynomial 
that can be computed by hand for small groups and by computer for larger groups. 
Polya's Enumeration Theorem then says that the number of different ways to color an 
object can be computed by simply substituting certain values into the polynomial. It is 
remarkable that counting the number of different colorings of geometric objects can be 
elegantly reduced to algebra! 
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• EXERCISES 15 

Computations 

In each of the following exercises use Corollary 15.2, even though the answer might be obtained by more elemen­
tary methods. 

1. Find the number of orbits in {I , 2, 3, 4, 5, 6, 7, 8} under the cyclic subgroup ((1, 3, 5, 6)) of Ss. 

2. Find the number oforbits in { 1, 2, 3, 4, 5, 6, 7, 8} under the subgroup of Ss generated by ( I , 3) and (2, 4, 7). 

3. Find the number of distinguishable tetrahedral dice that can be made using one, two, three, and four dots on the 
faces of a regular tetrahedron, rather than a cube. 

4. Wooden cubes of the same size are to be painted a different color on each face to make children's blocks. How 
many distinguishable blocks can be made if eight colors of paint are available? 

5. Answer Exercise 4 if colors may be repeated on different faces at will. [Hint: The 24 rotations of a cube consist 
of the identity, 9 that leave a pair of opposite faces invariant, 8 that leave a pair of opposite vertices invariant, 
and 6 leaving a pair of opposite edges invariant.] 

6. Each of the eight corners of a cube is to be tipped with one of four colors, each of which may be used on from 
one to all eight corners. Find the number of distinguishable markings possible. (See the hint in Exercise 5.) 

7. Find the number of distinguishable ways the edges of a square of cardboard can be painted if six colors of paint 
are available and 

a. no color is used more than once. 
b. the same color can be used on any number of edges. 

8. Consider six straight wires of equal lengths with ends soldered together to form edges of a regular tetrahedron. 
Either a 50-ohm or 100-ohm resistor is to be inserted in the middle of each wire. Assume there are at least six 
of each type of resistor available. How many essentially different wirings are possible? 

9. A rectangular prism 2 ft long with I-ft square ends is to have each of its six faces painted with one of six 
possible colors. How many distinguishable painted prisms are possible if 

a. no color is to be repeated on different faces , 

b. each color may be used on any number of faces? 
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SECTION 22 RINGS AND FIELDS 

All our work thus far has been concerned with sets on which a single binary operation 
has been defined. Our years of work with the integers and real numbers show that a study 
of sets on which two binary operations have been defined should be of great importance. 
Algebraic structures of this type are introduced in this section. In one sense, this section 
seems more intuitive than those that precede it, for the structures studied are closely 
related to those we have worked with for many years. However, we will be continuing 
with our axiomatic approach. So, from another viewpoint this study is more complicated 
than group theory, for we now have two binary operations and more axioms to deal with. 

Definitions and Basic Properties 

The most general algebraic structure with two binary operations that we shall study is 
called a ring. As Example 22.2 following Definition 22. 1 indicates, we have all worked 
with rings since elementary school. 

22.1 Definition A ring (R, +, ·} is a set R together with two binary operations +and ·, which we call 
addition and multiplication, defined on R such that the following axioms are satisfied: 

~1 • (R, +} is an abelian group . 

.3-B2. Multiplication is associative. 

~3 . For all a, b, c E R, the left distributive law, a· (b + c) = (a· b) +(a · c) and 
the right distributive law (a+ b) · c = (a· c) + (b · c) hold. • 

22.2 Example We are well aware that axioms ~1,~2 , and ._n3 for a ring hold in any subset of the 
complex numbers that is a group under addition and that is closed under multiplication. 
For example, (Z, +, ·}, (Q, +,·),(JR.,+,·}, and (C, +, ·}are rings. .A. 

185 
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• HISTORICAL NOTE 

T he theory of rings grew out of the study of two 
particular classes of rings, polynomial rings in 

n variables over the real or complex numbers (Sec­
tion 27) and the "integers" of an algebraic number 
field. It was David Hilbert (1862-1943) who first 
introduced the term ring, in connection with the 
latter example, but it was not until the second 
decade of the twentieth century that a fully ab­
stract definition appeared. The theory of commu­
tative rings was given a firm axiomatic foundation 
by Emmy Noether (1882-1935) in her monumen­
tal paper "Ideal Theory in Rings," which appeared 
in 1921. A major concept of this paper is the as­
cending chain condition for ideals. Noether proved 
that in any ring in which every ascending chain 
of ideals has a maximal element, every ideal is 
finitely generated. 

Emmy Noether received her doctorate from 
the University of Erlangen, Germany, in 1907. 
Hilbert invited her to Gottingen in 1915, but his ef­
forts to secure her a paid position were blocked be­
cause of her sex. Hilbert complained, "I do not see 
that the sex of the candidate is an argument against 
her admission [to the faculty] . After all, we are a 
university, not a bathing establishment." Noether 
was, however, able to lecture under Hilbert's name. 
Ultimately, after the political changes accompa­
nying the end of the First World War reached 
Gottingen, she was given in 1923 a paid position 
at the University. For the next decade, she was very 
influential in the development of the basic concepts 
of modern algebra. Along with other Jewish fac­
ulty members, however, she was forced to leave 
Gottingen in 1933. She spent the final two years of 
her life at Bryn Mawr College near Philadelphia. 

It is customary to denote multiplication in a ring by juxtaposition, using ab in place 
of a · b. We shall also observe the usual convention that multiplication is performed 
before addition in the absence of parentheses, so the left distributive law, for example, 
becomes 

a(b + c) = ab + ac, 

without the parentheses on the right side of the equation. Also, as a convenience analo­
gous to our notation in group theory, we shall somewhat incorrectly refer to a ring R in 
place of a ring (R, + , ·), provided that no confusion will result. In particular, from now 
on Z will always be (Z, +, ·), and Ql, R and C will also be the rings in Example 22.2. 
We may on occasion refer to (R, +)as the additive group of the ring R. 

22.3 Example Let R be any ring and let M 11(R) be the collection of all n x n matrices having ele­
ments of R as entries. The operations of addition and multiplication in R allow us to add 
and multiply matrices in the usual fashion, explained in the appendix. We can quickly 
check that (M11(R), + ) is an abelian group. The associativity of matrix multiplication 
and the two distributive laws in M 11(R) are more tedious to demonstrate, but straight­
forward calculations indicate that they follow from the same properties in R. We will 
assume from now on that we know that M 11(R) is a ring. In particular, we have the rings 
M 11 (Z ), M,,(Ql), M,,(IR), and M 11 (C). Note that multiplication is not a commutative opera­
tion in any of these rings for n ~ 2. • 

22.4 Example Let F be the set of all functions f : lR --+ R We know that (F , +) is an abelian group 
under the usual function addition, 

if+ g)(x) = f(x) + g(x). 

We define multiplication on F by 
lfg)(x) = f(x)g(x). 

That is, Jg is the function whose value at x is f(x)g(x) . It is readily checked that F 
is a ring; we leave the demonstration to Exercise 36. We have used this juxtaposition 
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notation CJµ, for the composite function CJ(µ,(x)) when discussing permutation multipli­
cation. Ifwe were to use both function multiplication and function composition in F, we 
would use the notation fog for the composite function. However, we will use compo­
sition of functions almost exclusively with homomorphisms, which we will denote by 
Greek letters, and the usual product defined in this example chiefly when multiplying 
polynomial function's f(x)g(x), so no confusion should result. .&. 

22.S Example Recall that in group theory, nZ is the cyclic subgroup of Z under addition consisting of 
all integer multiples of the integer n. Since (nr)(ns) = n(nrs), we see that nZ is closed 
under multiplication. The associative and distributive laws that hold in Z then assure us 
that (nZ, +, ·) is a ring. From now on in the text, we will consider nZ to be this ring. .&. 

22.6 Example Consider the cyclic group (Zn, + ). If we define for a, b E Zn the product ab as the 
remainder of the usual product of integers when divided by n, it can be shown that 
(Zn, +,-) is a ring. We shall feel free to use this fact. For example, in Z 1o we have 
(3)(7) = L This operation on Zn is multiplication modulo n. We do not check the ring 
axioms here, for they will follow in Section 30 from some of the theory we develop 
there. From now on, Zn will always be the ring (Zn, +, ·). .&. 

22.7Example If R 1, R2,· ··,Rn are rings, we can form the set R1 x R2 x · ·· x Rn of all ordered 
n-tuples (r1, r2 , · · · , rn), where r; E R;. Defining addition and multiplication of n-tuples 
by components Uust as for groups), we see at once from the ring axioms in each com­
ponent that the set of all these n-tuples forms a ring under addition and multiplication 
by components. The ring R1 x R2 x · · · x Rn is the direct product of the rings R;. .&. 

Continuing matters of notation, we shall always let 0 be the additive identity of a 
ring. The additive inverse of an element a of a ring is - a. We shall frequently have 
occasion to refer to a sum 

a+a+···+a 

having n summands. We shall let this sum be n · a, always using the dot. However, n · a 
is not to be interpreted as a multiplication of n and a in the ring, for the integer n may 
not be in the ring at all. If n < 0, we let 

n · a= (-a)+ (-a)+···+ (-a) 

for fnl summands. Finally, we define 
0- a = 0 

for 0 E Z on the left side of the equations and 0 E R on the right side. Actually, the 
equation Oa = 0 holds also for 0 E R on both sides. The following theorem proves this 
and various other elementary but important facts. Note the strong use of the distributive 
laws in the proof of this theorem. Axiom ~1 for a ring concerns only addition, and 
axiom ~2 concerns only multiplication. This shows that in order to prove anything that 
gives a relationship between these two operations, we are going to have to use axiom 
~3 . For example, the first thing that we will show in Theorem 22.8 is that Oa = 0 for 
any element a in a ring R. Now this relation involves both addition and multiplication. 
The multiplication Oa stares us in the face, and 0 is an additive concept. Thus we will 
have to come up with an argument that uses a distributive law to prove this. 

22.8 Theorem If R is a ring with additive identity 0, then for any a, b E R we have 

1. Oa = aO = 0, 

2. a( - b) = (- a)b = -(ab), 

3. (-a)(-b) = ab. 
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Proof For Property 1, note that by axioms ,jig1 and .30i, 

aO + aO = a(O + 0) = aO = 0 + aO. 

Then by the cancellation law for the additive group (R, +), we have aO = 0. Likewise, 

Oa + Oa = (0 + O)a = Oa = 0 + Oa 

implies that Oa = 0. This proves Property 1. 
In order to understand the proof of Property 2, we must remember that, by 

definition, -(ab) is the element that when added to ab gives 0. Thus to show that 
a(-b) = -(ab), we must show precisely that a(-b) + ab = 0. By the left distributive 
law, 

a(-b) + ab = a(-b + b) = aO = 0, 

since aO = 0 by Property 1. Likewise, 

(-a)b + ab =(-a+ a)b = Ob = 0. 

For Property 3, note that 

(-a)(-b) = -(a(-b)) 

by Property 2. Again by Property 2, 

-(a(-b)) = -(-(ab)), 

and -(-(ab)) is the element that when added to -(ab) gives 0. This is ab by definition 
of -(ab) and by the uniqueness of an inverse in a group. Thus, (-a)(-b) = ab. + 

Based on high school algebra it seems natural to begin a proof of Property 2 in 
Theorem 22.8 by writing (-a)b = ((- l )a)b. In Exercise 30 you will be asked to find 
an error in a "proof' of this sort. 

It is important that you understand the preceding proof. The theorem allows us to 
use our usual rules for signs. 

Homomorphisms and Isomorphisms 

From our work in group theory, it is quite clear how a structure-relating map of a ring R 
into a ring R' should be defined. 

22.9 Definition For rings Rand R' , a map cp : R -+ R' is a homomorphism if the following two condi­
tions are satisfied for all a, b E R: 

1. cp(a + b) = cp(a) + cp(b), 

2. cp(ab) = cp(a)cp(b). • 
In the preceding definition, Condition 1 is the statement that cp is a group homo­

morphism mapping the abelian group (R, +) into (R' , +) . Condition 2 requires that cp 
relate the multiplicative structures of the rings Rand R' in the same way. Since cp is also 
a group homomorphism, all the results concerning group homomorphisms are valid for 
the additive structure of the rings. In particular, cp is one-to-one if and only if its kernel 
Ker(cp) = {a E R I cf>(a) = O' ) is just the subset (0) of R. The homomorphism cp of the 
group (R, + ) gives rise to a factor group. We expect that a ring homomorphism will give 
rise to a factor ring. This is indeed the case. We delay discussion of this to Section 30, 
where the treatment will parallel our treatment of factor groups in Section 12. 
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22.10 Example Let F be the ring of all functions mapping lR'. into lR'. defined in Example 22.4. For each 
a E IR'., we have the evaluation homomorphism </>a : F--+ R where <l>aif) = f(a) for 
f E F. We will work a great deal with this homomorphism in the rest of this text, for 
finding a real solution of a polynomial equation p(x) = 0 amounts precisely to finding 
a E lR'. such that </>a(p) = 0. Much of the remainder of this text deals with solving poly­
nomial equations. We leave the demonstration of the homomorphism properties for </>a 
to Exercise 37. ..&. 

22.11 Example The map</> : 2--+ 2 11 where </>(a) is the remainder of a modulo n is a ring homomor­
phism for each positive integer n. We know </>(a+ b) =</>(a)+ </>(b) by group theory. 
To show the multiplicative property, write a= q1n + r 1 and b = q2n + r2 according 
to the division algorithm. Then ab = n(q 1q2n + r 1q2 + q1r2) + r 1r2. Thus </>(ab) is the 
remainder of r 1r2 when divided by n. Since </>(a)= r 1 and </>(b) = r2, Example 22.6 
indicates that </>(a)</>(b) is also this same remainder, so </>(ab) = </>(a)</>(b). From group 
theory, we anticipate that the ring 2 ,, might be isomorphic to a factor ring 2/n2 . This 
is indeed the case; factor rings will be discussed in Section 30. ..&. 

We realize that in the study of any sort of mathematical structure, an idea of basic 
importance is the concept of two systems being structurally identical, that is, one being 
just like the other except for names. In algebra this concept is always called isomor­
phism. The concept of two things being just alike except for names of elements leads 
us, just as it did for groups, to the following definition. 

22.12 Definition An isomorphism </> : R --+ R' from a ring R to a ring R' is a homomorphism that is 
one-to-one and onto R'. The rings R and R' are then isomorphic. • 

From our work in group theory, we expect that isomorphism gives an equivalence 
relation on any collection of rings. We need to check that the multiplicative property of 
an isomorphism is satisfied for the inverse map </>- 1 : R' --+ R (to complete the symme­
try argument). Similarly, we check that ifµ : R' --+ R" is also a ring isomorphism, then 
the multiplicative requirement holds for the composite map µ</> : R --+ R" (to complete 
the transitivity argument). We ask you to do this in Exercise 38. 

22.13 Example As abelian groups, (2, + ) and (22 , + ) are isomorphic under the map </> : 2 --+ 22, 
with </>(x) = 2x for x E 2 . Here </> is not a ring isomorphism, for </>(xy) = 2xy, while 
</>(x)</>(y) = 2x2y = 4.xy. ..&. 

Multiplicative Questions: Fields 

Many of the rings we have mentioned, such as 2 , Q, and R have a multiplicative identity 
element 1. However, 22 does not have an identity element for multiplication. Note also 
that multiplication is not commutative in the matrix rings described in Example 22.3. 

It is evident that (0), with 0 + 0 = 0 and (0)(0) = 0, gives a ring, the zero ring. 
Here 0 acts as multipl icative as well as additive identity element. By Theorem 22.8, 
this is the only case in which 0 could act as a multiplicative identity element, for from 
Oa = 0, we can then deduce that a = 0. Theorem 1.15 shows that if a ring has a multi­
plicative identity element, it is unique. We denote a multiplicative identity element in a 
ring by 1. 

22.14 Definition A ring in which the multiplication is commutative is a commutative ring. A ring with a 
multiplicative identity element is a ring with unity; the multiplicative identity element 
l is called "unity." • 
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In a ring with unity 1 the distributive Jaws show that 

(1 + 1 + ... + 1) (1+1 + . .. + 1) = (1 + 1 + . . . + 1), 
n summands m summands nm summands 

that is, (n · 1 )(m · 1) = (nm) · 1. The next example gives an application of this observation. 

22.15 Example We claim that for integers rand s where gcd(r,s) = 1, the rings Zrs and Zr x Zs are 
isomorphic. Additively, they are both cyclic abelian groups of order rs with generators 
1 and (1, 1) respectively. Thus if> : Zrs --+ Zr x Zs defined by if>(n · 1) = n · (1, 1) is an 
additive group isomorphism. To check the multiplicative Condition 2 of Definition 22.9, 
we use the observation preceding this example for the unity (1, 1) in the ring Zr x Z 5 , 

and compute. 
if>(nm) =(nm)· (1, 1) = [n · (1, l)][m · (1, l)] = if>(n)if>(m). .&. 

Note that a direct product R = R1 x R2 x · · · x R,, of rings is commutative if and 
and only if each ring R; is commutative. Furthermore, R has a unity if and only if each 
R; has a unity. 

The set R* of nonzero real numbers forms a group under multiplication. However, 
the nonzero integers do not form a group under multiplication since only the integers I 
and -1 have multiplicative inverses in Z. In general, a multiplicative inverse of an ele­
ment a in a ring R with unity l ¥: 0 is an element a- 1 ER such that aa- 1 = a-' a = 1. 
Precisely as for groups, a multiplicative inverse for an element a in R is unique, if it 
exists at all (see Exercise 45). Theorem 22.8 shows that it would be hopeless to have 
a multiplicative inverse for 0 except for the ring (0) , where 0 + 0 = 0 and (0)(0) = 0, 
with 0 as both additive and multiplicative identity element. We are thus Jed to discuss 
the existence of multiplicative inverses for nonzero elements in a ring with nonzero 
unity. There is unavoidably a lot of terminology to be defined in this introductory 
section on rings. We are almost done. 

22.16 Definition Let R be a ring with unity I ¥: 0. An element u in Risa unit of R if it has a multiplicative 
inverse in R. If every nonzero element of R is a unit, then Risa division ring (or skew 
field). A field is a commutative division ring. A noncommutative division ring is called 
a "strictly skew field." • 

22.17 Example Let us find the units in Z 14• Of course, 1 and - 1 = 13 are units. Since (3)(5) = 1 we 
see that 3 and 5 are units; therefore -3 = 11 and -5 = 9 are also units. None of the 
remaining elements of Z 14 can be units, since no multiple of 2, 4, 6, 7, 8, or I 0 can be 
one more than a multiple of 14; they all have a common factor, either 2 or 7, with 
14. Section 24 will show that the units in Z,, are precisely those m E Z,, such that 
gcd (m, n) = 1. .&. 

22.18 Example Z is not a field, because 2, for example, has no multiplicative inverse, so 2 is not a unit 
in Z. The only units in Z are 1 and -1. However, Ql and R are fields. An example of a 
strictly skew field is given in Section 32. .&. 

We have the natural concepts of a subring of a ring and a subfield of a field. A 
subring of a ring is a subset of the ring that is a ring under induced operations from the 
whole ring; a subfield is defined similarly for a subset of a field. In fact, Jet us say here 
once and for all that if we have a set, together with a certain specified type of algebraic 
structure (group, ring, field, integral domain, vector space, and so on), then any subset 
of this set, together with a natural induced algebraic structure that yields an algebraic 
structure of the same type, is a substructure. If K and Lare both structures, we shall let 
K ::::: L denote that K is a substructure of L and K < L denote that K ::::: L but K ¥: L. 
Exercise 50 gives criteria for a subset Sofa ring R to form a subring of R. 



• HISTORICAL NOTE 

A lthough fields were implict in the early work 
on the solvability of equations by Abel 

and Galois, it was Leopold Kronecker (1823-
1891) who in connection with his own work 
on this subject first published in 1881 a defi­
nition of what he called a "domain of rational­
ity'': "The domain of rationality (R' , R" , R"' , · · ·) 
contains · · · every one of those quantities 
which are rational functions of the quanti­
ties R', R" , R"' , · · · with integral coefficients." 
Kronecker, however, who insisted that any math­
ematical subject must be constructible in finitely 
many steps, did not view the domain of ratio­
nality as a complete entity, but merely as a re­
gion in which took place various operations on its 
elements. 

Richard Dedekind (1831-1916), the inventor 
of the Dedekind cut definition of a real number, 
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considered a field as a completed entity. In 1871, 
he published the following definition in his sup­
plement to the second edition of Dirichlet's text on 
number theory: "By a field we mean any system of 
infinitely many real or complex numbers, which in 
itself is so closed and complete, that the addition, 
subtraction, multiplication, and division of any two 
numbers always produces a number of the same 
system." Both Kronecker and Dedekind had, how­
ever, dealt with their varying ideas of this notion as 
early as the 1850s in their university lectures. 

A more abstract definition of a field, similar to 
the one in the text, was given by Heinrich Weber 
(1842-1913) in a paper of 1893. Weber's defini­
tion, unlike that of Dedekind, specifically included 
fields with finitely many elements as well as other 
fields, such as function fields , which were not sub­
fields of the field of complex numbers. 

Finally, be careful not to confuse our use of the words unit and unity. Unity is 
the multiplicative identity element, while a unit is any element having a multiplicative 
inverse. Thus the multiplicative identity element or unity is a unit, but not every unit is 
unity. For example, -1 is a unit in Z, but -1 is not unity, that is, -1 ~ 1. 

• EXERCISES 22 

Computations 

In Exercises 1 through 6, compute the product in the given ring. 

1. (12)(16) in Z24 

3. (1 1)(-4) in Z1s 

5. (2,3)(3,5) in Zs x Z9 

2. (16)(3) in Z32 

4. (20)( -8) in Z26 

6. (-3,5)(2,-4) in Z4 x Z11 

In Exercises 7 through 13, decide whether the indicated operations of addition and multiplication are defined 
(closed) on the set, and give a ring structure. If a ring is not formed, tell why this is the case. If a ring is formed, 
state whether the ring is commutative, whether it has unity, and whether it is a field. 

7. nZ with the usual addition and multiplication 

8. z+ with the usual addition and multiplication 

9. Z x Z with addition and multiplication by components 

10. 2Z x Z with addition and multiplication by components 

11. {a + b../21 a, b E Z } with the usual addition and multiplication 

12. {a+ b../21 a, b E Q ) with the usual addition and multiplication 

13. The set of all pure imaginary complex numbers ri for r E lR with the usual addition and multiplication 
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In Exercises 14 through 19, describe all units in the given ring 

14. z 
17. Q 

15. z x z 
18. z x Q x z 

20. Consider the matrix ring M1(Z2). 

a. Find the order of the ring, that is, the number of elements in it. 

b. List all units in the ring. 

21. If possible, give an example of a homomorphism <P : R --+ R' where R and R' are rings with unity 1 f 0 and 
l ' f O' , and where </J(l) f O' and </J(l) f l ' . 

22. (Linear algebra) Consider the map det of M11(1R) into lR where det(A) is the determinant of the matrix A for 
A E M11 (1R). Is det a ring homomorphism? Why or why not? 

23. Describe all ring homomorphisms of Z into Z. 

24. Describe all ring homomorphisms of Z into Z x Z . 

25. Describe all ring homomorphisms of Z x Z into Z . 

26. How many homomorphisms are there of Z x Z x Z into Z? 

27. Consider this solution of the equation X2 = 13 in the ring M3 (JR). 

X2 = /3 implies X2 - /J = 0, the zero matrix, so factoring, we have (X - /3)(X + /j) = 0 

whence either X = /3 or X = - /3. 

Is this reasoning correct? If not, point out the error, and if possible, give a counterexample to the conclusion. 

28. Find all solutions of the equation x2 + x - 6 = 0 in the ring Z 14 by factoring the quadratic polynomial. Com­
pare with Exercise 27. 

29. Find all solutions to the equations x2 + x - 6 = 0 in the ring Z 13 by factoring the quadratic polynomial. Why 
are there not the same number of solutions in Exercise 28? 

30. What is wrong with the following attempt at a proof of Property 2 in Theorem 22.8? 

(- a)b = ((- l)a)b = (- l )(ab) = - (ab). 

Concepts 

In Exercises 31 and 32, correct the definition of the italicized term without reference to the text, if correction is 
needed, so that it is in a form acceptable for publication. 

31. A field Fis a ring with nonzero unity such that the set of nonzero elements of Fis a group under multiplication. 

32. A unit in a ring is an element of magnitude 1. 

33. Give an example of a ring having two elements a and b such that ab = 0 but neither a nor b is zero. 

34. Give an example of a ring with unity I f 0 that has a subring with nonzero unity I' f I . [Hint: Consider a 
direct product, or a subring of Z6 -l 

35. Determine whether each of the following is true or false . 

a . Every field is also a ring. 

b. Every ring has a multiplicative identity. 

c. Every ring with unity has at least two units. 

d. Every ring with unity has at most two units. 

e. It is possible for a subset of some field to be a ring but not a subfield, under the induced operations. 

f. The distributive laws for a ring are not very important. 

g. Multiplication in a field is commutative. 

h. The nonzero elements of a field form a group under the multiplication in the field. 

i. Addition in every ring is commutative. 

j . Every element in a ring has an additive inverse. 
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Theory 

36. Show that the multiplication defined on the set F of functions in Example 22.4 satisfies axioms .9'6i and ~3 
for a ring. 

37. Show that the evaluation map <Pa of Example 22.10 is a ring homomorphism. 

38. Complete the argument outlined after Definitions 22.12 to show that isomorphism gives an equivalence relation 
on a collection of rings. 

39. Show that if U is the collection of all units in a ring (R, +, ·) with unity, then (U, ·) is a group. [Warning: Be 
sure to show that U is closed under multiplication.] 

40. Show that a2 - b2 =(a + b)(a - b) for all a and b in a ring R if and only if R is commutative. 

41. Let (R, +) be an abelian group. Show that (R, +,·) is a ring if we define ab = 0 for all a, b E R. 

42. Show that the rings 2Z and 3Z are not isomorphic. Show that the fi elds lR and IC are not isomorphic. 

43. (Freshman exponentiation) Let p be a prime. Show that in the ring Zp we have (a+ bY' = aP + fJP for all 
a, b E Zp. [Hint: Observe that the usual binomial expansion for (a+ b)n is valid in a commutative ring.] 

44. Show that the unity element in a subfield of a field must be the unity of the whole field, in contrast to Exer­
cise 34 for rings. 

4S. Show that the multiplicative inverse of a unit in a ring with unity is unique. 

46. An element a of a ring R is idempotent if a2 = a. 

a . Show that the set of all idempotent elements of a commutative ring is closed under multiplication. 

b. Find all idempotents in the ring Z 6 x Z 12 . 

47. (Linear algebra) Recall that for an m x n matrix A, the transpose AT of A is the matrix whose j th column 
is the j th row of A. Show that if A is an m x n matrix such that ATA is invertible, then the p rojection matrix 
P = A(ATA)- 1 AT is an idempotent in the ring of n x n matrices. 

48. An element a of a ring R is nilpotent if a" = 0 for some n E z+. Show that if a and b are nilpotent elements 
of a commutative ring, then a+ b is also nilpotent. 

49. Show that a ring R has no nonzero nilpotent element if and only if 0 is the only solution of x 2 = 0 in R. 

SO. Show that a subset Sofa ring R gives a subring of R if and only if the following hold: 

0 ES; 

(a - b) E S for all a, b E S; 

ab E S for all a, b E S. 

Sl. a. Show that an intersection of subrings of a ring R is again a subring of R. 

b. Show that an intersection of subfields of a field Fis again a subfield of F. 

S2. Let R be a ring, and let a be a fixed element of R. Let la = {x E R I ax = 0) . Show that la is a subring of R. 

S3. Let R be a ring, and let a be a fixed element of R. Let Ra be the subring of R that is the intersection of all 
subrings of R containing a (see Exercise 51 ). The ring Ra is the subring of R generated by a. Show that the 
abelian group (Ra,+) is generated (in the sense of Section 7) by {a" In E z+j. 

S4. (Chinese Remainder Theorem for two congruences) Let rand s be positive integers such that gcd(r, s) = I. 
Use the isomorphism in Example 22. 15 to show that for m, n E Z, there exists an integer x such that x = m 
(mod r) and x = n (mod s). 

SS. a. State and prove the generalization of Example 22.15 for a direct product with n factors. 

b. Prove the Chinese Remainder Theorem: Let a; , b; E z+ for i = 1, 2, · · · , n and let gcd(b;, bj) = 1 for i =f. j . 
Then there exists x E z+ such that x =a; (mod b;) for i = 1, 2, · · · , n. 

S6. Consider (S, + , -), where S is a set and+ and · are binary operations on S such that 

(S, + ) is a group, 

(S*, ·) is a group where S* consists of all elements of S except the additive identity element, 

a(b + c) = (ab) + (ac) and (a + b)c = (ac) + (be) for all a , b, c E S. 
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Show that (S, + , ·) is a division ring. [Hint: Apply the distributive laws to (I + I )(a+ b) to prove the commu­
tativity of addition.] 

57. A ring R is a Boolean ring if a2 = a for all a E R, so that every element is idempotent. Show that every 
Boolean ring is commutative. 

58. (For students having some knowledge of the laws of set theory) For a set S, let 9 (S) be the collection of all 
subsets of S. Let binary operations + and · on 9 (S) be defined by 

A+ B = (AU B) - (An B) = {x Ix EA or x E B but x ~ (An B)} 

and 

A·B=AnB 

for A, B E 9 (S). 

a. Give the tables for+ and· for 9 (S), where S = {a, b). [Hint: 9 (S) has four elements.] 

b. Show that for any set S, (9 (S), +,·) is a Boolean ring (see Exercise 57). 

SECTION 23 INTEGRAL DOMAINS 

While a careful treatment of polynomials is not given until Section 27, for purposes of 
motivation we shall make intuitive use of them in this section. 

Divisors of Zero and Cancellation 

One of the most important algebraic properties of our usual number system is that a 
product of two numbers can be 0 only if at least one of the factors is 0. We have used 
this fact many times in solving equations, perhaps without realizing that we were using 
it. Suppose, for example, we are asked to solve the equation 

x2 
- 5x+ 6 = 0. 

The first thing we do is factor the left side: 

x2 
- 5x + 6 = (x - 2)(x - 3). 

Then we conclude that the only possible values for x are 2 and 3. Why? The reason is 
that if x is replaced by any number a, the product (a - 2)(a - 3) of the resulting numbers 
is 0 if and only if either a - 2 = 0 or a - 3 = 0. 

23.1 Example Solve the equation x2 - 5x + 6 = 0 in Z 12 . 

Solution The factorization x2 - 5x + 6 = (x - 2)(x - 3) is still valid if we think of x as standing 
for any number in Z 12 . But in Z 12 , not only is Oa = aO = 0 for all a E Z 12 , but also 

(2)(6) = (6)(2) = (3)(4) = (4)(3) = (3)(8) = (8)(3) 

= (4)(6) = (6)(4) = (4)(9) = (9)(4) = (6)(6) = (6)(8) 

= (8)(6) = (6)(10) = (10)(6) = (8)(9) = (9)(8) = 0. 

We find, in fact, that our equation has not only 2 and 3 as solutions, but also 6 and 11, 
for (6 - 2)(6 - 3) = (4)(3) = 0 and (11 - 2)(11 - 3) = (9)(8) = 0 in Z 12 . .._ 

These ideas are of such importance that we formalize them in a definition. 

23.2 Definition If a and b are two nonzero elements of a ring R such that ab = 0, then a and b are 
divisors of 0 (or 0 divisors). • 
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Example 23.1 shows that in 2 12 the elements 2, 3, 4, 6, 8, 9, and 10 are divisors of 
0. Note that these are exactly the numbers in 2 12 that are not relatively prime to 12, that 
is, whose gcd with 12 is not 1. 

If R is a ring with unity and a is a unit in R, then a is not a divisor of 0. To see this, 
note that if ab = 0, then a- 1ab = 0, sob= 0. Similarly, if ba = 0, then baa- 1 = 0, so 
b = 0. Theorem 23.3 shows that in the ring Z 11 every element is either 0, a unit, or a 0 
divisor. 

23.3 Theorem Let m E Z11 • Either m = 0, m is relatively prime ton, in which case m is a unit in Z 11 , or 
m is not relatively prime ton, in which case m is a 0 divisor in Z11 • 

Proof We first suppose that m f= 0 and gcd(m, n) = d f= 1. Then, using integer multiplication 

is a multiple of n, so in Z,,, 

Neither m nor n/ d is 0 in Z11 • Thus m is a divisor of 0. 
Now suppose that gcd(m, n) = 1. Then there are integers a and b such that 

an+ bm = 1. By the division algorithm, there are integers q and r such that 0 '.'S 
r '.'S n - 1 and b = nq + r. We can write 

rm = (b - nq)m = bm - nqm = (1 - an) - nqm = 1 - n(a + qm). 

So in Z 11 , rm = mr = I and m is a unit. • 
23.4 Example Classify each nonzero element of Z20 as a unit or a 0 divisor. 

Solution The greatest common divisor of m and 20 is l if m = 1, 3, 7, 9, 11, 13, 17, 19, so these 
are all units. Form = 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, gcd(m, 20) > 1, so these are all 
0 divisors. We see that 

l · l = 3 · 7 = 9 · 9 = 11 · 11 = 13 · 17 = 19 · 19 = l E Z 20 

which verifies that each is a unit. We also see that 

2 · 10 = 4 · 5 = 6 · 10 = 8 · 15 = 12 · 5 = 14 · 10 = 16 · 5 = 18 · 10 = 0 E Z20 

which verifies that each of these is a 0 divisor in Z20 . 

23.5 Corollary If p is a prime number, then every nonzero element of Zp is a unit, which means that Zp 
is a field and it has no divisors of 0. 

Proof For any 0 < m '.'S p - I, gcd(m,p) = I. Som is a unit in Zp by Theorem 23.3. + 
The preceding corollary shows that when we consider the ring M11(Zp), we are talk­

ing about a ring of matrices over a field. In the typical undergraduate linear algebra 
course, only the field properties of the real or complex numbers are used in much of the 
work. Such notions as matrix reduction to solve linear systems, determinants, Cramer's 
rule, eigenvalues and eigenvectors, and similarity transformations to try to diagonalize a 
matrix are valid using matrices over any field; they depend only on the arithmetic prop­
erties of a field. Considerations of linear algebra involving notions of magnitude, such 
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as least-squares approximate solutions or orthonormal bases, make sense only when 
using fields where we have an idea of magnitude. The relation 

p·l=l+l+·· · + l=O 
p summands 

indicates that there can be no very natural notion of magnitude in the field 'llp . 
Another indication of the importance of the concept of 0 divisors is shown in the 

following theorem. Let R be a ring, and let a, b, c E R. The cancellation laws hold in 
R if ab = ac with a 'I 0 implies b = c, and ba = ea with a 'I 0 implies b = c. These 
are multiplicative cancellation laws. Of course, the additive cancellation laws hold in R, 
since (R, +) is a group. 

23.6 Theorem The cancellation laws hold in a ring R if and only if R has no divisors of 0. 

Proof Let R be a ring in which the cancellation laws hold, and suppose ab = 0 for some 
a, b E R. We must show that either a orb is 0. If a 'I 0, then ab = aO implies that b = 0 
by cancellation laws. Therefore, either a = 0 or b = 0. 

Conversely, suppose that R has no divisors of 0, and suppose that ab = ac with 
a 'I 0. Then 

ab - ac = a(b - c) = 0. 

Since a 'I 0, and since R has no divisors of 0, we must have b - c = 0, so b =c. 
A similar argument shows that ba = ea with a 'I 0 implies b = c. + 

Suppose that R is a ring with no divisors ofO. Then an equation ax = b, with a 'I 0, 
in R can have at most one solution x in R, for if ax1 = b and ax2 = b, then ax1 = ax2 , 

and by Theorem 23.6 x1 = x2 , since R has no divisors of 0. If R has unity 1 'I 0 and a is 
a unit in R with multiplicative inverse a- 1, then the solution x of ax = b is a- 1 b. In the 
case that R is commutative, in particular if R is a field, it is customary to denote a- 1 b 
and ba- 1 (they are equal by commutativity) by the formal quotient b/ a. This quotient 
notation must not be used in the event that R is not commutative, for then we do not 
know whether b/a denotes a - 1 b or ba- 1• In particular, the multiplicative inverse a - 1 of 
a nonzero element a of a field may be written l / a. 

In tegral Domains 

The integers are really our most familiar number system. In terms of the algebraic prop­
erties we are discussing, 'll is a commutative ring with unity and no divisors of 0. Surely 
this is responsible for the name that the next definition gives to such a structure. 

23.7 Definition An integral domain Dis a commutative ring with unity 1 'I 0 that contains no divisors 
~Q • 

Thus, if the coefficients of a polynomial are from an integral domain, one can solve 
a polynomial equation in which the polynomial can be factored into linear factors in 
the usual fashion by setting each factor equal to 0. 

In our hierarchy of algebraic structures, an integral domain belongs between a com­
mutative ring with unity and a field, as we shall show. Theorem 23.6 shows that the 
cancellation laws for multiplication hold in an integral domain. 

23.8 Example We have seen that 'll and 'llp for any prime p are integral domains, but 'lln is not an 
integral domain if n is not prime. A moment of thought shows that the direct product 
R x S of two nonzero rings R and S is not an integral domain. Just observe that for r E R 
and s E S both nonzero, we have (r, 0)(0, s) = (0, 0). .A. 
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23.9 Example Show that although Z2 is an integral domain, the matrix ring M2(Z2) has divisors of 
zero. 

Solution We need only observe that 

In a field, every nonzero element is a unit. We saw that units cannot be divisors of 
0, so in a field there are no divisors of 0. Since multiplication in a field is commutative, 
every field is an integral domain. 

Figure 23.10 gives a Venn diagram view of containment for the algebraic structures 
having two binary operations with which we will be chiefly concerned. In Exercise 26 
we ask you to redraw this figure to include strictly skew fields as well. 

We have seen that Ql, IR, C, and z,, for p a prime number are all fields. Theorem 
23.3 implies that if Z11 is an integral domain, then Z11 is a field. In fact, the next theorem 
says that any finite integral domain is a field. The proof of this theorem is a personal 
favorite of both authors. It is done by counting, one of the most powerful techniques in 
mathematics. 

Commutative 
rings 

Rings 
with 
unity 

23.10 Figure A collection of rings. 

23.11 Theorem Every finite integral domain is a field. 

Proof Let R be a finite integral domain and a a nonzero element of R. We wish to show there 
is an element b E R such that ab = 1. To this end, we define a function! : R --+ R by 

f(x) = ax. 

We first show thatf is a one-to-one function. Suppose thatf(x1) = f(x2), then 

Xt =X2 

since a f=. 0 and cancellation holds in an integral domain. Thus f is one-to-one. Since 
R is finite and f : R --+ R is one-to-one, f must also map onto R. Therefore, there is a 
b E R such that 

l=f(a) =ab=ba 

which verifies that a is a unit. • 
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The finite condition in Theorem 23.11 is necessary since Z is an infinite integral 
domain, which is not a field. The counting argument fails in the case where the integral 
domain is infinite since there are one-to-one functions from an infinite set to itself that 
are not onto. For example, multiplication by 2 is a one-to-one function mapping Z to Z, 
but 1 is not in the range of the function. 

In Section 39 we will see that other than Zp there are many finite integral domains 
and therefore fields. 

The Characteristic of a Ring 

Let R be any ring. We might ask whether there is a positive integer n such that n · a = 0 
for all a E R, where n · a means a + a + · · · + a for n summands, as explained in Sec­
tion 22. For example, the integer m has this property for the ring Z111 • 

23.12 Definition If for a ring R a positive integer n exists such that n · a = 0 for all a E R, then the least 
such positive integer is the characteristic of the ring R. If no such positive integer 
exists, then R is of character istic 0. • 

We shall use the concept of a characteristic chiefly for fields. Exercise 35 asks us 
to show that the characteristic of an integral domain is either 0 or a prime p. 

23.13 Example The ring Zn is of characteristic n, while Z, Q, JR., and C all have characteristic 0. .A. 

At first glance, determination of the characteristic of a ring seems to be a tough job, 
unless the ring is obviously of characteristic 0. Do we have to examine every element a 
of the ring in accordance with Definition 23.12? Our final theorem of this section shows 
that if the ring has unity, it suffices to examine only a = 1. 

23.14 Theorem Let R be a ring with unity. If n · 1 f= 0 for all n E z+, then R has characteristic 0. If 
n · 1 = 0 for some n E z+, then the smallest such integer n is the characteristic of R. 

Proof If n · 1 f= 0 for all n E z+, then surely we cannot have n · a = 0 for all a E R for some 
positive integer n, so by Definition 23.12, R has characteristic 0. 

Suppose that n is a positive integer such that n · 1 = 0. Then for any a E R, we have 

n · a = a+ a+ · · · +a = a( I + 1 + · · · + 1) = a(n · 1) = aO = 0. 

Our theorem follows directly. 

• EXERCISES 23 

Computations 

1. Find all solutions of the equation x3 - 2x2 - 3x = 0 in Z 12 -

2. Solve the equation 3x = 2 in the field /Z7; in the field Z23 . 

3. Find all solutions of the equation x2 + 2x + 2 = 0 in Z6. 

4. Find all solutions of x2 + 2x + 4 = 0 in Z6. 

In Exercises 5 through 10, find the characteristic of the given ring. 

7. /Z3 x 3/Z 

10. Z6 x Z 1s 

• 
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In Exercises 11 through 16, classify each nonzero element of the ring as a unit, a divisor of 0, or neither. 

13. Z ts 

16. Z4 x Zs 

17. Let R be a commutative ring with unity of characteristic 4. Compute and simplify (a+ b)4 for a, b E R. 

18. Let R be a commutative ring with unity of characteristic 3. Compute and simplify (a+ b)9 for a, b E R. 

19. Let R be a commutative ring with unity of characteristic 3. Compute and simplify (a+ b)6 for a, b E R. 

20. Show that the matrix [~ ;J is a divisor of zero in M2(Z). 

Concepts 

In Exercises 21 and 22, correct the definition of the italicized term without reference to the text, if correction is 
needed, so that it is in a form acceptable for publication. 

21. If ab = 0, then a and bare divisors of zero. 

22. If n ·a = 0 for all elements a in a ring R, then n is the characteristic of R. 

23. Determine whether each of the following is true or false. 

a. nZ has zero divisors if n is not prime. 
b. Every field is an integral domain. 

c. The characteristic of nZ is n. 
d. As a ring, Z is isomorphic to nZ for all n ~ 1. 

e. The cancellation law holds in any ring that is isomorphic to an integral domain. 

f. Every integral domain of characteristic 0 is infinite. 

g. The direct product of two integral domains is again an integral domain. 
h. A divisor of zero in a commutative ring with unity can have no multiplicative inverse. 

i. nZ is a subdomain of Z . 

j . Z is a subfield of Q. 

24. Each of the six numbered regions in Fig. 23.10 corresponds to a certain type of a ring. Give an example of a 
ring in each of the six cells. For example, a ring in the region numbered 3 must be commutative (it is inside 
the commutative circle), have unity, but not be an integral domain. 

25. (For students who have had a semester of linear algebra) Let F be a field. Give five different characterizations 
of the elements A of M,,(F) that are divisors of 0. 

26. Redraw Fig. 23.10 to include a subset corresponding to strictly skew fields . 

Proof Synopsis 

27. Give a one-sentence synopsis of the proof of the " if" part of Theorem 23.6. 

28. Give a two-sentence synopsis of the proof of Theorem 23.11. 

Theory 

29. An element a of a ring R is idempotent if a2 = a. Show that a division ring contains exactly two idempotent 
elements. 

30. Show that an intersection of subdomains of an integral domain Dis again a subdomain of D. 

31. Show that a finite ring R with unity 1 f= 0 and no divisors of 0 is a division ring. (It is actually a field, 
although commutativity is not easy to prove. See Theorem 32. 10.) [Note: In your proof, to show that a f= 0 
is a unit, you must show that a "left multiplicative inverse" of a f= 0 in R is also a "right multiplicative 
inverse."] 



200 Part V Rings and Fields 

32. Let R be a ring that contains at least two elements. Suppose for each nonzero a E R, there exists a unique 
b E R such that aba = a. 

a. Show that R has no divisors of 0. 
b. Show that bab = b. 

c. Show that R has unity. 

d. Show that R is a division ring. 

33. Show that the characteristic of a subdomain of an integral domain D is equal to the characteristic of D. 

34. Show that if D is an integral domain, then {n · I In E Z) is a subdomain of D contained in every subdomain 
of D. 

35. Show that the characteristic of an integral domain D must be either 0 or a prime p. [Hint: If the characteristic 
of Dis mn, consider (m · l)(n · 1) in D.] 

36. This exercise shows that every ring R can be enlarged (if necessary) to a ring S with unity, having the same 
characteristic as R. Let S = R x Z if R has characteristic 0, and R x Z n if R has characteristic n. Let addition 
in S be the usual addition by components, and let multiplication be defined by 

(r1 , n1)(r2, n2) = (r1r2 + n1 · r2 + n2 · r1,n1n2) 

where n · r has the meaning explained in Section 22. 

a. Show that S is a ring. 

b. Show that S has unity. 
c. Show that S and R have the same characteristic. 

d. Show that the map</> : R --+ S given by </>(r) = (r, 0) for r E R maps R isomorphically onto a subring of S. 

SECTION 24 F ERMAT'S AND E ULER 'S THEOREMS 

Fermat's Th eorem 

We know that as additive groups, Z n and Z/nZ are naturally isomorphic, with the coset 
a+ nZ corresponding to a for each a E Z n. Furthermore, addition of cosets in Z/nZ 
may be performed by choosing any representatives, adding them in Z, and finding the 
coset of nZ containing their sum. It is easy to see that Z/nZ can be made into a ring by 
multiplying cosets in the same fashion, that is, by multiplying any chosen representa­
tives. While we will be showing this later in a more general situation, we do thi s special 
case now. We need only show that such coset multiplication is well defined, because the 
associativity of multiplication and the distributive laws will follow immediately from 
those properties of the chosen representatives in Z . To this end, choose representatives 
a + rn and b + sn, rather than a and b, from the cosets a + nZ and b + nZ. Then 

(a+ rn)(b + sn) = ab +(as+ rb + rsn)n, 

which is also an element of ab + nZ . Thus the multiplication is well-defined, and our 
cosets form a ring isomorphic to the ring Z 11 • 

Exercise 39 in Section 22 asks us to show that the units in a ring form a group 
under the multiplication operation of the ring. This is a very useful fact that we will use 
to provide simple proofs for both Fermat's Little Theorem and Euler's generalization. 
We start with Fermat's Theorem. 

24.1 T heorem (Little T heorem of Fermat) If a E Z and p is a prime not dividing a, then p divides 
ar-1 - 1, that is, ar- 1 = 1 (mod p) for a¥= 0 (mod p). 

Proof The ring Zr is a field, which implies that all the nonzero elements are units. Thus (Z;, ·) 
is a group with p - 1 elements. Any bin the group z; has order a divisor of 1z;1 = 
p - 1. Therefore 
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bp-I = 1 E Zp. 

The rings Zp and Z/pZ are isomorphic where the element b E Zr corresponds to 
the coset b + pZ. For any integer a that is not a multiple of p, a + pZ = b + pZ for 
some 0 :::: b :::: p - 1. Thus 

(a+ pZY- 1 = (b + pZY- 1 = 1 + pZ E Z/pZ. 

In other words, 
ap- I = 1 (mod p). 

24.2 Corollary If a E Z, then a''= a (mod p) for any prime p . 

• 

Proof The corollary follows from Theorem 24. I if a ~ 0 (mod p ). If a = 0 (mod p ), then both 
sides reduce to 0 modulo p. + 

24.3 Example Let us compute the remainder of 8103 when divided by 13. Using Fermat's theorem, we 
have 

3103 = (812)8(87) = (18)(87) = 37 = (-5)7 

= (25)3(-5) = (-1)3(-5) = 5 (mod 13). 

• HISTORICAL NOTE 

T he statement of Theorem 24.1 occurs in a 
Jetter from Pierre de Fermat (1601-1665) 

to Bernard Frenicle de Bessy, dated I 8 October 
1640. Fermat's version of the theorem was that 
for any prime p and any geometric progression 
a, a2, · · · , a', · · · , there is a least number aT of the 
progression such that p divides aT - 1. Further­
more, T divides p - I and p also divides all num­
bers of the form aKT - 1. (It is curious that Fermat 
failed to note the condition that p not divide a; per­
haps he felt that it was obvious that the result fails 
in that case.) 

Fermat did not in the letter or elsewhere indi­
cate a proof of the result and, in fact, never men­
tioned it again. But we can infer from other parts 

of this correspondence that Fermat's interest in this 
result came from his study of perfect numbers. 
(A perfect number is a positive integer m that is 
the sum of all of its divisors less than m; for ex­
ample, 6 = 1 + 2 + 3 is a perfect number.) Euclid 
had shown that 211

-
1 (2" - 1) is perfect if 2" - 1 

is prime. The question then was to find methods 
for determining whether 2" - 1 was prime. Fermat 
noted that 2" - 1 was composite if n is composite, 
and then derived from his theorem the result that if 
n is prime, the only possible divisors of 2" - 1 are 
those of the form 2kn + 1. From this result he was 
able quickly to show, for example, that 237 - 1 was 
divisible by 223 = 2 · 3 · 37 + I. 

24.4 Example Show that 211·213 - 1 is not divisible by 11. 

Solution By Fermat's theorem, 210 = 1(mod11), so 

211 ,213 - 1 = [(210)1 ,121 . 23) - 1 = [11 ,121 23) - 1 

= 23 - 1 = 8 - 1 = 7 (mod 11). 

Thus the remainder of 211 ·213 - 1 when divided by 11 is 7, not 0. (The number 11 ,213 
is prime, and it has been shown that 211·213 - 1 is a prime number. Primes of the form 
2P - I where p is prime are known as Mersenne primes.) .A 
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24.5 Example Show that for every integer n, the number n33 - n is divisible by 15. 

Solution This seems like an incredible result. It means that 15 divides 233 - 2, 333 - 3, 433 - 4, 
etc. 

Now 15 = 3 · 5, and we shall use Fermat's theorem to show that n33 - n is divisible 
by both 3 and 5 for every n. Note that n33 - n = n(n32 

- 1). 
If 3 divides n, then surely 3 divides n(n32 - 1). If 3 does not divide n, then by 

Fermat's theorem, n2 = 1 (mod 3) so 

n32 
- 1 = (n2

)
16 

- 1 = 116 
- 1 = 0 (mod 3), 

and hence 3 divides n32 - 1. 
If n = 0 (mod 5), then n33 - n = 0 (mod 5). If n ~ 0 (mod 5), then by Fermat's 

theorem, n4 = 1 (mod 5), so 

n32 
- 1 = (n4

) 8 - 1 = 18 - 1 = 0 (mod 5). 

Thus n33 - n = 0 (mod 5) for every n also. 

Euler's Generalization 

Theorem 23.3 classifies all the elements in Zn into three categories. An element k in Z,, 
is either 0, a unit if the gcd(n, k) = 1, or else a divisor of 0 if gcd(n, k) > 1. Exercise 39 
in Section 22 shows that the units in a ring form a group under multiplication. Therefore, 
the set of nonzero elements in Z ,,, which are relatively prime ton, form a multiplicative 
group. Euler's generalization of Fermat's theorem is based on the number of units in Z,, . 

Let n be a positive integer. Let rp(n) be defined as the number of positive integers 
less than or equal ton and relatively prime ton. Note that rp(l) = 1. 

24.6 Example Let n = 12. The positive integers less than or equal to 12 and relatively prime to 12 are 
1, 5, 7, and 11, so rp(l2) = 4. .&. 

By Theorem 23.3, rp(n) is the number of nonzero elements of Z,, that are not 
divisors of 0. This function rp : z+ --+ z+ is the Euler phi-function. We can now de­
scribe Euler's generalization of Fermat's theorem. 

24.7 Theorem (Euler's Theorem) If a is an integer relatively prime to n, then a <fJ(n) - 1 is divisible 
by n, that is, a'P<11l = 1 (mod n). 

Proof If a is relatively prime ton, then the coset a + nZ of nZ containing a contains an integer 
b < n and relatively prime to n. Using the fact that multiplication of these cosets by 
multiplication modulo n of representatives is well-defined, we have 

a <p(n) = b <fJ(ll) (mod n). 

But by Theorem 23.3, b can be viewed as an element of the multiplicative group G, of 
order rp(n) consisting of the rp(n) elements of Z,, relatively prime ton. Thus 

b <fJ(ll) = 1 (mod n), 

and our theorem follows. • 
24.8 Example Let n = 12. We saw in Example 24.6 that rp(l2) = 4 . Thus if we take any integer a 

relatively prime to 12, then a4 = 1 (mod 12). For example, with a= 7, we have 74 = 
(49)2 = 2, 401 = 12(200) + 1, so 74 = 1(mod12). Of course, the easy way to compute 
74 (mod 12), without using Euler's theorem, is to compute it in Z 12 . In Z 12, we have 
7 = -5 so 

72 = (- 5)2 = (5)2 = 1 and 74 = 12 = 1. 
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Application to ax = b (mod m) 

We can find all solutions of a linear congruence ax = b (mod m). We prefer to work 
with an equation in Z111 and interpret the results for congruences. 

24.9 Theorem Let m be a positive integer and let a E Z111 be relatively prime to m. For each b E Z111 , 

the equation ax = b has a unique solution in Zm. 

Proof By Theorem 23.3, a is a unit in Zm and s = a- 'b is certainly a solution of the equation. 
Multiplying both sides of ax = b on the left by a- 1, we see this is the only solution . 

• 
Interpreting this theorem for congruences, we obtain at once the following 

corollary. 

24.10 Corollary If a and m are relatively prime integers, then for any integer b, the congruence ax = 
b (mod m) has as solutions all integers in precisely one residue class modulo m. + 

Theorem 24.9 serves as a lemma for the general case. 

24.11 Theorem Let m be a positive integer and let a, b E Zm. Let d be the gcd of a and m. The equation 
ax = b has a solution in Z111 if and only if d divides b. When d divides b, the equation 
has exactly d solutions in Zm. 

Proof First we show there is no solution of ax = b in Zm unless d divides b. Suppose s E Zm 
is a solution. Then as - b = qm in Z, so b = as - qm. Since d divides both a and m, we 
see that d divides the right-hand side of the equation b = as - qm, and hence divides b. 
Thus a solution s can exist only if d divides b. 

Suppose now that d does divide b. Let 

a= a 1d, b = b1d , and m = m 1d. 

Then the equation as - b = qm in Z can be rewritten as d(a 1 s - b1) = dqm1• We see 
that as - bis a multiple of m if and only if a1s - b1 is a multiple of m1• Thus the solu­
tions s of ax = b in Z111 are precisely the elements that, read modulo m 1, yield solutions 
of a 1x = b1 in Z 1111 • Now lets E Zm, be the unique solution of a 1x = b1 in Zm, given by 
Theorem 24.9. The numbers in Zm that reduce to s modulo m1 are precisely those that 
can be computed in Zm as 

s,s+m1, s+2m1,s+3m1,.·· ,s+(d- l )m1• 

Thus there are exactly d solutions of the equation in Z111 • • 
Theorem 24.11 gives us at once this classical result on the solutions of a linear 

congruence. 

24.12 Corollary Let d be the gcd of positive integers a and m. The congruence ax = b (mod m) has a 
solution if and only if d divides b. When this is the case, the solutions are the integers 
in exactly d distinct residue classes modulo m. + 

Actually, our proof of Theorem 24.11 shows a bit more about the solutions of 
ax = b (mod m) than we stated in this corollary; namely, it shows that if any solu­
tion s is found, then the solutions are precisely all elements of the residue classes 
(s + km1) + (mZ) where m1 = m/ d and k runs through the integers from 0 to d - I. 
It also tells us that we can find such ans by finding a 1 = a/d and b1 = b/ d, and solving 
a 1x = b1 (mod m1). To solve this congruence, we may consider a 1 and b1 to be replaced 
by their remainders modulo m1 and solve the equation a1x = b1 in Zm,. 
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24.13 Example Find all solutions of the congruence 12.x = 27 (mod 18). 

Solution The gcd of 12 and 18 is 6, and 6 is not a divisor of 27. Thus by the preceding corollary, 
there are no solutions. "' 

24.14 Example Find all solutions of the congruence I 5x = 27 (mod 18). 

Solution The gcd of 15 and 18 is 3, and 3 does divide 27. Proceeding as explained before Ex­
ample 24.13, we divide everything by 3 and consider the congruence 5x = 9 (mod 6), 
which amounts to solving the equation 5x = 3 in Z6 . Now the units in Z6 are 1 and 
5, and 5 is clearly its own inverse in this group of units. Thus the solution in Z6 is 
x = (5- 1 )(3) = (5)(3) = 3. Consequently, the solutions of I 5x = 27 (mod 18) are the 
integers in the three residue classes 

3 + 18Z = {· · · , -33, -15,3,21,39, · · ·}, 

9 + 18Z = {· · ·, -27, -9, 9, 27, 45, · · · }. 

15 + 18Z = {· · · , -21, -3, 15, 33, 51, · · ·}, 

illustrating Corollary 24.12. Note the d = 3 solutions 3, 9, and 15 in Z 1s. All the 
solutions in the three displayed residue classes modulo 18 can be collected in the 
one residue class 3 + 6Z modulo 6, for they came from the solution x = 3 of 5x = 3 

in Z6. "' 

• EXERCISES 24 

Computations 

We will see later that the multiplicative group of nonzero elements of a finite field is cyclic. Illustrate this by finding 
a generator for this group for the given finite field. 

1. Z1 2. Z 11 3. Z11 
4. Using Fermat's theorem, fi nd the remainder of 347 when it is divided by 23. 

5. Use Fermat's theorem to find the remainder of 3749 when it is divided by 7. 

6. Compute the remainder of 2<
2 11

l + 1 when divided by 19. [Hint: You will need to compute the remainder of 
2 17 modulo 18.] 

7. Make a table of values of cp(n) for n _::: 30. 

8. Compute cp(p2) where p is a prime. 

9. Compute cp(pq) where both p and q are primes. 

10. Use Euler's generalization of Fermat's theorem to find the remainder of 71000 when divided by 24. 

In Exercises 11 through 18, describe all solutions of the given congruence, as we did in Examples 24.13 and 24.14. 

11. 2x = 6 (mod 4) 

13. 36x = 15 (mod 24) 

15. 39x = 125 (mod 9) 

17. 155x = 75 (mod 65) 

12. 22x = 5 (mod 15) 

14. 45x = 15 (mod 24) 

16. 4 lx = 125 (mod 9) 

18. 39x = 52 (mod 130) 
19. Let p be a prime ~3. Use Exercise 28 below to find the remainder of (p - 2) ! modulo p. 

20. Using Exercise 28 below, find the remainder of 34! modulo 37. 

21. Using Exercise 28 below, find the remainder of 49! modulo 53. 

22. Using Exercise 28 below, find the remainder of 24! modulo 29. 
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Concepts 

23. Determine whether each of the following is true or false. 

a. ap- l = 1 (mod p) for all integers a and primes p . 

b. aP-l = I (mod p) for all integers a such that a¥:- 0 (mod p) for a prime p. 

C. cp(n):::: n for all n E z+. 
d. cp(n) :::: n - 1 for all n E z+. 
e. The units in Zn are the positive integers less than n and relatively prime ton. 

f. The product of two units in Z,, is always a unit. 
g. The product of two non units in Z,, may be a unit. 
h. The product of a unit and a nonunit in Z,, is never a unit. 

i. Every congruence ax = b (mod p), where p is a prime, has a solution. 

j. Let d be the gcd of positive integers a and m. If d divides b, then the congruence ax = b (mod m) has 
exactly d incongruent solutions. 

24. Give the group multiplication table for the multiplicative group of units in Z 12. To which group of order 4 is it 
isomorphic? 

Proof Synopsis 
25. Give a one-sentence synopsis of the proof of Theorem 24.1. 

26. Give a one-sentence synopsis of the proof of Theorem 24. 7. 

Theory 

27. Show that 1 and p - 1 are the only elements of the field Zp that are their own multiplicative inverse. [Hint: 

Consider the equation x2 - 1 = 0.] 

28. Using Exercise 27, deduce the half of Wilson 's theorem that states that if p is a prime, then (p- l)! = -1 
(mod p). [The other half states that if n is an integer > 1 such that (n - l)! = -1 (mod n), then n is a prime. 
Just think what the remainder of (n - l)! would be modulo n if n is not a prime.] 

29. Use Fermat's theorem to show that for any positive integer n, the integer n37 - n is divisible by 383838. [Hint: 
383838 = (37)(19)( 13)(7)(3)(2).] 

30. Referring to Exercise 29, find a number larger than 383838 that divides n37 - n for all positive integers n. 

SECTION 25 ENCRYPTION 

An encryption scheme is a method to disguise a message so that it is extremely difficult 
for anyone other than the intended receiver to read. The sender encrypts the message 
and the receiver decrypts the message. One method, called cypher encryption, requires 
the sender to use a permutation of the letters in the alphabet to replace each letter with a 
different letter. The receiver then uses the inverse of the permutation to recover the orig­
inal message. This method has two major weaknesses. First, both the sender and the 
receiver need to know the permutation, but no one else should know the permutation or 
else the message is not secure. It would be difficult to implement a cypher for a trans­
action when a company wishes to receive many orders each day, each using a different 
permutation that only the customer and the company know. Furthermore, cyphers are 
generally not difficult to crack. In fact, some newspapers carry a daily puzzle, which is 
essentially decrypting an encrypted message. 

Researchers in the second half of the twentieth century sought a method that allows 
the receiver to publish public information that any sender could use to encrypt a mes­
sage, yet only the receiver could decrypt it. This means that knowing how a message 
was encrypted is little help in decryption. This method relies on a function that is easy 
for computers to compute, but whose inverse is virtually impossible to compute without 
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more information. Functions of this type are called trap door functions . Most commer­
cial online transactions are communicated with trap door functions. This allows anyone 
to make a secure credit card purchase with little risk of a third party gaining private 
information. 

RSA Public and Private Keys 

Euler's generalization of Fermat's Theorem is the basis of a very common trap door 
encryption scheme referred to as RSA encryption. RSA comes from the names of the 
three inventors of the system, Ron Rivest, Adi Shamir, and Leonard Adleman. The trap 
door function relies on the fact that it is easy to multiply two large prime numbers, but 
if you are only given their product, it is very difficult to factor the number to recover 
the two prime numbers. The following theorem is the key to this encryption scheme. 

25.1 Theorem Let n = pq where p and q are distinct prime numbers. If a E Z with gcd(a,pq) = 1 and 
w = 1 (mod (p - l)(q - 1)), then aw = a (mod n). 

Proof Since w = 1 (mod (p - l)(q - 1)), we can write 

w=k(p-l)(q-1)+ I 

for some integer k. Recall that the Euler phi-function <f>(n) counts the number of positive 
integers less than or equal to n that are relatively prime to n. Since n = pq, we can 
compute <f>(pq) by subtracting the number of integers less than n that are divisible by 
either p or q from n - 1. There are p - 1 multiples of q and q - 1 multiples of p that 
are less than pq. Furthermore, the least common multiple of p and q is pq since p and q 

are distinct primes. Thus 

<f>(pq) = (pq - I) - (p - 1) - (q - I) 

=pq-p-q+ 1 

= (p - l)(q - 1). 

By Euler's Theorem (Theorem 24.7), 

aw = ak(p-I)(q- l )+ l 

=a (a(p-l )(q- l )) k 

=a (a<f>(n) / 

= a(l k) 

=a (mod n). • 
The RSA encryption scheme requires two sets of positive integers called the private 
key and the public key. The private key is known only by the person who will receive 
the message, and the public key is available to anyone who wishes to send a message to 
the receiver. 

The private key consists of 

• Two prime numbers p and q with p f= q. 
• The product n = pq. 

• An integer 1 < r < (p - l )(q - 1) - 1 that is relatively prime to (p - l )(q - 1). 

We know that r has an inverse in z(p- I )(q- 1) since r is relatively prime to 
(p - l)(q - 1). 
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The public key consists of 

• The integers where 1 < s < (p - l)(q - 1) and s is the inverse of r in Z (p - l)(q- IJ-

• The product n = pq. 

The public key does not include p , q, r, or (p - l)(q - 1). Knowing any of these 
numbers and the numbers in the public key would make it relatively easy to decrypt any 
encrypted message. 

We can now give the encryption and decryption algorithms. The sender wishes 
to send a message to the receiver. We will assume the message is simply a number 
between 2 and n - 1. To send a text message, the sender would use a standard way of 
representing the text as a number, such as the ASCII code. A long text would be broken 
up into smaller texts so that each would be coded as a number in the allowable range 
2 to n - 1 and each would be sent separately. Let 2 :S m :S n - 1 be the message to be 
sent. 

Encryption Using the public key, the sender encrypts the message as a number 0 :S y :S n - 1 to be 
sent to the receiver where 

y = ms (mod n). 

That is, the sender computes y to be the remainder when m s is divided by n and sends y 
to the receiver. 

Decryption Using the private key, the receiver decrypts y, the message received from the sender, by 
computing 

yr (mod n), 

the remainder when yr is divided by n. Since rs = 1 (mod(p - l)(q - 1)), Theorem 25.1 
says, 

yr = (ms)' = mrs = m (mod n). 

Thus the receiver reconstructs the original message m. 
Of course, in practice the prime numbers p and q are very large. As of the writ­

ing of this book it is thought that prime numbers requiring 4096 bits or approximately 
1200 digits are sufficient to make the RSA scheme secure. To illustrate how the process 
works, we will use small primes. 

25.2 Example Let p = 17 and q = 11. The private key consists of 

• p=l7,q=l l , 
• n = pq = 187 and 
• a number r relatively prime to (p - l)(q - 1) = 160. For this example we take 

r = 23. 

The public key consists of 

• n = 187 and 
• s = 7. A little calculation shows that 23 · 7 = 161 = 160 + 1 = 1 (mod 160), 

which implies that s = 7. Since the public key consists of only n and s, 
(p - l )(q - 1) is unknown to all but the receiver. Without knowing (p - l )(q - 1), 
the value of r cannot be determined from the value of s. 

Suppose the sender wishes to send the message m = 2 to the the receiver. The 
message is encrypted by computing 

y = 27 = 128 (mod 187). 
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The receiver recovers the original message by computing 

12823 = 2 (mod 187). 

In Example 25.2 some of the computations would be long and tedious without the use 
of a computer. For large primes p and q, it is essential to have an efficient algorithm 
to compute m 5 (mod n) and yr (mod n). This can be accomplished by using base 2. We 
illustrate with the following example. 

25.3 Example In Example 25.2 we needed to compute 12823 (mod 187). We can compute this value 
by expressing 23 in base 2, 23 = 16 + 4 + 2 + 1, and then computing the following: 

Thus 

1281 = 128 

1282 = 1638 = 115 (mod 187) 

1284 = (1282)2 = 1152 = 135 (mod 187) 

1288 = (1284
)
2 = 1352 = 86 (mod 187) 

12816 = (1288
)
2 = 862 = 103 (mod 187), 

12823 = 12816+4+2+1 

= (128161284)(1282 1281) 

= (103. 135)(115. 128) 

= 67. 134 

= 2 (mod 187). 

As illustrated in the above example, this method gives a more efficient computation 
of ak (mod n). 

The Euclidean algorithm is a simple and efficient way to compute the inverse of a 
unit in Z(p- l)(q- IJ- It involves the repeated use of the division algorithm. However, we 
will not discuss the Euclidean algorithm here. 

The reader may have noticed a potential flaw in the RSA encryption scheme. It is 
possible that m is a multiple of either p or q. In that case, m <P-IJ(q-I) 'f=. I (mod n), which 
means that mrs may not be equivalent to m modulo n. In this case RSA encryption fails. 
However, when using large prime numbers the probability that the message is a multiple 
of p or q is extremely low. If one is concerned about this issue, the algorithm could be 
modified slightly to be sure that the message is smaller than both p and q. 

How are the large prime numbers p and q in RSA encryption found? Basically, 
the process is to guess a value and check that it is prime. Unfortunately, there is no 
known fast method to test for primality, but it is possible to do a fast probabilistic test. 
One simple probabilistic test uses Fermat's Theorem (Theorem 24.1). The idea is to 
generate a random positive integer less than p and check if a r - 1 = 1 (modp). If p is 
prime, then ar- 1 = 1 (mod p), so if ar- 1 'f=. 1 (mod p), then p is not a prime number 
and the number p is rejected. On the other hand, if ar-1 = 1 (mod p), then p passes the 
test and p could be a prime. If p passes the test, we repeat the process for a different 
random value of a. The probability that a composite number p is picked given that p 
passes the test several times is low enough to safely assume that p is prime. 
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• EXERCISES 25 

In Exercises 1 through 8, the notation is consistent with the notation used in the text for RSA encryption. It may 
be helpful to use a calculator or computer. 

1. Let p = 3 and q = 5. Find n, and all possible pairs (r, s). 

2. Let p = 3 and q = 7. Find n and all possible pairs (r, s). 

3. Let p = 3 and q = 11. Find n and all possible pairs (r, s). 

4. Let p = 5 and q = 7. Find n and all possible pairs (r, s). 

5. Let p = 13, q = 17, and r = 5. Find the value of s. 

6. For RSA encryption it is assumed that the message m is at least 2. Why should m not be 1? 

7. The public key is n = 143 and s = 37. 

a. Compute the value of y if the message ism = 25. 
b. Find r. (Computer Algebra Systems have built-in functions to compute in 1'.:111 .) 

c. Use your answers to parts a) and b) to decrypt y. 

8. The public key is n = 1457 and s = 239. 

a. Compute the value of y if the message is m = 999. 

b. Find r. (Computer Algebra Systems have built-in functions to compute in 1'.:111 .) 

c. Use your answers to parts a) and b) to decrypt y. 

9. For p = 257, q = 359, and r = 1493 identify the private and public keys. 
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