PART I: _Elementary Theory of Sets

Chapter 1

Sets and Basic Operations on Sets

1.1 INTRODUCTION

The concept of a set appears in all branches of mathematics. This concept formalizes the idea of
grouping objects together and viewing them as a single entity. This chapter introduces this notion of a
set and its members. We also investigate three basic operations on sets, that is, the operations union,
intersection, and complement.

Although logic is formally treated in Chapter 10, we indicate here the close relationship between set
theory and logic by showing how Venn diagrams, pictures of sets, can be used to determine the validity
of certain arguments. The relation between set theory and logic will be further explored when we discuss
Boolean algebra in Chapter 11.

1.2 SETS AND ELEMENTS

A set may be viewed as any well-defined collection of objects; the objects are called the elements or
members of the set.
Although we shall study sets as abstract entities, we now list ten examples of sets:

(1) The numbers 1, 3, 7, and 10.
(2) The solutions of the equation ¥ -3x-2=0.
(3) The vowels of the English alphabet: a, e, i, o, u.
(4) The people living on the earth.
(5) The students Tom, Dick, and Harry.
(6) The students absent from school.
(7) The countries England, France, and Denmark.
(8) The capital cities of Europe.
(9) The even integers: 2, 4, 6, ....

(10) The rivers in the United States.

Observe that the sets in the odd-numbered examples are defined, that is, specified or presented, by
actually listing its members; and the sets in the even-numbered examples are defined by stating properties
or rules which decide whether or not a particular object is a member of the set.

Notation
A set will usually be denoted by a capital letter, such as,
A,B,X,Y,...,

whereas lower-case letters, a,b, ¢, x, y,z,... will usually be used to denote elements of sets.
There are essentially two ways to specify a particular set, as indicated above. One way, if possible, is
to list its elements. For example,

A ={a,e,i, o, u}

means that 4 is the set whose elements are the letters a, ¢, i, 0, u. Note that the elements are separated by
commas and enclosed in braces { }. This is sometimes called the tabular form of a set.
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2 SETS AND BASIC OPERATIONS ON SETS [CHAP. 1

The second way is to state those properties which characterize the elements in the set, that is,
properties held by the members of the set but not by nonmembers. Consider, for example, the expression

B = {x: x is an even integer, x > 0}
which reads:
“B is the set of x such that x is an even integer and x > 0”

It denotes the set B whose elements are the positive even integers. A letter, usually x, is used to denote a
typical member of the set; the colon is read as “‘such that” and the comma as ““and”. This is sometimes
called the set-builder form or property method of specifying a set.
Two sets A and B are equal, written A = B, if they both have the same elements, that is, if every
element which belongs to 4 also belongs to B, and vice versa. The negation of 4 = B is written 4 # B.
The statement “p is an element of 4” or, equivalently, the statement “p belongs to 4™ is written

peA
We also write
a,be A

to state that both a and b belong to A. The statement that p is not an element of A4, that is, the negation
of p € A, is written

p¢A

Remark: It is common practice in mathematics to put a vertical line ““|” or slanted line *‘/” through
a symbol to indicate the opposite or negative meaning of the symbol.

EXAMPLE 1.1

(a) The set 4 above can also be written as

A = {x: x is a letter in the English alphabet, x is a vowel}
Observe that b ¢ 4, e € A, and p € A.
(b) We cannot list all the elements of the above set B, although we frequently specify the set by writing
B={2,4/6,...}
where we assume everyone knows what we mean. Observe that 8 € B, but 9 ¢ B.

(¢) LetE = {x:x*—3x+2=0}. In other words, E consists of those numbers which are solutions of the equation
x? — 3x + 2 = 0, sometimes called the solution set of the given equation. Since the solutions are 1 and 2, we
could also write E = {1,2}.

(d) Let E={x:x>—3x+2=0}, F={2,1}, and G={1,2,2,1,6/3}. Then E = F = G since each consists
precisely of the elements 1 and 2. Observe that a set does not depend on the way in which its elements are
displayed. A set remains the same even if its elements are repeated or rearranged.

Some sets of numbers will occur very often in the text, and so we use special symbols for them.
Unless otherwise specified, we will let:
N = the set of nonnegative integers: 0, 1,2, ...
P = the set of positive integers: 1,2,3,...
Z = the set of integers: ...,—2,—1,0,1,2,...
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers
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Even if we can list the elements of a set, it may not be practical to do so. For example, we would not
list the members of the set of people born in the world during the year 1976 although theoretically it is
possible to compile such a list. That is, we describe a set by listing its elements only if the set contains a
few elements; otherwise we describe a set by the property which characterizes its elements.

1.3 UNIVERSAL SET, EMPTY SET

All sets under investigation in any application of set theory are assumed to be contained in some
large fixed set called the universal set or universe. For example, in plane geometry, the universal set
consists of all the points in the plane, and in human population studies the universal set consists of all the
people in the world. We will denote the universal set by

U

unless otherwise specified.
Given a universal set U and a property P, there may be no element in U which has the property P.
For example, the set

S = {x: x is a positive integer, x* = 3}

has no elements since no positive integer has the required property. This set with no elements is called
the empty set or null set, and is denoted by

%]

(based on the Greek letter phi). There is only one empty set: If S and T are both empty, then S =T
since they have exactly the same elements, namely, none.

1.4 SUBSETS

Suppose every element in a set A4 is also an element of a set B; then A is called a subset of B. We also
say that A is contained in B or B contains A. This relationship is written

ACB or BDOA

If A is not a subset of B, that is, if at least one element of 4 does not belong to B, we write 4 Z B or
B2 A.

EXAMPLE 1.2

(a) Consider the sets

A4={1,3,5,8,9}, B=1{1,2,3,5,7}, C={1,5}

Then C C 4 and C C Bsince 1 and 5, the elements of C, are also elements of 4 and B. But B A since some of
its elements, e.g., 2 and 7, do not belong to A. Furthermore, since the elements in the sets 4, B, C must also
belong to the universal set U, it is clear that U must at least contain the set {1,2,3,4,5,6,7,8,9}.

(b) Let P,N,Z,Q,R be defined as in Section 1.2. Then:

PCNCZCQCR

(c) The set E = {2,4,6} is a subset of the set F = {6,2,4}, since each number 2, 4, and 6 belonging to E also
belongs to F. In fact, E = F. Similarly, it can be shown that every set is a subset of itself.
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The following properties of sets should be noted:

(i) Every set A is a subset of the universal set U since, by definition, all the elements of A belong to U.
Also the empty set F is a subset of 4.
(ii) Every set A is a subset of itself since, trivially, the elements of 4 belong to A4.
(iii) If every element of 4 belongs to a set B, and every element of B belongs to a set C, then clearly
every element of 4 belongs to C. In other words, if 4 C Band BC C, then 4 C C.

(iv) If A C Band B C A, then 4 and B have the same elements, i.e., A = B. Conversely, if 4 = B then
A C B and B C A since every set is a subset of itself.

We state these results formally.

Theorem 1.1: (i) For any set 4, we have @ C 4 C U.
(i) For any set 4, we have 4 C 4.
(iii) IfACBand BC C,then 4 CC.
(ivy A=Bifand only if 4 C Band B C 4.

Proper Subset

If A C B, then it is still possible that 4 = B. When 4 C B but 4 # B, we say that A is a proper subset
of B. We will write A C B when 4 is a proper subset of B. For example, suppose

A={1,3}, B={1,2,3}, c={1,3,2}
Then A and B are both subsets of C; but 4 is a proper subset of C, whereas B is not a proper subset of C.
Disjoint Sets
Two sets 4 and B are disjoint if they have no elements in common. For example, suppose
A ={1,2}, B={2,4,6}, C={4,5,6,7}

Note that 4 and B are not disjoint since they both contain the element 2. Similarly, B and C are not
disjoint since they both contain the element 4, among others. On the other hand, 4 and C are disjoint
since they have no element in common. We note that if two sets 4 and B are disjoint sets then neither is a
subset of the other (unless one is the empty set).

1.5 VENN DIAGRAMS

A Venn diagram is a pictorial representation of sets where sets are represented by enclosed areas in
the plane. The universal set U is represented by the points in a rectangle, and the other sets are
represented by disks lying within the rectangle. If 4 C B, then the disk representing A will be entirely
within the disk representing B, as in Fig. 1-1(a). If 4 and B are disjoint, i.e., have no elements in
common, then the disk representing 4 will be separated from the disk representing B, as in Fig. 1-1(b).

On the other hand, if 4 and B are two arbitrary sets, it is possible that some elements are in 4 but
not B, some elements are in B but not 4, some are in both 4 and B, and some are in neither 4 nor B;
hence, in general, we represent 4 and B as in Fig. 1-1(c).

U U U

()

@ACB (b) 4 and B are disjoint ©

Fig. 1-1
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1.6 SET OPERATIONS

The reader has learned to add, subtract, and multiply in the ordinary arithmetic of numbers; that is,
to each pair of numbers a and b, we assign a number a + b called the sum of a and b, a number a — b
called the difference of a and b, and a number ab called the product of a and b. These assignments are
called the operations of addition, subtraction, and multiplication of numbers. This section defines a
number of set operations, including the basic operations of union, intersection, and difference of sets,
where new sets will be assigned to pairs of sets 4 and B. We will see that set operations have many
properties similar to the above operations on numbers.

Union and Intersection

The union of two sets 4 and B, denoted by 4 U B, is the set of all elements which belong to 4 or B;
that is,

AUB={x:x€ Aor x € B}
Here “or” is used in the sense of and/or. Figure 1-2(a) is a Venn diagram in which 4 U B is shaded.

The intersection of two sets A and B, denoted by 4 N B, is the set of all elements which belong to
both 4 and B; that is,

ANB={x:x€ A and x € B}
Figure 1-2(b) is a Venn diagram in which 4 N B is shaded.

Recall that sets 4 and B are said to be disjoint if they have no elements in common. Accordingly,
using the above notation, 4 and B are disjoint if 4 N B = (J, the empty set.

(a) A U B is shaded (b) A N B is shaded

Fig. 1-2
EXAMPLE 1.3
(a) Let 4={1,2,3,4}, B={3,4,56,7}, C = {2,3,8,9}. Then
AUB=/{1,2,3,4,5,6,7}, ANB={3,4}

AUC={1,23,4,8,9}, ANC={2,3}
BUC ={2,3,4,5,6,7,8,9},  BNC={3}

(b) Let U denote the set of students at a university, and let M and F denote, respectively, the set of male and female
students at the university. Then

MUF=U

since each student in U is either in M or in F. On the other hand,

MNF=(
since no student belongs to both M and F.
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The following properties of the union and intersection of sets should be noted:

(i) Every element x in 4 N B belongs to both 4 and B; hence x belongs to 4 and x belongs to B. Thus
AN Bis a subset of 4 and of B, that is,

ANBCA and ANBCB

(ii) An element x belongs to the union 4 U B if x belongs to 4 or x belongs to B; hence every element
in 4 belongs to A U B, and also every element in B belongs to 4 U B. That is,

ACAUB and BC AUB

We state the above results formally.
Theorem 1.2: For any sets A and B, we have
ANBCACAUB  and ANBCBC AUB

The operation of set inclusion is also closely related to the operations of union and intersection, as
shown by the following theorem, proved in Problem 1.13.

Theorem 1.3: The following are equivalent:
ACB, ANB=A, AUB=B

Other conditions equivalent to 4 C B are given in Problem 1.51.

Complement

Recall that all sets under consideration at a particular time are subsets of a fixed universal set U.
The absolute complement, or, simply, complement of a set A, denoted by A°, is the set of elements which
belong to U but which do not belong to 4; that is,

A ={x:xeUx¢ A}

Some texts denote the complement of 4 by 4’ or A. Figure 1-3(a) is a Venn diagram in which 4 is
shaded.

(a) A is shaded (b) A\B is shaded (b) A® B is shaded

Fig. 1-3
EXAMPLE 1.4
(a) LetU={a,b,c,...,y,z}, the English alphabet, be the universal set, and let
A ={a,b,c,d,e}, B = {e,f,g}, V ={a,e,i,o,u}
Then
A ={f,gh,...,y,z} and B ={a,b,c,d,h,i,...,y,z}
Since V consists of the vowels in U, V¢ consists of the nonvowels, called consonants.

(b) Suppose the set R of real numbers is the universal set. Recall that Q denotes the set of rational numbers.
Hence Q° will denote the set of irrational numbers.
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(c) Let U be the set of students at a university, and suppose M and F denote, respectively, the male and female
students in U. Then

Mf=F and FF=M

Difference and Symmetric Difference

Let 4 and B be sets. The relative complement of B with respect to 4 or, simply, the difference of A
and B, denoted by A4\ B, is the set of elements which belong to 4 but which do not belong to B; that is,

A\B={x:x€ A,x ¢ B}

The set A\B is read “4 minus B”. Many texts denote A\Bby A — Bor A ~ B. Figure 1-3(b) is a Venn
diagram in which A4\ B is shaded.

The symmetric difference of the sets A and B, denoted by 4 @ B, consists of those elements which
belong to 4 or B but not to both 4 and B. That is,

A®B=(AUB)\(ANB) or A& B=(A\B)U(B\A)
Figure 1-3(c) is a Venn diagram in which 4 & B is shaded. The fact that
(AUB)\(ANB) = (A\B)U(B\A)
is proved in Problem 1.18.

EXAMPLE 1.5 Consider the sets

A=1{1,2,3,4}, B={3,4,56,7}, C ={6,7,8,9}
Then

A\B = {1,2}, B\C = {3,4,5}, B\A = {5,6,7}, C\B = {8,9}

Also,

A®B={1,2,56,77 and B®C={3,4,589}
Note that 4 and C are disjoint. This means

A\C = 4, C\A=C, A®C=A4UC

1.7 ALGEBRA OF SETS, DUALITY

Sets under the above operations of union, intersection, and complement satisfy various laws (iden-
tities) which are listed in Table 1-1. In fact, we formally state:

Theorem 1.4: Sets satisfy the laws in Table 1-1.

Each of the laws in Table 1-1 follows from an equivalent logical law. Consider, for example, the
proof of DeMorgan’s law:

(AUB ={x:xg(AorB)} ={x:x¢Aand xg B} =A"NF
Here we use the equivalent (DeMorgan’s) logical law:
~(pVg)=-pA-g

Here -~ means “not”, V means “or”, and A means “and”. Sometimes Venn diagrams are used to
illustrate the laws in Table 1-1 (cf. Problem 1.16).
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Table 1-1 Laws of the Algebra of Sets

Idempotent laws

(la) Aud=4 (1) AnA=4
Associative laws
(2e) (AUB)UC=A4U(BUC) (26) (ANB)NC=A4AN(BNC)

Commutative laws
(3¢) AUB=BUA (33) ANB=BNA

Distributive laws
(4a) AU(BNC)=(AUB)N(AUC) (4b) AN(BUC)=(ANB)U(ANC)

Identity laws
(5a) AU =4 (56) AnU=4
(6a) AUU=U (6b) AN =g

Involution law
(7) (A) =4

Complement laws
(8a) AuA =U 8b) ANA' =g
(%a) U = (%) @=U

DeMorgan’s laws
(10a) (AUB)=A°NE (106) (ANB)=AUB

Duality

The identities in Table 1-1 are arranged in pairs, as, for example, (2a) and (2b). We now consider
the principle behind this arrangement. Let E be an equation of set algebra. The dual E* of E is the
equation obtained by replacing each occurrence of U,N, U, in E by N,U, &, U, respectively. For
example, the dual of

(UNA)UBNA) =4 is (FUA)N(BUL) =4

Observe that the pairs of laws in Table 1-1 are duals of each other. It is a fact of set algebra, called the
principle of duality, that, if any equation E is an identity, then its dual E* is also an identity.

1.8 FINITE SETS, COUNTING PRINCIPLES

A set is said to be finite if it contains exactly m distinct elements where m denotes some nonnegative
integer. Otherwise a set is said to be infinite. For example, the empty set & and the set of letters of the
English alphabet are finite sets, whereas the set of even positive integers {2,4,6, ...} is infinite. [Infinite
sets will be studied in detail in Chapter 6.]

The notation n(A) or |4| will denote the number of elements in a finite set 4.

First we begin with a special case.

Lemma 1.5: Suppose 4 and B are finite disjoint sets. Then 4 U B is finite and
n(A U B) = n(A) + n(B)
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Proof. In counting the elements of 4 U B, first count those that are in 4. There are n(4) of these.
The only other elements of 4 U B are those that are in B but not in 4. Since 4 and B are disjoint,
no element of B is in A, so there are n(B) elements that are in B but not in 4. Therefore,
n(A U B) = n(A) + n(B), as claimed.

Remark: A set C is called the disjoint union of A and B if
C=AUB and ANB=(
Lemma 1.5 tells us that, in such a case, n(C) = n(A4) + n(B).

Special Cases of Disjoint Unions

There are two special cases of disjoint unions which occur frequently.
(1) Given any set A4, then the universal set U is the disjoint union of 4 and its complement A°.
Thus, by Lemma 1.5,

n(U) = n(A4) + n(A°)
Accordingly, bringing n(A) to the other side, we obtain the following useful result.
Theorem 1.6: Let A4 be any set in a finite universal set U. Then

n(A°) = n(U) — n(A)

For example, if there are 20 male students in a class of 35 students, then there are 35 —20 = 15
female students.

(2) Given any sets 4 and B, we show (Problem 1.37) that A is the disjoint union of 4\Band 4N B.
This is pictured in Fig. 1-4. Thus Lemma 1.5 gives us the following useful result.

Theorem 1.7: Suppose 4 and B are finite sets. Then

n(A\B) = n(A) —n(AN B)

For example, suppose an archery class 4 contains 35 students, and 15 of them are also in a bowling
class B. Then

n(A\B) =n(4) —n(ANB)=35-15=20

That is, there are 20 students in the class 4 who are not in class B.

Ais shaded
Fig. 1-4

Inclusion-Exclusion Principle

There is also a formula for n(4 U B) even when they are not disjoint, called the inclusion-exclusion
principle. Namely:
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Theorem 1.8: Suppose 4 and B are finite sets. Then 4 N B and 4 U B are finite, and

n(AU B) = n(A) + n(B) — n(AN B)

That is, we find the number of elements in 4 or B (or both) by first adding n(4) and n(B) (inclusion)
and then subtracting n(4 N B) (exclusion) since the elements in 4 N B were counted twice.
We can apply this result to get a similar result for three sets.

Corollary 1.9: Suppose 4, B, C are finite sets. Then 4 U BU C is finite and
n(AUBUC) =n(A)+n(B)+n(C)—n(ANB)—n(ANC)-n(BNC)+n(ANBNC)

Mathematical induction (Section 1.11) may be used to further generalize this result to any finite
number of finite sets.

EXAMPLE 1.6 Consider the following data among 110 students in a college dormitory:

30 students are on a list A (taking Accounting),
35 students are on a list B (taking Biology),
20 students are on both lists.

Find the number of students: (a) on list or B, (b) on exactly one of the two lists, (c) on neither list.
(@) We seek n(4U B). By Theorem 1.8, )
n(AUB) =n(4) +n(B) —n(ANB)=30+35-20=45
In other words, we combine the two lists and then cross out the 20 student names which appear twice.
(b) List A contains 30 names and 20 of them are on list B; hence 30 — 20 = 10 names are only on list 4. That is,
n(A\B) = n(4) — n(AUB) =30—-20=10

Similarly, list B contains 35 names and 20 of them are on list A; hence 35 — 20 = 15 names are only on list B.

That is,
n(B\A) =n(B) —n(AUB) =35-20=15

Thus there are 10 + 15 = 25 students on exactly one of the two lists.

(c) The students on neither the A list nor the B list form the set 4° N B°. By DeMorgan’s law, A° N B = (4 U B)“.
Hence

n(4° N B°) = n((AU B)) = n(U) — n(AU B) = 110 — 45 = 65

EXAMPLE 1.7 Consider the following data for 120 mathematics students:

65 study French, 20 study French and German,
45 study German, 25 study French and Russian,
42 study Russian, 15 study German and Russian,

8 study all three languages
Let F, G, and R denote the sets of students studying French, German, and Russian, respectively.
(a) Find the number of students studying at least one of the three languages, i.e. find n(F U G U R).
() Fill in the correct number of students in each of the eight regions of the Venn diagram of Fig. 1-5(a).
(¢) Find the number k of students studying: (1) exactly one language, (2) exactly two languages.
(a) By Corollary 1.9,

n(FUGUR) =n(F)+n(G)+n(R) —n(FNG)—n(FNR)—n(GNR)—n(FNGNR)
=65+45+42-20-25-15+8=100
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A A
A ava
N N

(@) ®)

Fig. 1-5

(b) Using 8 study all three languages and 100 study at least one language, the remaining seven regions of the
required Venn diagram Fig. 1-5(b) are obtained as follows:
15 — 8 = 7 study German and Russian but not French,
25 — 8 = 17 study French and Russian but not German,
20 — 8 = 12 study French and German but not Russian,
42 — 17 — 8 — 7 = 10 study only Russian,
45 — 12 — 8 — 7 = 18 study only German,
65 — 12 — 8 — 17 = 28 study only French,
120 — 100 = 20 do not study any of the languages.

(¢) Use the Venn diagram of Fig. 1-5(b) to obtain:
(1) k=28+184+10=56, (2) k=12+17+7=36

1.9 CLASSES OF SETS, POWER SETS

Given a set S, we may wish to talk about some of its subsets. Thus we would be considering a “‘set of
sets””. Whenever such a situation arises, to avoid confusion, we will speak of a class of sets or a collection
of sets. If we wish to consider some of the sets in a given class of sets, then we will use the term subclass

or subcollection.

EXAMPLE 1.8 Suppose S = {1,2,3,4}. Let o/ be the class of subsets of S which contain exactly three elements of
S. Then

< =({1,2,3},{1,2,4},{1,3,4},{2,3,4}]

The elements of o are the sets {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.
Let # be the class of subsets of S which contain 2 and two other elements of S. Then

2 =[{1,2,3},{1,2,4},{2,3,4}]

The elements of & are {1,2,3}, {1,2,4}, and {2,3,4}. Thus & is a subclass of &/. (To avoid confusion, we will
usually enclose the sets of a class in brackets instead of braces.)

Power Sets

For a given set .S, we may speak about the class of all subsets of S. This class is called the power set
of S, and it will be denoted by 2(S). If S is finite, then so is 2(S). In fact, the number of elements in
2(S) is 2 raised to the power of n(S); that is,

n(#(8)) = 2"

(This is the reason 2(S) is called the power set of S; it is also sometimes denoted by 25
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EXAMPLE 1.9 Suppose S = {1,2,3}. Then

2(8) = [Q, {l}’ {2}7{3}v {1,2}, {173}1{2$3}7S]

Note that the empty set & belongs to 2(S) since J is a subset of S. Similarly S belongs to 2(S). As expected from
the above remark, 2(S) has 2° = 8 elements.

1.10 ARGUMENTS AND VENN DIAGRAMS

Many verbal statements are essentially statements about sets and they can therefore be described by
Venn diagrams. Hence Venn diagrams can sometimes be used to determine whether or not an argument
is valid. This is illustrated in the following example.

EXAMPLE 1.10 Show that the following argument (adapted from a book on logic by Lewis Carroll, the author of
Alice in Wonderland) is valid:

S): My saucepans are the only things I have that are made of tin.
S,: I find all your presents very useful.
S3:  None of my saucepans is of the slightest use.

S:  Your presents to me are not made of tin.

(The statements S,, S,, and S; above the horizontal line denote the assumptions, and the statement S below the line
denotes the conclusion. The argument is valid if the conclusion S follows logically from the assumptions S, S,, and
Ss.)

By S, the tin objects are contained in the set of saucepans and by S; the set of saucepans and the set of useful
things are disjoint: hence draw the Venn diagram of Fig. 1-6.

@

Fig. 1-6

By S, the set of “your presents” is a subset of the set of useful things; hence draw Fig. 1-7.

saucepans

Fig. 1-7

The conclusion is clearly valid by the Venn diagram in Fig. 1-7 because the set of “your presents” is disjoint
from the set of tin objects.
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1.11 MATHEMATICAL INDUCTION

Consider the set P = {1,2,...} of positive integers (or counting numbers). We say that an assertion
A(n) is defined on P if A(n) is true or false for each n € P. An essential property of P, which is used in
many proofs, follows.

Principle of Mathematical Induction I: Let A(n) be an assertion defined on P, that is, A(n) is true or
false for each integer n > 1. Suppose A(n) has the following two properties:

(1) A(1) is true.
(2) A(n+1) is true whenever A(n) is true.

Then A(n) is true for every n > 1.

We shall not prove this principle. In fact, this principle is usually given as one of the axioms when P
is developed axiomatically.
EXAMPLE 1.11 Let A(n) be the assertion that the sum of the first n odd integers is n’; that is,

A(n): 143+54--4+@2n-1)=n
[The nth odd integer is 2n — 1 and the next odd integer is 2n + 1.] Observe that A(n) is true for n = 1, that is,
A): 1=12
Assuming A(n) is true, we add 2n + 1 to both sides of A(n), obtaining:
143+5+-+Q2n=1)+Q2n+)=r*+Q2n+1)=(n+1)°

However, this is A(n+1). That is, A(n+ 1) is true whenever A(n) is true. By the principle of mathematical
induction, A(n) is true for all n > 1. -

There is another form of the principle of mathematical induction which is sometimes more con-
venient to use. Although it appears different, it is really equivalent to the above principle of induction.

Principle of Mathematical Induction II: Let A(n) be an assertion defined on the set P of positive integers
which satisfies the following two conditions:

(1) A(1) is true.
(2) A(n) is true whenever A(k) is true for 1 <k < n.

Then A(n) is true for every n > 1.

The above two principles may also be stated in terms of subsets of P rather than in terms of
assertions defined on P. (See Problem 1.40.) Although the languages are different, they are logically
equivalent.

Remark: Sometimes one wants to prove that an assertion A is true for a set of integers of the form

{a,a+1,a+2,...}

where a is any integer, possibly 0. This can be done by simply replacing 1 by the integer a in either of the
above principles of mathematical induction.

1.12 AXIOMATIC DEVELOPMENT OF SET THEORY
Any axiomatic development of a branch of mathematics begins with the following:

(1) undefined terms,
(2) undefined relations,
(3) axioms relating the undefined terms and undefined relations.
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Then, one develops theorems based upon the axioms and definitions.
Consider, for example, the axiomatic development of plane Euclidean geometry. It begins with the
following:

(1) “points” and “lines” are undefined terms;
(2) “point on a line” or, equivalently, “line contains a point” is an undefined relation.

Two of the many axioms of Euclidean geometry follow:

Axiom 1: Two distinct points are on one and only one line.

Axiom 2: Two distinct lines cannot contain more than one point in common.
The axiomatic development of set theory begins with the following:

(1) “element” and “‘set” are undefined terms;
(2) ‘“‘element belongs to a set” is the undefined relation.

Two of the axioms (called principles) of set theory follow:

Principle of Extension: Two sets 4 and B are equal if and only if they have the same elements, that is, if
every element in 4 belongs to B and every element in B belongs to A.

Principle of Abstraction: Given any set U and any property P, there is a set 4 such that the elements of
A are exactly those elements in U which have the property P; that is,

A = {x:x €U, P(x) is true}

There are other axioms which are not listed. As our treatment of set theory is mainly intuitive,
especially Part I, we will refrain from any further discussion of the axiomatic development of set theory.

Solved Problems

SETS AND SUBSETS
1.1.  Which of these sets are equal: {r,t,s}, {s,t,r,s}, {t,s5,t,r}, {s,1,5,1}?

They are all equal. Order and repetition do not change a set.

1.2.  List the elements of the following sets where P = {1,2,3,...}.

(@) A={x:xeP,3<x< 12}

() B={x:x€P,xiseven, x <15}

(¢) C={x:xeP,4+x=3}

(d) D= {x:xe€P, xis a multiple of 5}.

(a) A consists of the positive integers between 3 and 12; hence
A=1{4,56,7,8,9,10,11}

(b) B consists of the even positive integers less than 15; hence
B={2,4,6,8,10,12,14}

(¢) There are no positive integers which satisfy the condition 4 + x = 3; hence C contains no elements. In
other words, C = &, the empty set.



CHAP. 1] SETS AND BASIC OPERATIONS ON SETS 15

1.3.

L.5.

1.6.

(d) D is infinite, so we cannot list all its elements. However, sometimes we write
D ={5,10,15,...,5n,...} or simply D = {5,10,15,...}

where we assume everyone understands that we mean the multiples of 5.

Consider the following sets:

g, A={l}? B=={1,3}, C={1,5,9}, D={172,3,4’5}1
E={1,3,5,7,9}, U={l,2,...,8,9}

Insert the correct symbol C or € between each pair of sets:

(@ &,4 (o) BC (e C,D (g) DE
() 4B (d BE (/) CCE (h) DU

(a) & C A because (J is a subset of every set.

(b) A C B because 1 is the only element of 4 and it belongs to B.
(¢) BZ Cbecause3€ Bbut3¢C.

(d) B C E because the elements of B also belong to E.

(e) C&Z D because 9 € Cbut9 ¢ D.

(f) C C E because the elements of C also belong to E.

(g8) DZEbecause2 € Dbut2 ¢ E.

(h) D C U because the elements of D also belong to U.

Show that 4 = {2, 3,4, 5} is not a subset of B= {x: x € P, x is even}.

It is necessary to show that at least one element in 4 does not belong to B. Now 3 € 4 and, since B
consists of even numbers, 3 ¢ B; hence A is not a subset of B.

Show that 4 = {2, 3,4, 5} is a proper subset of C = {1,2,3,...,8,9}.

Each element of 4 belongs to C so 4 C C. On the other hand, 1 € C but 1 € 4. Hence 4 # C.
Therefore A is a proper subset of C.

Determine whether or not each set is the null set:
(@ X={x:x*=9,2x=4}, b)) Y={x:x#x}, () Z={x:x+8=8}.

(@) No number satisfies both x? = 9 and 2x = 4; hence X is the empty set; i.e., X = .

(b) We interpret “="to mean “is identical with” and so Y is empty. In fact, some texts define the empty
set as follows:

F={x:x#x}

(c) The number zero satisfies x + 8 = 8 and zero is the only solution; hence Z = {0}. Thus Z is not the
empty set since it contains 0. That is, Z # &.
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SET OPERATIONS

1.7.

1.8.

1.9.

1.10.

Problems 1-7 to 1-10 refer to the universal set U = {1,2,...,9} and the sets:
A=1{1,2,3,4,5} C=1{5,6,7,8,9} E ={2,4,6,8}
B=1{4,5,6,7} D ={1,3,5,7,9} F={1,5,9}

Find:
(@) AUBand AN B, (¢) AuCand ANC, () EUEand ENE
(b)) BUD and BN D, (d) DUEand DNE, (f) DUFand DNF

Recall that the union X U Y consists of those elements in either X or Y (or both), and that the
intersection X N Y consists of those elements in both X and Y.

() AUB=1{1,2,3,4,56,7}, ANB={4,5}

(b)) BUD=1{1,3,4,5,6,7,9}, BND = {57}

() AUC=1{1,2,3,4,56789=U  ANC=g

(d DUE={1,2,3,4,56789=U  DNE=g

() EUE={2,4,6,8} =E, ENE={2,4,68}=E
(f) DUF ={1,3,5,7,9} = D, DNF={1,59}=F

Observe that F C D; so by Theorem 1.3 we must have DUF =Dand DNF =F.

Find: (a) 4°, B°, D°, E° (b) U°, &
(a) The complement X° consists of those elements in the universal set U which do not belong to X. Thus:
A =1{6,7,8,9}, B ={1,2,3,89}, D‘={2,468}=E  E={1,3579}=D
(Note: Since D° = E, we must have E° = D.)
(b) Here U’ = ¥, and @&° = U, and this is always true.

Find: (a) A\B, B\4, D\E, F\D; (b)) A®B, C®D, E®F.
(a) The difference X\Y consist of the elements in X which do not belong to Y. Thus:
A\B={1,2,3}, B\4={6,7}, D\E = {1,3,5,7,9} = D, F\D=g.
(Note: Since D and E are disjoint, we must have D\E = D; and since F C D, we must have F\D = (¥.)
(6) The symmetric difference X & Y consists of the elements in X or in Y but not in both X and Y. Thus:
Ao B=1{1,2,3,6,7}, CoD={1,3,8,9}, E®F=1{2,4,6,81,59}=EUF
(Note: Since E and F are disjoint, we must have E®@ F = EUF 3

Find: (a¢) AN(BUE), (b)(4\B), (c) (AND)\B, (d) (BNF)U(CNE).
(a) First compute BUE = {2,4,5,6,7,8}. Then AN (BUE) = {2,4,5}.

() A\E={1,3,5}. Then (4\E)’ = {2,4,6,7,8,9).

(¢) AnD={1,3,5}. Now (ANnD)\B={1,3}.

(d) BNF={5}and CNE={6,8). So (BNF)U(CNE)={5,6,8).
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1.11. Show that we can have A N B = 4 N C without B = C.

Let A= {1,2}, B={2,3},and C = {2,4}. ThenANB=(2}and ANC={2). ThusANB=4ANC
but B # C.

1.12. Prove: B\A = BN A. Thus the set operation of difference can be written in terms of the opera-
tions of intersection and complementation.

B\A={x:x€B, x¢A)={x:x€B, xe€ A)=BNA°

1.13. Prove Theorem 1.3: The following are equivalent: 4 C B, ANB=A,and AUB = B.

Suppose A C B. Let x€ A. Then x€ B, hence x€ ANB and so A C ANB. By Theorem 1.2,
(ANB)C A. Therefore ANB=A. On the other hand, suppose ANB=A4. Let x€ A. Then
x € AN B, hence x € B. Therefore, 4 C B. Both results show that 4 C B is equivalent to AN B = A.

Suppose again that 4 C B. Let x€ AUB. Then x € Aor x € B. If x € A, then x € B because 4 C B.
In either case, x € B. Therefore AUB C B. By Theorem 1.2, BC AU B. Therefore AUB= B. Now
suppose AUB = B. Let x € A. Then x € AU B by definition of union of sets. Hence x € B= AU B.
Therefore A C B. Both results show that 4 C B is equivalent to AU B = B.

Thus A C B, ANB= A and AU B = B are equivalent.

VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY
1.14. Illustrate DeMorgan’s law (4 U B)° = 4A° N B° (proved in Section 1.7) using Venn diagrams.

Shade the area outside 4 U Bin a Venn diagram of sets 4 and B. This is shown in Fig. 1-8(a); hence the
shaded area represents (4 U B)°. Now shade the area outside 4 in a Venn diagram of 4 and B with strokes
in one direction (///), and then shade the area outside B with strokes in another direction (\\\). This is
shown in Fig. 1-8(b). Thus the cross-hatched area (area where both lines are present) represents the
intersection of A and B, that is, 4°N B°. Both (4U B)° and A° N B are represented by the same area;
hence the Venn diagrams indicate (4 U B) = A° N B°. (We emphasize that a Venn diagram is not a formal
proof but it can indicate relationships between sets.)

(a) Shaded area: (4 U B)° (b) Cross-hatched area: A° N B¢

Fig. 1-8

1.15. Consider the Venn diagram of two arbitrary sets 4 and B as pictured in Fig. 1-1(¢). Shade the
sets: (a) AN B°, (b) (B\A)".

(a) First shade the area represented by A4 with strokes in one direction (///), and then shade the area
represented by B° (the area outside B), with strokes in another direction (\\\). This is shown in Fig.
1-9(a). The cross-hatched area is the intersection of these two sets and represents 4 N B; and this is
shown in Fig. 1-9(b). Observe that 4 N B° = A\B. In fact, A\B is sometimes defined to be 4 N B*.
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(b) First shade the area represented by B\ 4 (the area of B which does not lie in 4) as in Fig. 1-10(a). Then
the area outside this shaded region, which is shown in Fig. 1-10(b), represents (B\A) .

\ A B
(a) A and B€ are shaded (b) A N B°is shaded
Fig. 19
7
(a) B\ A isshaded (b) (B\ A)°is shaded
Fig. 1-10

Prove Theorem 1.4: Distributive law (4b)
AN(BUC)=(ANB)U(ANC)
Illustrate the law using Venn diagrams.

By definition of union and intersection,

AN(BUC)={x:x€ 4, X € BUC}
={x:x€A4, x€Borxe 4, xeC)=(ANB)U(ANC)

Here we use the analogous logical law
pA(GV)=(pAg)V(pAT)

where A denotes “and” and V denotes “or”.

Venn Diagram

Draw three intersecting circles labeled 4, B, C, as in Fig. 1-11(a). Now, as in Fig. 1-11(b) shade 4 with
strokes in one direction (///) and shade BU C with strokes in another direction (\\\). Then the cross-
hatched area is 4 N (BU C), as shaded in Fig. 1-11(c). Next shade 4 N B and then 4 N C, as in Fig. 1-11(d).
The total area shaded is (4 N B) U (4N C), as shaded in Fig. 1-11(e). As expected by the distributive law,
AN(BUC) and (AN B)U (AN C) are both represented by the same set of points.
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(b) A and B U C are shaded (¢) AN (B U C)isshaded

(d) AN Band A N C are shaded () AN B)U(ANC) isshaded

Fig. 1-11

1.17. Prove the commutative laws: (a) AUB=BUA, (b) ANB=BNA.

(@) AUB={x:x€AdorxeB}={x:x€eBorxe A} =BUA.
() ANB={x:x€AdandxeB}={x:xeBand x€ A} = BN A.

1.18. Prove: (4 U B)\(4 N B) = (4\B) U (B\A4). (Thus either one may be used to define the symmetric
difference 4 @ B.)

Using X\Y = X N Y and the laws in Table 1-1, including DeMorgan’s laws, we obtain

(AUB)\(ANB)=(AUB)N(ANB) = (AUB)N(A°UB")
=(ANA)YUANB)U(BNA)U(BNB)
=FUANB)UBNA)UY
=(ANB)U(BNA°) = (A\B) U (B\A4)

1.19. Prove the following identity: (4 U B) N (4 U B°) = A.

Statement Reason
1. (AUB)N(AUB)=AU(BNB) Distributive law
2. BNB' =y Complement law
3. (AUB)N(AUB)=A4AUgYg Substitution
4. Aug=A4A Identity law
5. (AUB)N(AUB)=4 Substitution
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1.20. Write the dual of each set equation:

(@) (UnA)U(BNA)=A () ANU)N(guAd)=g

() (AUBUC) =(4UC)N(AUB) d) (ANU)YNA=g
Interchange U and N and also U and & in each set equation:

(@) (GUA)N(BUA)=A () AU)uUNA)=U

b)) (ANBNC)=(ANC)U(4nB)° d) (Aug)¥ud=U

FINITE SETS AND THE COUNTING PRINCIPLE
1.21. Determine which of the following sets are finite.

(a) A = {seasons in the year},

(b) B = {states in the United States of America},
(¢) C = {positive integers less than 1},

(d) D = {odd integers},

(e) E = {positive integral divisors of 12},

(f) F = {cats living in the United States}.

(a) A is finite since there are four seasons in the year, i.e., n(4) = 4.

(b) B is finite because there are 50 states in the United States, i.e., n(B) = 50.

(c) There are no positive integers less than 1; hence C is empty. Thus C is finite and n(C) = @.
(d) D is infinite.

(e) The positive integer divisors of 12 are 1, 2, 3, 4, 6, 12. Hence E is finite and n(E) = 6.

(f) Although it may be difficult to find the number of cats living in the United States, there is still a finite
number of them at any point in time. Hence F is finite.

1.22. Suppose 50 science students are polled to see whether or not they have studied French (F) or
German (G) yielding the following data:

25 studied French, 20 studied German, 5 studied both.
Find the number of the students who: (@) studied only French, (b) did not study German,
(c) studied French or German, (d) studied neither language.

(a) Here 25 studied French, and 5 of them also studied German; hence 25 — 5 = 20 students only studied
French. That is, by Theorem 1.7,

n(F\G) =n(F) - N(FNG)=25-5=20.
(b) There are 50 students of whom 20 studied German; hence 50 — 20 = 30 did not study German. That is,
by Theorem 1.6,
n(G°) = n(U) — n(G) = 50 — 20 = 30
(¢) By the inclusion-exclusion principle, Theorem 1.8,
n(FUG)=n(F)+n(G)—n(FNG)=25+20-5=40
That is, 40 students studied French or German.

(d) The set F°NG° consists of the students who studied neither language. By DeMorgan’s law,
F°NG° = (FUG)". By (c), 40 studied at least one of the languages; hence

n(FFNG°)=n(U)—n(FUG)=50-40=10
That is, 10 students studied neither language.
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1.23. Suppose n(U) = 70, n(A4) = 30, n(B) = 45, n(A N B) = 10. Find:
(@) n(AU B), (b) n(A°) and n(B°), (c) n(A°NB°), (d)n(4A® B).
(a) By Theorem 1.9, n(4 U B) = n(A) + n(B) — n(4 N B) = 30 + 45 — 10 = 65.
(b) Here
n(A°) =n(U) —n(4) =70-30=40 and n(B°)=n(U)—n(B)=70-45=25
(¢) Using DeMorgan’s law,
n(A°NB°) =n((AUB)°) =n(U) —n(AUB)=70—-65=5

(d) First find

n(A\B) = n(4) — n(AN B) = 30— 10 =20

n(B\A) = n(B) — n(AN B) =45 — 10 = 25

Then
n(A @ B) = n(A\B) + n(B\A4) = 20 + 25 = 45

1.24. A small college requires its students to take at least one mathematics course and at least one
science course. A survey of 140 of its sophomore students shows that:
60 completed their mathematics requirement (M),
45 completed their science requirement (S),
20 completed both requirements (M and S).

Use a Venn diagram to find the number of the students who had completed:

(a) exactly one of the two requirements,
(b) at least one of the requirements,
(¢) neither requirement.

Translating the above data into set notation yields:
n(M) = 60, n(S) = 45, n(MnNS) =20, and n(U) = 140
Draw a Venn diagram of sets M and S with four regions as in Fig. 1-12(a). Then, as in Fig. 1-12(b),
assign numbers to the four regions as follows::

20 completed both M and S, i.e. n(M N S) = 20,

60 — 20 = 40 completed M but not S, i.e. n(M\S) = 40,

45 — 20 = 25 completed S but not M, i.e. n(S\M) = 25,
140 — 20 — 40 — 25 = 55 completed neither M nor S.

55

(@ ®)

Fig. 1-12
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By the Venn diagram:

(a) 40+ 25 = 65 completed exactly one of the requirements,

(b) 20+ 40 + 25 = 85 completed M or S. Alternately, we can find n(M U S) without the Venn diagram by
using Theorem 1.7. That is,

n(M U S) = n(M) +n(S) — n(M N S) = 60 + 45 — 20 = 85

(c) 55 completed neither requirement.

In a survey of 60 people, it was found that:

25 read Newsweek magazine 9 read both Newsweek and Fortune
26 read Time 11 read both Newsweek and Time
26 read Fortune 8 read both Time and Fortune

3 read all three magazines

(a) Find the number of people who read at least one of the three magazines.

(b) Fill in the correct number of people in each of the eight regions of the Venn diagram in
Fig. 1-13(a) where N, T, and F denote the set of people who read Newsweek, Time, and
Fortune, respectively.

(¢) Find the number of people who read exactly one magazine.

A
avh
N

(@ ®)

8

Fig. 1-13

(@) We want n(NUT UF). By Corollary 1.9,
n(NUTUF)—-n(N)+ N(T)+n(F)—n(NNF)—n(NNT)-n(TNF)+n(NNTNF)
=254+26+26—11-9-8+3=52

(b) The required Venn diagram in Fig 1-13(b) is obtained as follows:

3 read all three magazines

11 — 3 = 8 read Newsweek and Time but not all three magazines
9 — 3 = 6 read Newsweek and Fortune but not all three magazines
8 — 3 = 5 read Time and Fortune but not all three magazines
25— 8 — 6 — 3 = 8 read only Newsweek

26 — 8 — 5 — 3 = 10 read only Time

26 — 6 — 5 — 3 = 12 read only Fortune

60 — 52 = 8 read no magazine at all

(¢) 8410+ 12 = 30 read only one magazine.
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1.26. Prove Theorem 1.8: If 4 and B are finite sets, then AUB and AN B are finite and
n(AU B) = n(A) + n(B) — n(AN B).

If A and B are finite, then clearly A N B and 4 U B are finite.
Suppose we count the elements of A and then count the elements of B. Then every element in A N B
would be counted twice, once in 4 and once in B. Hence

n(AU B) =n(A) +n(B) —n(ANB)
Alternatively (Problems 1.37 and 1.50),

(i) A is the disjoint union of 4\B and 4 N B,
(ii) B is the disjoint union of B\A4 and 4N B,
(iii) AU B is the disjoint union of A\B, 4 N B, and B\A.
Therefore, by Lemma 1.5 and Theorem 1.7,
n(AU B) = n(A\B) + n(A N B) + n(B\A)
=n(A) —n(ANB) +n(AN B) + n(B\A) —n(4AN B)
=n(A) +n(B) —n(ANB)

CLASSES OF SETS

1.27. Find the elements of the set 4 = [{1,2,3}, {4,5}, {6,7,8}], and determine whether each of the
following is true or false:

(@) 1€4 (¢) {6,7,8}c4 (&) Te4d
®) {1,2,3}c4 (@) {{45}}c4 () gc4
A is a collection (class) of sets; its elements are the sets {1,2,3}, {4,5}, and {6,7,8}.

(a) False. 1 is not one of the elements of A.

(b) False. {1,2,3} is not a subset of 4; it is one of the elements of 4.

(¢) True. {6,7,8} is one of the elements of A.

(d) True. {{4,5}}, the set consisting of the element {4, 5} is a subset of 4.

(e) False. The empty set J is not an element of 4, i.e., it is not one of the three elements of 4.
(f) True. The empty set J is a subset of every set; even a collection of sets.

1.28. Consider that class A4 of sets in Problem 1.27. Find the subclass B of 4 where B consists of the
sets in 4 with exactly: (a) three elements, (b) four elements.

(a) There are two sets in A with three elements, {1,2,3} and {6,7,8}. Hence B = [{1,2,3}, {6,7,8}].
(b) There are no sets in 4 with four elements; hence B is empty, that is, B = .

1.29. Determine the power set #(A4) of 4 = {a,b,c,d}.
The elements of 2(A) are the subsets of 4. Hence
P(A) = [A,{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b}, {a,c},
{a,d}, {b,c}, {b,d}, {c,d}, {a}, {b}, {c}, {d}, @]
As expected, 2(A) has 2* = 16 elements.
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1.30. Find the number of elements in the power set of each of the following sets:

(a) {days of the week}, (¢) {seasons of the year},
(b) {positive divisors of 12}, (d) {letters in the word “‘yes”}.

Recall that #(A) contains 2! elements. Hence:
(@ 2"=128.
(b) 2° = 64 since there are six divisors, 1, 2, 3, 4, 6, 12, of 12.
(¢) 2* =16 since there are four seasons.
(d) 2>=8.

ARGUMENTS AND VENN DIAGRAMS
1.31. Determine the validity of the following argument:

S1:  All my friends are musicians
S,: John is my friend.
S3:  None of my neighbors are musicians.

S: John is not my neighbor.

The premises S; and S; lead to the Venn diagram in Fig. 1-14. By S,, John belongs to the set of friends
which is disjoint from the set of neighbors. Thus S is a valid conclusion and so the argument is valid.

musicians

Fig. 1-14

1.32. Consider the following assumptions:

S;: Poets are happy people.
S,:  Every doctor is wealthy.
S3:  No happy person is wealthy.

Determine the validity of each of the following conclusions:

(a) No poet is wealthy. (b) Doctors are happy people.
(¢) No person can be both a poet and a doctor.

The three premises lead to the Venn diagram in Fig. 1-15. From the diagram it follows that (a) and (c)
are valid conclusions whereas (b) is not valid.
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happy people

wealthy people

1.33.

Fig. 1-15

Determine the validity of the following argument:
S|:
S2Z
Sgl

Babies are illogical.
Nobody is despised who can manage a crocodile.
Illogical people are despised.

S: Babies cannot manage crocodiles.

(The above argument is adapted from Lewis Carroll, Symbolic Logic; he is the author of Alice in
Wonderland.)

The three premises lead to the Venn diagram in Fig. 1-16. Since the set of babies and the set of people
who can manage crocodiles are disjoint, *“Babies cannot manage crocodiles” is a valid conclusion.

despised people

people who can
illogical people manage
babies crocodiles

Fig. 1-16

MATHEMATICAL INDUCTION
1.34. Prove the assertion A(n) that the sum of the first n positive integers is a}n(n + 1); that is,
An): 14243+ +n=1inn+1)
The assertion holds for n = 1 since
A(): 1 =41+ 1)
Assuming A(n) is true, we add n + 1 to both sides of A4(n), obtaining
14243+ +n+(m+1)=dn(n+1)+(n+1)

=in(n+1)+2(n+1)]
=4[(n+1)(n+2)]

which is A(n + 1). That is, A(n + 1) is true whenever A(n) is true. By the principle of induction, A(n) is true
for all n > 1.
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1.35. Prove the following assertion (for n > 0):
An): 142422423 4. 42" =2"1
A(0) is true since 1 = 2' — 1. Assuming A(n) is true, we add 2™*! to both sides of A(n), obtaining

l+2+22+23+"'+2"+2"+1 ___2n+l__l+2n+l
=2(2n+l)__1
=2n+2_l

which is A(n + 1). Thus A(n + 1) is true whenever A(n) is true. By the principle of induction, 4(n) is true for
alln>0.

1.36. Prove: (a) n>2n+1forn>3, (b) n! > 2" forn > 4.

(a) Since 32 =9 and 2(3) + 1 = 7, the formula is true for n = 3. Using n> > 2n + 1 in the second step and
2n > 1 in the fourth step, we have

M+ 1= +22+1>2n+ 1) +2n+1=2n+2+2n>2n+2+1=2n+1)+1

Thus the formula is true for n + 1. By induction, the formula is true for all n > 3.
(b) Since 4! =1.2.3-4 =24 and 2* = 16, the formula is true for n = 4. Assuming n! > 2" we have

(n+D)=nl(n+1)>2"n+1)>2"(2) =2

Thus the formula is true for » + 1. By induction, the formula is true for all n > 4.

MISCELLANEOUS PROBLEMS
1.37. Show that A is the disjoint union of 4\B and 4 N B; that is, show that:
(a) A= (A\B)U(ANB), (b) (A\B)N(ANB)=¢.
(a) By Problem 1.12, 4\B = A N B°. Using the distributive law and the complement law, we get
(AA\B)U(ANB)=(ANB)U(ANB)=AN(B°UB)=ANU=4
() Also,
(AAB)N(ANB)=(ANB)N(ANB)=AN(B°NB)=ANZ=g.

1.38. Prove Corollary 1.9. Suppose A4, B, C are finite sets. Then 4 U BU C is finite and
n(AUBUC) =n(A) +n(B)+n(C)—n(ANB)—n(ANC)—n(BNC)+n(ANBNC)
Clearly AU BU C is finite when 4, B, C are finite. Using
(AuB)NC=(ANC)U(BNC) and (ANB)N(BNC)=4NBNC
and using Theorem 1.8 repeatedly, we have

n(AUBUC) =n(AUB)+n(C) —n[(ANC)U (BN C))
= [n(4) + n(B) —n(ANB)]+n(C) —[n(ANC)+n(BNC)—-n(ANBNC)]
= n(A4) + n(B) +n(C) —n(AN B) — n(AN C) — n(BN C) +n(AN BN C)

as required.
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1.39. A set A of real numbers is said to be bounded from above if there exists a number M such that
x < M for every x in A. (Such a number M is called an upper bound of M.)

(a) Suppose 4 and B are sets which are bounded from above with respective upper bounds M,
and M,. What can be said about the union and intersection of 4 and B?

(b) Suppose C and D are sets of real numbers which are unbounded. What can be said about
the union and intersection of C and D?

(a) Both the union and intersection are bounded from above. In fact, the larger of M, and M, is always an
upper bound for 4 U B, and the smaller of M, and M, is always an upper bound for 4 N B.

(b) The union of C and D must be unbounded, but the intersection could be either bounded or unbounded.

1.40. Restate the Principle of Mathematical Induction I and II in terms of sets, rather than assertions.
(a) Principle of Mathematical Induction I Let S be a subset of P = {1,2,...} with two properties:
(1) 1€S. (2) IfneS, thenn+1e€s.

Then S =P.
(b) Principle of Mathematical Induction II: Let S be a subset of P = {1,2,...} with two properties:

(1) 1€8. 2) I1f{1,2,...,n—1} C S, thennesS.
Then S =P.

Supplementary Problems

SETS AND SUBSETS
1.41.  Which of the following sets are equal?

A={x:x*—4x+3=0} C={x:xeP,x<3} E={1,2} G = {31}
B={x:x*-3x+2=0} D={x:xeP,xisodd,x <5} F={1,2,1} H={1,1,3}

1.42. List the elements of the following sets if the universal set is U = {a, b,c,...,y,z}. Furthermore, identify
which of the sets, if any, are equal.

A={x:xisa vowel} C = {x : x precedes f in the alphabet}
B = {x: xis a letter in the word “little”’} D = {x: x is a letter in the word “title”’}

1.43. Let
A={1,2,.::8,9}, B={2,4,6,8}, Cc=1{1,3,5,7,9}, D = {3,4,5}, E ={3,5}
Which of the above sets can equal a set X under each of the following conditions?

(a) X and B are disjoint. () XCAbutx Z C.
(b)) XCDbut X Z B. (d) X CCbut X Z A.
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1.44. Consider the following sets:
g, A = {a}, B={c,d}, C ={a,b,c,d}, D = {a,b}, E={a,b,c,d,e}.
Insert the correct symbol, C or €, between each pair of sets:
(a) &, 4 (c) 4,B (e) B,C (e) C,D
®DE  (@DA  (f)D,C  (h)BD
SET OPERATIONS
145. Let U={1,2,3,...,8,9} be the universal set and let:
A={1,2,56}, B={2,57}, Cc=1{1,3,5,7,9}
Find: (a) ANBand ANC, (b)) AUBand AUC, (c) A and C°.

1.46.  For the sets in Problem 1.45, find: (a) 4\B and A\C, (b)) A®Band A& C.

1.47. For the sets in Problem 1.45, find: (a) (AUC)\B, (b) (AUB)", (c) (B® C)\4.

1.48. Let A ={a,b,c,d,e}, B={a,b,d,f,g}, C={b,c,e,g,h}, D={d,e,f,g, h}. Find:

(@) AUB (¢ BNC (e) C\D () A®B
() CnD (d) AnD (f) D\4 (h)yAdC

1.49. For the sets in Problem 1.48, find:

(a) AN (BUD) (c) (AUD)\C (e) (C\4)\D (8) (AND)\(BUC)

(b) B\(CUD) (dy BhCnD (f) (A® D)\B (h) (A\C)N (BN D)
1.50. Let 4 and B be any sets. Prove 4 U B is the disjoint union of 4\B, A N B, and B\A.
1.51. Prove the following:

(e) ACBifand onlyif ANB =& (¢) A C B if and only if B° C A°

(b)) AC Bifand only if AAUB=U (d) AC Bifand only if A\B=

(Compare with Theorem 1.3.)

1.52. Prove the absorption laws: (a) AU(ANB)=A4, (b) AN(AUB)=A.

1.53. The formula A\B = A N B defines the difference operation in terms of the operations of intersection and
complement. Find a formula that defines the union 4 U B in terms of the operations of intersection and
complement.

1.54. (a) Prove: AN(B\C)=(ANB)\(ANC).

(b) Give an example to show that 4 U (B\C) # (4 U B)\(4U C).

1.55. Prove the following properties of the symmetric difference:

(@) A®(BC)=(A4® B)®C (Associative law)

() A®B=B® A (Commutative law)

(¢) fA®B=A®C,then B=C (Cancellation law)
(dy AN(B®C)=(ANB)®(ANC) (Distributive law)
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VENN DIAGRAMS, ALGEBRA OF SETS, DUALITY

1.56.

1.57.

1.58.

The Venn diagram in Fig. 1-17 shows sets 4, B, C. Shade the following sets:
(a) A\(BUC), (b) AN (BNC), (¢) (AUC)N(BUC).

/S
\/
AA

Fig. 1-17

Write the dual of each equation:

(@) A= (B°NA)U(ANB), (b) (ANB)UMNE)U(A NB)UANE)=U

Use the laws in Table 1-1 to prove:

(@) (ANB)U(ANB) =4, (b) AUB=(ANB)U(A°NB)U(ANB)

FINITE SETS AND THE COUNTING PRINCIPLE

1.59.

1.60.

1.61.

1.62.

Determine which of the following sets are finite:

(a) lines parallel to the x axis, (d) animals living on the earth,
(b) letters in the English alphabet, (e) circles through the origin (0,0),
(c) montbs in the year, (f) positive multiple of 5.

Given n(U) =20, n(4)=12, n(B)=9, n(ANB)=4. Find:
(@ n(4UB),  (b)n(4°), (o) n(B), (d)n(4\B), (e) n(Q).

Among the 90 students in a dormitory, 35 own an automobile, 40 own a bicycle, and 10 have both an
automobile and a bicycle. Find the number of the students who:

(a) do not have an automobile. (c) have neither an automobile nor a bicycle;
(b) have an automobile or a bicycle; (d) have an automobile or a bicycle, but not both.

Among 120 Freshmen at a college, 40 take mathematics, 50 take English, and 15 take both mathematics and
English. Find the number of the Freshmen who:

(a) do not take mathematics; (d) take English, but not mathematics;
(b) take mathematics or English; (e) take exactly one of the two subjects;
(c) take mathematics, but not English; (f) take neither mathematics nor English.
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A survey on a sample of 25 new cars being sold at a local auto dealer was conducted to see which of three
popular options, air-conditioning (4), radio (R), and power windows (W), were already installed. The
survey found:

15 had air-conditioning 5 had air-conditioning and power windows
12 had radio 9 had air-conditioning and radio
11 had power windows 4 had radio and power windows

3 had all three options

Find the number of cars that had: (a) only power windows, (b) only air-conditioning, (c) only
radio, (d) radio and power windows but not air-conditioning, (e) air-conditioning and radio, but not
power windows, (f) only one of the options, (g) at least one option, (h) none of the options.

CLASSES OF SETS, POWER SETS

1.64.

1.65.

1.66.

1.67.

1.68.

Let A = [{a,b}, {c}, {d,e,f}]. List the elements of 4 and determine whether each of the following state-
ments is true or false:

(@)ac4 (c)ced () {dief} 4  (g9) Je4
b){atca  ({ceda (f){{ab}}c4a (JCA4

Let B = [, {1},{2,3},{3,4}]. List the elements of B and determine whether each of the following state-
ments is true or false:

@1eB  (@©{1}eB ({23} cB (g @CA
B {1}SB  ({23}CB () De4 (h) {@} C 4

Let 4 ={1,2,3,4,5}. (a) Find the power set 2(4) of 4. (b) Find the subcollection & of #(A) where each
element of % consists of 1 and two other elements of A4.

Find the power set 2(A4) of the set 4 in Problem 1.64.

Suppose A is a finite set and n(4) = m. Prove that 2(A4) has 2™ elements.

ARGUMENTS AND VENN DIAGRAMS

1.69.

1.70.

Draw a Venn diagram for the following assumptions:

S):  No practical car is expensive.
S,:  Cars with sunroofs are expensive.
S3:  All wagons are practical.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(@) No practical car has a sunroof. (¢) No wagon has a sunroof.
(b) All practical cars are wagons. (d) Cars with sunroofs are not practical.

Draw a Venn diagram for the following assumptions:

S1: I planted all my expensive trees last year.
S,:  All my fruit trees are in my orchard.
S3: No tree in my orchard was planted last year.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(a) The fruit trees were planted last year. (¢) No fruit tree is expensive.
(b) No expensive tree is in the orchard. (d) Only fruit trees are in the orchard.
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1.71.

1.72.

Draw a Venn diagram for the following assumptions:

Sy1:  All poets are poor.
S,: In order to be a teacher, one must graduate from college.
S3:  No college graduate is poor.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(a) Teachers are not poor. (c) College graduates do not become poets.
(b) Poets are not teachers. (d) Every poor person becomes a poet.

Draw a Venn diagram for the following assumptions:

S;: All mathematicians are interesting people.
S,:  Only uninteresting people become insurance salespersons.
S3:  Every genius is a mathematician.

Use the Venn diagram to determine whether or not each of the following is a valid conclusion:

(a) No genius is an insurance salesperson.
(b) Insurance salespersons are not mathematicians.

(¢) Every interesting person is a genius.

MATHEMATICAL INDUCTION

1.73.

1.74.

1.75.

1.76.

1.77.

1.41.

1.42.

1.43.

1.44.

1.45.

1.46.

Prove: 2+4+6+---+2n=n(n+1).

Prove: 1 +4+7+ .-+ (3n—-2) =2n(3n—-1).

Prove'l+1+l++ 1 1
' 5-7

1-3°3.5 Qn—D@2n+1) 2141
Prove: 12422 4 3 4ot <M H D21+ D)
: L '

Prove: Given a® = 1 and a" = a" 'a for n > 0. Prove: (a) a”d" = a™™, (b) (a™)" = d™.

Answers to Supplementary Problems
B=C=E=F, A=D=G=H
A={aeiou}; B=D={lite}; C={ab,cde}
(@) Cand E; (b) Dand E; (c) 4, B, D; (d) none
@S BS (g @@L ©S NS @ (WL

(@) ANB={2,5}, ANC ={1,5}); (b)) AUB=1{1,2,5,6,7}, AUC ={1,2,3,5,6,7,9};
(c) A° = {3,4,7,8,9}, C° = {2,4,6,8}

(a) A\B = {1,6}, A\C={2,6}; (b)) A®B={1,6,7}, A& C ={2,3,6,7,9}
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1.47. (a) {1,3,6,7,9}. (b) {3,4,8,9}, (c){3,9}

148.  (a) {a,b,c,d,e,f,g}; (b) {e,g,h}; (c) {b,g}; (d) {d,e}; (e) {b,c}; (f) {f.g h};
(8) {c,e.f,g}; (h) {a,d, g h}

1.49.  (a) {a,b,d,e}; (b) {a}; (¢) {a,d.f}; (d) {g}s (o) & (1) {c;h} (9) & (k) {a,d}
1.53. AUB=(ANB)

1.54. (b) A={a}; B={b}; C={c}, AU(B\C)={a}, (AUB)\(AUC)={b}
1.56. See Fig. 1-18.

(@ ® ©

Fig. 1-18

1.57. (a) A=(B°UA)N(4AUB)
(b) (AUB)N(AUB)N(A“UB)N(AUB) =

1.59.  (b), (), and (d)

1.60. (a)17; (b)8; () 11; (d)8; (¢)0

161, (a) 55, (b) 75 (c) 15, (d)55

1.62.  (a) 80; (b) 75 (c) 25 (d)35; (e)60; (1) 45

1.63. Use the data to first fill in the Venn diagram of A4 (air-conditioning), R (radio), W (power windows) in
Fig. 1-19. Then: (a) 5; (b)4; (c)2; (d)4; (e)6; (f)11; (g) 23; (h) 2.

/)
\/
Ay

Fig. 1-19
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1.64.

1.65.

1.66.

1.67.

1.68.

1.69.

1.70.

Three elements: {a,b}, {c}, and {d,e,f}. (@) F; (B)F; (c)F;, ()T, (e)F, (NT, (g F, ()T
Four elements: &, {1}, {2,3},and {3,4}. (@) F; (B)F;, (¢)T; dF;, (T, (T, (T, (AT

(a) P(A) has 2° = 32 elements as follows (where 135 = {1,3, 5}):

[2,1,2,3,4,5,12,13,14,15,23,24,25,34,35,45,123,124, 125,134,135, 145,234, 235,245,345, 1234, 1235,
1245, 1345,2345, 4]

(b) % has 6 elements: [123, 124, 125, 134, 135, 145].

A has 3 elements, so 2(A) has 2° = 8 elements as follows (where [ab, ¢] = [{ab}, {c}]):
{D, [abl, [c], [def], [ab,c], [ab,def],][c, def], A}

Note that 2(4) is a collection of collections of sets.

Let X be an arbitrary element of 2(A4). For each a € A, there are two possibilities, a € X or a € X. Since
there are m elements in A, there are 2-2- ... -2 (m factors) = 2" different sets X. That is, #(4) has 2"
elements.

See Fig. 1-20. (a) Yes; (b) no; (c) yes; (d) yes

See Fig. 1-21. (a) No; (b) yes; (c) yes; (d) no

orchard

practical cars last year

wagons expensive
trees

expensive cars

Cars with
sunroofs

1.71.

1.72.

Fig. 1-20 Fig. 1-21

See Fig. 1-22. (a) Yes; (b) yes; (c) yes; (d) no

See Fig. 1-23. (a) Yes; (b) yes; (c) no

college
graduates

interesting people

poor people

i insurance
mathematicians

salespersons

geniuses

Fig. 1-22 Fig. 1-23



