

Course Code: MMA1303

Course Title: Linear Algebra

Credits: **3(3-0-6)**

Semester: 1 Academic Year: 2021

Lecturer responsible for this course: Mr.Luechai Tiprungsri

Room Number: 305

Tel.: **081-972-5793**

Email: luechai.ti@ssru.ac.th

luechai

Definition of a Matrix

If m and n are positive integers, an mxn matrix (read m by n) is a rectangular array

a ₁₁	a ₁₂	a ₁₃		a _{1n}
a ₂₁	a ₂₂	a ₂₃		a _{2n}
a ₃₁	a ₃₂	a ₃₃		a _{3n}
:		•	a _{ij}	
a _{m1}	a _{m2}	a _{m3}		a _{mn}

in which each entry, a_{ij} , of the matrix is a number. An mxn matrix has m rows (horizontal lines) and n columns (vertical lines)

We use a capital letter torepesent a matrix. For example

$$A = \begin{bmatrix} -1 & 9 \\ 5 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} \frac{1}{3} \\ 0 \\ \sqrt{2} \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -9 & 0 & 4 \\ -4 & 3 & 5 & -7 \\ 0 & -1 & 7 & 6 \end{bmatrix}$$

Notice that in A, there are 2 rows across and 2 columns down

We say that the order of A is 2x2 or A is a 2x2 matrix.

in B, there are 3 rows across and 1 column down

read
2 by 2

Ξ

B

We say that the order of B is 3x1 or A is a 3x1 matrix. in C, there are 3 rows across and 4 columns down We say that the order of C is 3x4 or C is a 3x4 matrix.

2 ex

3. Column matrix

$$\begin{bmatrix} \sqrt{2} \\ \frac{1}{7} \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \\ -5 \\ 0 \\ -9 \end{bmatrix}$$

4. Square matrix
$$\begin{bmatrix} 2 & -7 \\ 0 & 9 \end{bmatrix}$$
 , $\begin{bmatrix} 4 & 3 & -5 \\ 6 & 0 & 1 \\ -9 & 8 & 0 \end{bmatrix}$

5. Identity marix

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

5 ex

Main diagonal

denoted by " I "

12 13

from upper left to lower right

Two matrices are said to be equal if they are of the same order and their corresponding elements are equal.

From matrices A, B, C and D: Are there any pairs that are equal?

$$A = \begin{bmatrix} -2 & \frac{9}{3} & \sqrt{25} \\ 0 & 1 & \pi \end{bmatrix} \qquad B = \begin{bmatrix} \sqrt{4} & 3 & 5 \\ 0 & 1^5 & \pi \end{bmatrix}$$

$$B = \begin{bmatrix} \sqrt{4} & 3 & 5 \\ 0 & 1^5 & \pi \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & \sqrt{9} & 5 \\ 0 & 5^{\circ} & \frac{22}{7} \end{bmatrix}$$

$$C = \begin{bmatrix} -2 & \sqrt{9} & 5 \\ 0 & 5^{\circ} & \frac{22}{7} \end{bmatrix} \quad D = \begin{bmatrix} 2 & \frac{6}{2} & \sqrt{(-5)^{2}} \\ -0 & 0.9^{\bullet} & \pi \end{bmatrix}$$

Let matrix A **equal to** matrix B; find x, y, z and w.

$$A = \begin{bmatrix} x+y & -\sqrt{4} \\ w & 4.9 \end{bmatrix}$$

$$A = \begin{bmatrix} x+y & -\sqrt{4} \\ w & 4.9 \end{bmatrix} , B = \begin{bmatrix} \log_2 2 & y \\ \frac{1}{2^{-2}} & w-z \end{bmatrix}$$

Addition, Subtraction, and Scalar Multiplication of Matrices

+ **Matrix addition**

$$\text{ If } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and } B = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \text{ , then } A + B = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

Matrix Subtraction

$$\text{ If } A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ and } B = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \text{ , then } A - B = \begin{bmatrix} a - e & b - f \\ c - g & d - h \end{bmatrix}$$

luechai

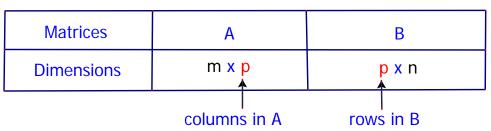
Scalar Multiplication

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 then $kA = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$ where k is a number

If $A = \begin{bmatrix} -4 & 3 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -5 \\ -1 & 8 \end{bmatrix}$ find $\frac{1}{5}A - \frac{1}{7}B$

$$\begin{bmatrix} \frac{4}{5} - \frac{2}{7} & \frac{3}{5} - \frac{(-5)}{7} \\ \frac{1}{5} - \frac{(-1)}{7} & \frac{2}{5} - \frac{8}{7} \end{bmatrix}$$

If
$$A = \begin{bmatrix} -4 & 3 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -5 \\ -1 & 8 \end{bmatrix}$ find $\frac{1}{5}A - \frac{1}{7}B$

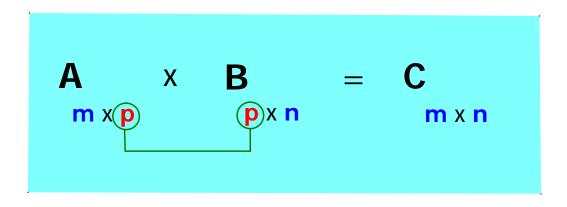

luechai

Multiplication of Matrices

AB

The product of two matrices A and B is defined only when the number of columns in A is equal to the number of rows in B.

Table



р

mxn

The product AB is a matrix of dimension m x n

Week 2 (27 August 2021)

Given
$$A = \begin{bmatrix} -2 & 3 \\ 5 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & -7 \\ 3 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 0 & 9 \\ -1 & 5 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} -2 & 1 \\ 7 & -5 \\ 0 & -8 \end{bmatrix}$

(a) $A \times B$, $B \times A$
(b) $A \times C$, $C \times A$
(c) $B \times D$, $D \times B$
(d) $C \times D$, $D \times C$

(b) $A \times C$
(c) $B \times D$, $D \times C$

(b) $A \times C$
(c) $B \times D$, $D \times C$
(d) $C \times D$, $D \times C$
(e) $C \times D$
(for $C \times C$
(for $C \times$