
Week 2 (18 July 2024)

Lecturer responsible for this course: Mr.Luechai Tiprungsri

 Room Number:
 305

 Tel.:
 081-972-5793

 Email:
 luechai.ti@ssru.ac.th

Definition of a Matrix

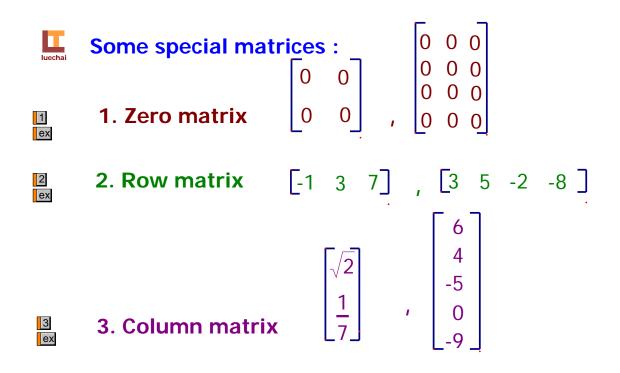
If m and n are positive integers, an mxn matrix (read m by n)

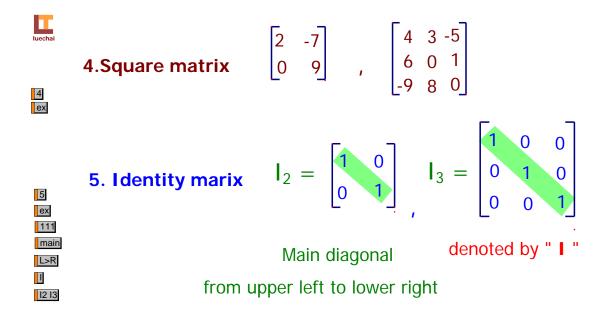
		is a rectangular array			
	a ₁₁	a ₁₂	a ₁₃		a _{1n}
	a ₂₁	a ₂₂	a ₂₃		a _{2n}
	a ₃₁	a ₃₂	a ₃₃		a _{3n}
	1			a _{ij}	-
aij	a _{m1}	a _{m2}	a _{m3}		a _{mn}

in which each entry, a_{ij}, of the matrix is a number.An mxn matrix has m rows (horizontal lines) and n columns (vertical lines)

We use a capital letter torepesent a matrix. For example

$$A = \begin{bmatrix} -1 & 9 \\ 5 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{1}{3} \\ 0 \\ \sqrt{2} \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -9 & 0 & 4 \\ -4 & 3 & 5 & -7 \\ 0 & -1 & 7 & 6 \end{bmatrix}$$


Notice that in A, there are 2 rows across and 2 columns down
We say that the order of A is 2x2 or A is a 2x2 matrix.
in B, there are 3 rows across and 1 column down
We say that the order of B is 3x1 or A is a 3x1 matrix.
in C, there are 3 rows across and 4 columns down
We say that the order of C is 3x4 or C is a 3x4 matrix.


2 by 2

Ξ

A B C

luechai

Two matrices are said to be **equal** if they are of the same order and their corresponding elements are equal.

From matrices A, B, C and D : Are there any pairs that are equal ?

$$A = \begin{bmatrix} -2 & \frac{9}{3} & \sqrt{25} \\ 0 & 1 & \pi \end{bmatrix} , B = \begin{bmatrix} \sqrt{4} & 3 & 5 \\ 0 & 1^5 & \pi \end{bmatrix} ,$$
$$C = \begin{bmatrix} -2 & \sqrt{9} & 5 \\ 0 & 5^0 & \frac{22}{7} \end{bmatrix} , D = \begin{bmatrix} 2 & \frac{6}{2} & \sqrt{(-5)^2} \\ -0 & 0.9 & \pi \end{bmatrix}$$

Let matrix A equal to matrix B ; find x, y, z and w.

$$A = \begin{bmatrix} x + y & -\sqrt{4} \\ w & 4.9^{\bullet} \end{bmatrix} , B = \begin{bmatrix} \log_2 2 & y \\ \frac{1}{2^{-2}} & w - z \end{bmatrix}$$

Addition, Subtraction, and Scalar Multiplication of Matrices

Matrix addition

A+B If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$, then $A + B = \begin{bmatrix} a + e & b + f \\ c + g & d + h \end{bmatrix}$

Matrix Subtraction

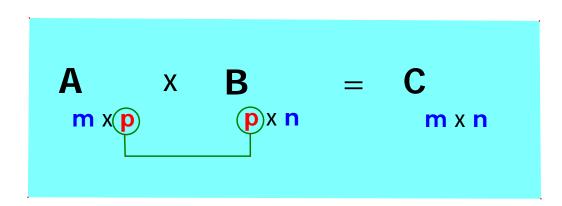
If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$, then $A - B = \begin{bmatrix} a - e & b - f \\ c - g & d - h \end{bmatrix}$

luechai

Scalar Multiplication

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $k A = \begin{bmatrix} k & a & k & b \\ k & c & k & d \end{bmatrix}$ where k is a number
Example
If $A = \begin{bmatrix} -4 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -5 \\ -1 & 8 \end{bmatrix}$ find $\frac{1}{5}A - \frac{1}{7}B$

$$\begin{bmatrix} -\frac{4}{5} - \frac{2}{7} & \frac{3}{5} - \frac{(-5)}{7} \\ \frac{1}{5} - \frac{(-1)}{7} & \frac{2}{5} - \frac{8}{7} \end{bmatrix}$$


AB

Multiplication of Matrices

The product of two matrices A and B is defined only when the number of columns in A is equal to the number of rows in B.

Table	Matrices	Δ	B		
		X	B		
	Dimensions	m x p ♠	p x n		
p	columns in A rows in B				
mxn	The product AB is a matrix of dimension m x n				

luechai

Week 2 (27 August 2021)