
Fundamental concepts of
software and systems engineering

CPE3202 - Software and Systems Engineer ing

Dr . Pongrapee Kaewsaiha

What is software & systems engineering?

Collect and analyze business and user requirements.
Design and create software to satisfy those requirements.
Test, launch, and maintain software and system.

Software system engineers use a systematic approach to:
1.
2.
3.

History of software engineering

Software crisis

As people widely adopted computers, the inefficiencies in the software
development made it difficult to meet the rapidly increasing demand.
This led to the “Software Crisis” which began in the mid-1960s and lasted
until the mid-1980s. During this period, software development often ran
over budget, behind schedule, and consisted of buggy code.

Computing began in the late 1950s but software engineering became
a discipline in the 1960s. Software engineering transformed from ad
hoc programming* towards more formal and standardized methods.

* Ad hoc programming = writing code in an unplanned way and for a particular purpose only.

The solution was to transform unorganized coding efforts into a well-
established engineering discipline.

Computer-aided software engineering (CASE)

CASE arised in the mid 1980s aiming to relieve the software
crisis. CASE tools can be divided into six categories: Business analysis and modeling

Development tools, such as
debugging environments
Verification and validation tools
Configuration management
Metrics and measurement
Project management

1.
2.

3.
4.
5.
6.

Key terms

System engineers
Software engineers
Software developers

The following terms are used interchangebly:

Each company will categorize software-related jobs
using one of these combinations.

Systems engineers & Software engineers
Software engineers & Software developers

One will look at the holistic view while the other party
will take care of technical approaches.

Systems engineers Software engineers

Manage engineering projects during
their life cycle.

Design and develop good quality of
software and applications.

Follow an interdisciplinary approach
involving clients and users.

Follow a systematic and disciplined
approach for software design,
development, deployment and
maintenance.

Require a broader background in
Engineering, Mathematics, and
Computer Science.

Require coding and database
management skills.

Systems engineers & Software engineers

Software engineers Software developers

Manage engineering projects during
their life cycle.

Design and develop good quality of
software and applications.

Follow an interdisciplinary approach
involving clients and users.

Follow a systematic and disciplined
approach for software design,
development, deployment and
maintenance.

Require a broader background in
Engineering, Mathematics, and
Computer Science.

Require coding and database
management skills.

Software engineers & Software developers

System development life cycle (SDLC)

A systematic process to organize an engineering project
(e.g., software development) in a predictable timeframe
and budget to meet a client’s requirements.
Referred to as Software Development Life Cycle.

Planning (requirements, strategy, analysis)
Design
Development (building, implementation)
Testing
Deployment (launching, integration)
Maintenance

Six phases in the SDLC
1.
2.
3.
4.
5.
6.

3. Development

SDLC

Requirements are gathered,
analyzed, documented and
prioritized. Write SRS.

1. Planning

Develop system
architecture based
on SRS.

2 Design

Start the coding process
(software development).

Find bugs and other UI issues.
Identify other requirements that

may not listed in the SRS.

6. Maintenance

Release the system into the
production environment and

made available to users.

5. Deployment

Test the system to ensure it is
stable, secure, and meets the

requirements in the SRS.

4. Testing

1. Planning

Requirements are gathered, analyzed, documented
and prioritized. When planning a software solution,
the following factors must be considered:

Users of the solution
Purpose of the solution
Data inputs and outputs
Legal and regulatory compliance
Risk identification
Quality assurance requirements
Allocation of human and financial
resources
Project scheduling

Software/system requirements specification
(SRS/SysRS)

Purpose

Overall description

Specific requirements

Definitions, background, system overview, references

Product main functionalities, UI, design constraints

Performance requirements, hardware, peripherals

1

2

3

2. Design

The requirements gathered from the SRS are used
to develop the software architecture.
Several team members work together to design
the architecture.
The architecture is reviewed by the stakeholders
and team.
A prototype can be designed as a preliminary
mock-up of the system, or parts of the system,
used for demonstration purposes.
The document called a design document is created
and used by developers during the next phase.

3. Development

Sometimes called "building" or "implementation"
phase.
The developers start the coding process once the
design document is completed.
The project planners use the design document to
determine and assign coding tasks.
This phase often requires the use of programming
tools, different programming languages, and
software stacks.
Organizations may have standards or guidelines
that need to be followed.

4. Testing

Code needs to be thoroughly tested to ensure it is stable,
secure, and meets the requirements outlined in the SRS.
Testing can be manual, automated, or a hybrid of both.
Product bugs are reported, tracked, and fixed, and code is
retested until the software is stable.
Some common levels of testing include:

Unit testing - A module or component is tested by
the developer.
Integration testing - A group of related modules are
tested to verify they work together.
System testing - The application is tested as a whole.
User acceptance testing (UAT) - Tests carried out by
selected testers or end-users.

5. Deployment

Sometimes called "launching" or "integration"
phase.
Once the customer signs off on the functionality,
it is released to production.
This approach can be used for making software
available on a website, mobile device app store,
or other software distribution servers.

Releases

Alpha release

Beta release

General availability

May contain error
Selected stakeholders

α

β

GA

Meet requirements
All stakeholders

Stable version
All users

6. Maintenance

Find any other bugs.
Identify user interface (UI) issues.
Identify other requirements that may not have been
listed in the SRS.

These issues were missed during testing, so they need to
be fixed or incorporated into the requirements of a future
software release at the beginning of the next cycle.

Code enhancement - Improve the quality, efficiency,
or functionality of existing code without changing its
behavior or purpose.

Key advantages of the SDLC

Gives development teams a process to follow
(rather than using an ad hoc approach) to improve
efficiency and reduce risks.

1

Each phase is well defined so that team members
know what they should be working on and when

Facilitates communication between the customer,
other stakeholders, and the development team.

Offers an overview of the process, so stakeholders
know where they fit in to that process.2

3

4

Key advantages of the SDLC

Each team member has a well-defined role which
reduces conflict and overlapping responsibilities.5

Problem are addressed in a timely manner in the
design phase of the next cycle.

Provides room for iteration where, at the end of a
cycle, the process can circle back to incorporate
additional requirements as needed.

6

7

