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How a program is executed CPE3201 - Operating Systems
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a = b + c;
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Program code
(C, Java, Python, …)

.
LOAD R1 &b
LOAD R2 &c
ADD R1 R2
STORE &a R1

.
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instructions
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Load

Main memory

000

400

Opcode – The operation to be performed.
Operand – Variables on which an operation is performed.
Address – Memory location of instruction/data.

* This slide is only about “instruction,” data will be mentioned later.
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AddressLocation
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Main memory

000

400
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Instruction 
Register (IR)

064

Program 
Counter (PC)

CPU

Fetch in
Register 1 (R1)

Register 2 (R2)

.

.

Registers:
Internal memory in CPU (not a cache)

Control Unit (CU) 
• Controls data sent through CPU’s various components.
• Receives and transmits control signals from other devices.
• Interprets commands and controls CPU time.
• Decode, fletch, carry out the order, and store the results.
• Interprets directions and directives.

Arithmetic Logic Unit (ALU)
• Performs all the basic arithmetic operations (+, -, *, /, …) and 

logical operations (AND, OR, …). 

• Program instructions and data must be first loaded in memory before CPU can access them.
• PC will always be incremented by 1 address location (e.g., 064 →065 →066 → …).
• CPU cannot directly fetch instructions from secondary storage.

Opcode 
Operand 
Address

064

067



Instruction cycle

Fetch

Decode

Execute

Store

Fetch – Fetches instruction and data from RAM.

Decode – Decodes the instruction.

Execute – Executes instruction and operates on data.

Store – Stores output data in RAM.



Program vs Process CPE3201 - Operating Systems

High-level 
language (C, 

Java, Python, …)

.c  .cpp .java  .py

Assembly 
instructions

.exe  .cgi

Compile Binary 
codes

Assemble

Secondary storage

Static – Fixed size
Dynamic – Variable size

Instructions

Data

Program



Static and dynamic data

int a;

main() {

int b, c;

b=1;

c=2;

a=b+c;

---

int *p=(int*)malloc(4);

---

Class A obj=newClassA();

---

}

Global variable (Static)

Local variables (Static)

Dynamic

Dynamic



Program & Process

• Program is stored in a secondary storage. It does not use CPU.

• Example: notepad.exe in C:\Users\Program Files

• Process is a program under execution, which is loaded in memory and utilizing resources. 

• Process is an instance of program in memory.
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Address space

Memory allocated for a process

Code

0000

Static data

Dynamic data
(Heap)

Runtime stack

FFFF

Process 1

Address 
space

Fixed size

Fixed size



Code section
• Binary instruction from programs are loaded in code section function-wise, contiguously.

• Each instruction has an address, opcode, and operands

• Program Counter (PC) is initialized with the first  instruction’s address of main() function.

main() {

int a=1;

int b=2;

int c=a+b;

funcX();

}

funcX() {

int d=20;

int e=10;

int f=d-e;

}

.
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Instruction 
Register (IR)

50

Program 
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Register 1 (R1)
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.

.

Once the code is loaded, the 
program must tell the CPU the 
address of the first instruction 
in the main function.

Memory

Address does not 
show the actual size.

Opcode 
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Address



Static data section

#define t “Hello”

int u;

main() {

int v;

}

funcY() {

static float d;

}

.

.
(d)
(v)
(u)
o
l
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e
H
.
.
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207
206
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204
203
202
201
200

.

.

Memory

Variables in C

Char: 1  byte = 8 bit

(e.g., H = 1001000)

Int: 2-4 byte

Float: 4 byte

Double: 8 byte

• Variables declaration.

• Declaration + Assignment.

Global 
variables



Dynamic (Heap) data section
• Starts empty. Memory is allocated at run time.

• Programmer can decide the size and when to allocate/deallocate memory 
(e.g., malloc() calloc() and free in C). 

main() {

int *p=(int*)malloc(4);

}

.

.
Null

.

.

.
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301

.

.

Static data

.

.
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.

.
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302
301

.
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Static data

.

.
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703
702
701
700

Heap

Initial Run time

Point to the starting address.

Reserve 4 bytes



Memory deallocation

main() {

int *p=(int*)malloc(4);

free(p);

p=null;

}

.

.
null

.

.

.
302
301

.

.

Static data

.

.

.

.

703
702
701
700

Heap

Run time

These addresses 
can be used again



Runtime stack
• It is a stack of Activation Record (AR) used to store local variables of function, return address, 

and parameter passed to the function.

• Before the program runs, the runtime stack is empty.

main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q, 

int r) {

int c;

int d;

return;

}

b=3
a=2

502
501
500

Memory

The memory is allocated in the 
same sequence as in the program.

AR of main() 



main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q, 

int r) {

int c;

int d;

return;

}

p=2
q=3
r=10
b=3
a=2

504
503
506
502
501
500

Memory

Parameters are pushed into the stack from 
right to left in C (decided by a compiler).

Main() is still active.
funcX is allocated on top of that.



main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q, 

int r) {

int c;

int d;

return;

}

500
(d)
(c)

p=2
q=3
r=10
b=3
a=2

507
506
505
504
503
502
501
500

Memory

AR of funcX

Return address will be put somewhere 
in the stack (often on top) when calling 
a function with a return value.



main() {

int a=2;

int b=3;

funcX(a,b,10);

}

funcX(int p, int q, 

int r) {

int c;

int d;

return;

}

b=3
a=2

507
506
505
504
503
502
501
500

Memory

funcX returns value to the memory location.

Stack memory allocated to funcX is cleared.
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