Week 2 (20 July 2023)

Lecturer responsible for this course: Mr.Luechai Tiprungsri

Room Number:
305
Tel.:
081-972-5793
Email: luechai.ti@ssru.ac.th

튼
 Definition of a Matrix

If m and n are positive integers, an mxn matrix (read m by n)
is a rectangular array

$\Pi_{\text {Hectai }} \quad$ We use a capital letter torepesent a matrix. For example

$$
A=\left[\begin{array}{cc}
-1 & 9 \\
5 & -2
\end{array}\right], \quad B=\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
\sqrt{2}
\end{array}\right], \quad C=\left[\begin{array}{cccc}
2 & -9 & 0 & 4 \\
-4 & 3 & 5 & -7 \\
0 & -1 & 7 & 6
\end{array}\right]
$$

Notice that in A, there are 2 rows across and 2 columns down We say that the order of A is 2×2 or A is a 2×2 matrix.
read
2 by 2 in B, there are 3 rows across and 1 column down We say that the order of B is 3×1 or A is a 3×1 matrix.
in C, there are 3 rows across and 4 columns down
We say that the order of C is 3×4 or C is a 3×4 matrix.

플
4.Square matrix $\left[\begin{array}{rr}2 & -7 \\ 0 & 9\end{array}\right],\left[\begin{array}{rrr}4 & 3 & -5 \\ 6 & 0 & 1 \\ -9 & 8 & 0\end{array}\right]$
5. Identity marix $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Main diagonal denoted by "I "
from upper left to lower right Two matrices are said to be equal if they are of the same order and their corresponding elements are equal.

From matrices A, B, C and D : Are there any pairs that are equal ?
$A=\left[\begin{array}{rrr}-2 & \frac{9}{3} & \sqrt{25} \\ 0 & 1 & \pi\end{array}\right] \quad, \quad B=\left[\begin{array}{ccc}\sqrt{4} & 3 & 5 \\ 0 & 1^{5} & \pi\end{array}\right]$
$\mathrm{C}=\left[\begin{array}{ccc}-2 & \sqrt{9} & 5 \\ 0 & 5^{0} & \frac{22}{7}\end{array}\right] \quad \mathrm{D}=\left[\begin{array}{ccc}2 & \frac{6}{2} & \sqrt{(-5)^{2}} \\ -0 & 0.9^{\circ} & \pi\end{array}\right]$

[14) Let matrix A equal to matrix B; find x, y, z and w.

$$
A=\left[\begin{array}{ll}
x+y & -\sqrt{4} \\
w & 4.9
\end{array}\right] \quad, \quad B=\left[\begin{array}{cc}
\log _{2} 2 & y \\
\frac{1}{2^{-2}} & w-z
\end{array}\right]
$$

$\underset{\text { Inechai }}{I}$ Addition, Subtraction, and Scalar Multiplication of Matrices

凹 Matrix addition
IA+B $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$, then $A+B=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$

- Matrix Subtraction

IA-B $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $B=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$, then $A-B=\left[\begin{array}{ll}a-e & b-f \\ c-g & d-h\end{array}\right]$

뜬

Scalar Multiplication

$$
\text { If } A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \text { then } k A=\left[\begin{array}{ll}
k a & k b \\
k c & k d
\end{array}\right] \text { where } k \text { is a number }
$$

Example
ans

$$
\text { If } A=\left[\begin{array}{cc}
-4 & 3 \\
1 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
2 & -5 \\
-1 & 8
\end{array}\right] \text { find } \frac{1}{5} A-\frac{1}{7} B
$$

$$
\left[\begin{array}{ll}
-\frac{4}{5}-\frac{2}{7} & \frac{3}{5}-\frac{(-5)}{7} \\
\frac{1}{5}-\frac{(-1)}{7} & \frac{2}{5}-\frac{8}{7}
\end{array}\right]
$$

luechai

-

Multiplication of Matrices

The product of two matrices A and B is defined only when the number of columns in A is equal to the number of rows in B.

The product $A B$ is a matrix of dimension $m \times n$

Week 2 (27 August 2021)

(a) $A \times B, B \times A$
(b) $A \times C, C \times A$
(c) $B \times D, D \times B$
(d) $C \times D, D \times C$

