1. Original circuit

Consider only V_{A}

$\frac{6-V_{X A}}{100}=\frac{V_{X A}}{200}+\frac{V_{X A}}{100}$
$\frac{6-V_{X A}}{1}=\frac{V_{X A}}{2}+\frac{V_{X A}}{1}$
$6-V_{X A}=0.5 V_{X A}+V_{X A}$

$$
6=0.5 V_{X A}+V_{X A}+V_{X A}
$$

$$
6=2.5 V_{X A}
$$

$$
V_{X A}=\frac{6}{2.5}=2.4 \mathrm{~V}
$$

Consider only V_{B}

$\frac{3-V_{X B}}{10 \theta}=\frac{V_{X B}}{2 \theta \theta}+\frac{V_{X B}}{10 \theta}$
$\frac{3-V_{X B}}{1}=\frac{V_{X B}}{2}+\frac{V_{X B}}{1}$
$3-V_{X B}=0.5 V_{X B}+V_{X B}$
$3=0.5 V_{X B}+V_{X B}+V_{X B}$

$$
3=2.5 V_{X A}
$$

$$
V_{X B}=\frac{3}{2.5}=1.2 \mathrm{~V}
$$

Combined voltage

2. Original circuit

Consider only V_{A}

$$
\begin{aligned}
\frac{22-V_{X A}}{2 k} & =\frac{V_{X A}}{2 k}+0 \\
\frac{22-V_{X A}}{2} & =\frac{V_{X A}}{2} \\
11-0.5 V_{X A} & =0.5 V_{X A} \\
11 & =0.5 V_{X A}+0.5 V_{X A} \\
11 & =1 V_{X A} \\
V_{X A} & =11 \mathrm{~V}
\end{aligned}
$$

Consider only I_{B}

$$
\begin{aligned}
\frac{5}{1000} & =\frac{V_{X B}-0}{2000}+\frac{V_{X B}-0}{2000} \\
\frac{5}{1} & =\frac{V_{X B}-0}{2}+\frac{V_{X B}-0}{2} \\
5 & =0.5 V_{X B}+0.5 V_{X B} \\
5 & =1 V_{X B} \\
V_{X B} & =5 \mathrm{~V}
\end{aligned}
$$

Combined voltage

Combined current

3. Original circuit

Consider only V_{A}

Find V_{xA}

Suan Sunandha Rajabhat University
Specify $\mathrm{V}_{1 \mathrm{~A}}$ and $\mathrm{V}_{2 \mathrm{~A}}$ on the circuit

