Properties of Circles

Concept Mapping

A circle

A circle consists of all points on a plan which are at the same distance from a given point. A circle is defined by a center and a radius.

Point **O** is called a **center** of a circle, and

OA is called a **radius** of a circle.

The **circumference** is the distance around the edge of the circle.

The relationships among circles and lines are as follows:

A **cord** is a line segment with both end points on the circumference.

A **diameter** is a cord that contains the center.

In the figure, **AB** is a diameter of a circle. The line segment **CD** is called **a chord** of a circle.

Tangents

In the figure below, the straight line AB cuts the circle at two points, the straight line CD touches the circle at only one point. The line AB is called a secant line.

The line *CD* is called *a tangent to the circle*, and point *E* is called the *point of contact*. The radius *OE* is perpendicular to the line *CD* at point *E*.

Note	 A secant is a line that intersects a circle at two points. A tangent is a straight line which touches the circle at only one point.
	3. A tangent to a circle is <i>perpendicular</i> to the radius of the circle at the point of contact.

Properties of a Circle

Arcs of a Circle

The ratio of the length of an arc to the circumference of the circle equals the ratio of the central angle of the arc to 360° .

A clock has a pendulum 32 inches long. If the pendulum swings through an arc of 12°, how far does the pendulum travel?

The pendulum swings through an arc of a circle as shown in the figure.

The central angle of 12° means that Arc *AB* is $\frac{12^{\circ}}{360^{\circ}} = \frac{1}{30}$ of a circle with radius 32" Therefore,

Arc AB =
$$\frac{1}{30}$$
 (2 π)(32) = 6.7 inches.
The pendulum travel 6.7 inches.

Area of a Sector

The ratio of the area of a sector of a circle to the area of the circle is equal to the ratio of the central angle of the sector to 360° .

A lawn sprinkler sprays water over a radius of 30 feet. If the sprinkler is set to turn through an angle 110°, calculate the area that will be watered by the sprinkler.

Solution

The region watered by the sprinkler is a sector of a circle. Because the central angle of the sector is 110° and the radius of the circle is 30 feet.

The area that will be watered by the sprinkler is

Area =
$$\frac{x}{360}$$
 ($\pi \cdot r^2$)

The area that will be watered by the sprinkler is 864.3 square feet

Exercises 1

- **1.** The pendulum of a clock is 40 inches long and swings through an arc of 8°. Find the length of arc that the pendulum traces out.
- 2. A windshield wiper is 18 inches long and has a blade 12 inches long. If the wiper sweeps through an angle of 130°, how large an area does the wiper blade clean? Round your answer to the nearest square inch.
 - 3. The diagram shows two concentric circles with center *O* and radii 50 cm and 68 cm respectively.
 Given that ∠ AOB = 100°

A lampshade is made from the piece of material ABCD as shown.

Find:

- a) The area of sector AOB
- b) The arc length *AB* and *CD*
- c) The surface area of the lampshade *ABCD*.

Angles in a Circle

Inscribed Angle in a Circle

In the figure, angle *ADB* is subtended by the **arc** *ACB* at the point D on the circumference of the circle. An angle *AOB* is subtended by the arc *ACB* at the center of the circle.

The angle *AOB* is called **a central angle** or angle at the center.

The angle *ADB* is called an **inscribed angle** in a circle.

The angle subtended by an arc at the center of a circle is **twice** the angle subtended by the same arc at the circumference. From the figure above:

 $\angle AOB = 2 \angle ADB$

Using GSP to Sketch and Investigate

Open program GSP and select New Sketch from File menu

- 1. Construct a circle with center **O**
- 2. Construct point *A* and *B* on the circle
- 3. Construct minor arc AB
 - Select in order point *O*, *A* and *B*
 - Choose Arc on circle in the Construct menu.
- 4. Construct major arc
 - Select in order point *O*, *B* and *A*
 - Choose *Arc on circle* in the Construct menu, change color from Display menu.
- 5. Construct line segments **OA** and **OB**
- 6. Construct point *C* on the circle
- 7. Construct line segments *AC* and *BC*
- 8. Measure the angle at the center $\angle AOB$, and the inscribed angle $\angle ACB$ subtended by the arc AB.
 - Select points *A*, *O* and *B* in order;
 - Choose *Angle* from Measure menu

m∠AOB = 94.4° m∠ACB = 47.2°

Exploring:

- **1.** Calculate the ratio of $\angle AOB$ and $\angle ACB$
- **2.** Drag the point *C* along the circle. What do you observe?
- **3.** Drag the point *A* or *B* along the circle. What do you observe?
- **4.** Describe the relationship between $\angle AOB$ and $\angle ACB$.

Angles in the same segment are equal.

Open program GSP and select New Sketch from File menu

- 1. Construct a circle with center **O**
- 2. Construct point *A* and *B* on the circle
- 3. Construct **minor arc** AB
 - Select in order point *O*, *A* and *B*
 - Choose *Arc on circle* in the Construct menu.
- 4. Construct major arc
 - Select in order point *O*, *B* and *A*
 - Choose *Arc on circle* in the Construct menu, change color from Display menu.
- 5. Construct point *C* and *D* on the major arc
- 6. Construct line segments *AC*, *BC*, *AD* and *BD*
- 7. Construct sectors *ECF* and *GD*H
 - Construct sector *ECF*
 - \circ Construct circle at point *C*
 - Construct minor arc EF, while this arc is selected, select Arc Interior and choose Arc Sector in Construct menu
 - Select circles and choose Hide in Display menu
 - Construct sector *GDH*

- 8. Measure angle ACB and ADB
 - Select in order point *A*, *C* and *B* in order
 - Select Angle from Measure menu
- 9. Drag or Animate point *C* and *D* to investigate measures of the angles.

Note:

If we divide the circumference of a circle into two arcs in the proportion of *Golden Ratio* (1.618),

the angle produced by the smaller arc is 137.5°, also known as the **Golden Angle.**

Golden Ratio:

 $\frac{b}{a} = \frac{20.86 \text{ cm}}{12.89 \text{ cm}} = 1.618$

Golden Angle = 137.5°

The Angle in a Semi-circle is a right angle.

10

1. Given that **O** is the center of a circle, name the angle subtended by the given arc as following.

2. Given that O is the center of a circle, find the value of x in each case.

3. Given that O is the center of a circle, find the value of x and y in each case.

4. Given that O is the center of a circle, and BD is a diameter. find the value of x in each case.

5. In the figure below, *O* is the center of the circle and *ABD* is a straight line. $\angle AOC = 140^{\circ}$, and BC = BD. Find the value of $\angle ABC$ and $\angle BCD$.

A cyclic quadrilateral.

A quadrilateral is a *cyclic quadrilateral*, if there is a circle passing through all its four vertices.

The sum of opposite angles of a cyclic quadrilateral is 180°.

A triangle formed by 2 radii and a chord is always **an isosceles triangle**, as both radii are always equal. A