How to calculate Sample Variance ($\mathbf{S}^{\mathbf{2}}$) and Standard Deviation (S) using Excel

$$
\text { Variance }\left(\mathrm{S}^{2}\right)=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\mathrm{n}-1} \quad \mathrm{~S}=\sqrt{S^{2}}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

Question: The following data represent the total fat for burgers items from a sample of fast-food chains. Find the variance, and standard deviation.
$7, \quad 9, \quad 16, \quad 18, \quad 15, \quad 16, \quad 22, \quad 25 \quad 27, \quad 33, \quad 39$

Sample Variance (S^{2}) Method 1:

Step 1 Enter all data in Excel software program
Step 2: Find the mean by using the AVERAGE function: =AVERAGE(B2:B12)

The average (mean) goes to any empty cell, say B13.

Step 3: Subtract the mean (average) from each number in the sample:

- move cursor to column C2
- Type: = $\mathbf{B} \mathbf{2}-\mathbf{B} \mathbf{\$ 1 3}$ (mean value is in col B13, we will lock as a constant value)
- Click Enter. (You shall see the value of x-mean $=-13.64$ in column C2)
- move cursor to the corner of column C2 and drag until col C12

Clipboard		『			ont	「
SUM		\checkmark	\vdots	$\times \checkmark$	$f_{x}=$	= B2-\$B\$13
-	A			B	C	D
1	Burgers			Fat	x-mean	
2	A				= B2-\$B\$13	
3	B			9		
4	C			16		
5	D			18		
6	E			15		
7	F			16		
8	G			22		
9	H			25		
10	1			27		
11	J			33		
12	F			39		
13	mean			20.64		
14						

The differences go to column C, beginning in C2.

[^0]Step 4: Square each difference and put the results to column \mathbf{D}, beginning in $\mathbf{D} 2$:

- Move cursor to column D2
- Type: =C2^2
- Click Enter. (You shall see the value of $(\mathbf{x} \text {-mean })^{2}=185.9504$ in column D2)
- move cursor to the corner of column D2 and drag until col D12

D2		\times	$f_{x}=\mathrm{C} 2$		
4	A	B	c	D	E
1	Burgers	Fat	x - mean	(x-mean)^2	
2	A	7	-13.64	185.9504	
3	B	9	-11.64		
4	C	16	-4.64		
5	D	18	-2.64		
6	E	15	-5.64		
7	F	16	-4.64		
8	G	22	1.36		
9	H	25	4.36		
10	1	27	6.36		
11	J	33	12.36		
12	F	39	18.36		
13	mean	20.64			
14					

Step 5: Add up the squared differences and divide the result by $(\mathrm{n}-1)$ or the number of items in the sample minus 1:

- Move cursor to column D15
- Type: =SUM(D2:D12)/(COUNT(B2:B12) - 1)
- or =SUM(D2:D12)/(12-1)
- Click Enter. (You shall see the value of variance 95.5455 in column D15)

Method 2：Move cursor to D17 or any empty space and Type：＝VAR．S（B2：B12）

Clipboard		，	Font	¢	Alignmer
B17		：\times	$\checkmark f_{x}$ Me	Method 2	
4	A	B	c	D	
1	Burgers	Fat x －mean		（x－mean）＾2	
2	A		－13．64	4.6185 .95	
3	B	－11．64		4 135.40	
4	C	16 －4．64		－ 21.50	
5	D	18	－2．64	（ 6.95	
6	E	15	－5．64	俍 31.77	
7	F	16	－4．64	4 21.50	
8	G	22	1.36		
9	H	25	4.36	（19．04	
10	1	27	6.36	年 40.50	
11	J	33	12.36	（ 152.86	
12	F	39	18.36	337.22	
13	mean	20.64			
14			SUM	954.55	
15			Sample Var	95.45454545	
16		Method 2 S			
$17 \mid$			Sample Var	95.45454545	
18					
19					

b）Find the value of sample standard deviation：

Find the value of sample standard deviation：
－Move cursor to column D18
－Type：＝SQRT（D17）
－Click Enter．
You shall see the value of sample standard deviation 9.770084209 in column D18

Clipboard			Font	『	Alignment
D18		：\times	$\checkmark f_{x}=$ S	SQRT（D17）	
4	A	B	C	D	E
1	Burgers		x－mean	$\left(\mathrm{x}\right.$－mean）${ }^{\wedge} 2$	
2	A	7	－13．64	4 185．95	
3	B	9	－11．64	（135．40	
4	C	16	－4．64	4 21．50	
5	D	18	－2．64	4 6．95	
6	E	15	－5．64	4 31．77	
7	F	16	－4．64	4 21．50	
8	G	22	1.36	－ 1.86	
9	H	25	4.36	（ 19.04	
10	1	27	6.36	6 40．50	
11	J	33	12.36	（ 152.86	
12	F	39	18.36	6337.22	
13	mean	20.64			
14			SUM	954.55	
15			Sample Var	95.45454545	
16					
17		Method 2	Sample Var	95.45454545	
18			Standard Dev	9.770084209 ．	
19					
20					

Sample Variance of fast－food chains $=95.4545$
Sample standard deviation $=9.77$

[^0]: Asst.Prof.Dr.Krongthong Khairiree \& Mr.Luechai Tiprungsri
 College of Hospitality Industry Management, Suan Sunandha Rajabhat University

