
Process
Management

CPE3201

Dr. Pongrapee Kaewsaiha

How a program is executed CPE3201 - Operating Systems

.

.
a = b + c;

.

.

Program code
(C, Java, Python, …)

.
LOAD R1 &b
LOAD R2 &c
ADD R1 R2
STORE &a R1

.

Assembly
instructions

Compile

.
00101010
11111100
10001000
10000101

.

Assemble

Binary
instructions

Secondary storage

I4
I3
I2
I1
.
.

.

.

.

.

Load

Main memory

000

400

Opcode – The operation to be performed.
Operand – Variables on which an operation is performed.
Address – Memory location of instruction/data.

* This slide is only about “instruction,” data will be mentioned later.

Opcode
Operand
AddressLocation

I4
I3
I2
I1
.
.

.

.

.

.

Main memory

000

400
I1

Instruction
Register (IR)

064

Program
Counter (PC)

CPU

Fetch in
Register 1 (R1)

Register 2 (R2)

.

.

Registers:
Internal memory in CPU (not a cache)

Control Unit (CU)
• Controls data sent through CPU’s various components.
• Receives and transmits control signals from other devices.
• Interprets commands and controls CPU time.
• Decode, fletch, carry out the order, and store the results.
• Interprets directions and directives.

Arithmetic Logic Unit (ALU)
• Performs all the basic arithmetic operations (+, -, *, /, …) and

logical operations (AND, OR, …).

• Program instructions and data must be first loaded in memory before CPU can access them.
• PC will always be incremented by 1 address location (e.g., 064 →065 →066 → …).
• CPU cannot directly fetch instructions from secondary storage.

Opcode
Operand
Address

064

067

Instruction cycle

Fetch

Decode

Execute

Store

Fetch – Fetches instruction and data from RAM.

Decode – Decodes the instruction.

Execute – Executes instruction and operates on data.

Store – Stores output data in RAM.

Program vs Process CPE3201 - Operating Systems

High-level
language (C,

Java, Python, …)

.c .cpp .java .py

Assembly
instructions

.exe .cgi

Compile Binary
codes

Assemble

Secondary storage

Static – Fixed size
Dynamic – Variable size

Instructions

Data

Program

Static and dynamic data

int a;

main() {

int b, c;

b=1;

c=2;

a=b+c;

int *p=(int*)malloc(4);

Class A obj=newClassA();

}

Global variable (Static)

Local variables (Static)

Dynamic

Dynamic

Program & Process

• Program is stored in a secondary storage. It does not use CPU.

• Example: notepad.exe in C:\Users\Program Files

• Process is a program under execution, which is loaded in memory and utilizing resources.

• Process is an instance of program in memory.

Process structure CPE3201 - Operating Systems

Address space

Memory allocated for a process

Code

0000

Static data

Dynamic data
(Heap)

Runtime stack

FFFF

Process 1

Address
space

Fixed size

Fixed size

Code section
• Binary instruction from programs are loaded in code section function-wise, contiguously.

• Each instruction has an address, opcode, and operands

• Program Counter (PC) is initialized with the first instruction’s address of main() function.

main() {

int a=1;

int b=2;

int c=a+b;

funcX();

}

funcX() {

int d=20;

int e=10;

int f=d-e;

}

.

.
I3
I2
I1
.
.
.

I4
I3
I2
I1
.
.

.

.
103
102
101

.

.

.
53
52
51
50
.
.

I1

Instruction
Register (IR)

50

Program
Counter (PC)

CPU

Register 1 (R1)

Register 2 (R2)

.

.

Once the code is loaded, the
program must tell the CPU the
address of the first instruction
in the main function.

Memory

Address does not
show the actual size.

Opcode
Operand
Address

Static data section

#define t “Hello”

int u;

main() {

int v;

}

funcY() {

static float d;

}

.

.
(d)
(v)
(u)
o
l
l
e
H
.
.

.
208
207
206
205
204
203
202
201
200

.

.

Memory

Variables in C

Char: 1 byte = 8 bit

(e.g., H = 1001000)

Int: 2-4 byte

Float: 4 byte

Double: 8 byte

• Variables declaration.

• Declaration + Assignment.

Global
variables

Dynamic (Heap) data section
• Starts empty. Memory is allocated at run time.

• Programmer can decide the size and when to allocate/deallocate memory
(e.g., malloc() calloc() and free in C).

main() {

int *p=(int*)malloc(4);

}

.

.
Null

.

.

.
302
301

.

.

Static data

.

.
700

.

.

.
302
301

.

.

Static data

.

.

.

.

703
702
701
700

Heap

Initial Run time

Point to the starting address.

Reserve 4 bytes

Memory deallocation

main() {

int *p=(int*)malloc(4);

free(p);

p=null;

}

.

.
null

.

.

.
302
301

.

.

Static data

.

.

.

.

703
702
701
700

Heap

Run time

These addresses
can be used again

Runtime stack
• It is a stack of Activation Record (AR) used to store local variables of function, return address,

and parameter passed to the function.

• Before the program runs, the runtime stack is empty.

main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q,

int r) {

int c;

int d;

return;

}

b=3
a=2

502
501
500

Memory

The memory is allocated in the
same sequence as in the program.

AR of main()

main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q,

int r) {

int c;

int d;

return;

}

p=2
q=3
r=10
b=3
a=2

504
503
506
502
501
500

Memory

Parameters are pushed into the stack from
right to left in C (decided by a compiler).

Main() is still active.
funcX is allocated on top of that.

main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q,

int r) {

int c;

int d;

return;

}

500
(d)
(c)

p=2
q=3
r=10
b=3
a=2

507
506
505
504
503
502
501
500

Memory

AR of funcX

Return address will be put somewhere
in the stack (often on top) when calling
a function with a return value.

main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q,

int r) {

int c;

int d;

return;

}

b=3
a=2

507
506
505
504
503
502
501
500

Memory

funcX returns value to the memory location.

Stack memory allocated to funcX is cleared.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

