Basic Concepts of Number Theory: Part 1

Assoc.Prof.Chaweewan Kaewsaiha

Founder of Modern Number Theory

Some of his contributions include Fermat numbers and Fermat primes, Fermat's principle, Fermat's Little Theorem, and Fermat's Last Theorem.

Pierre De Fermat (1601-1665)

Source:
https://study.com/academy/lesson/pierre-de-fermat-contributions-to-math-
accomplishments.html

Fermat Numbers and Fermat Primes

Fermat Number: $F_{n}=2^{2^{n}}+1$, where $n=0,1,2,3,4, \ldots$
Fermat Primes are important to the study of prime numbers and Mersenne numbers.
Example: $F_{0}=2^{2^{0}}+1=3$
$F_{1}=2^{2^{1}}+1=5$
$F_{2}=2^{2^{2}}+1=17$
$F_{3}=2^{2^{3}}+1=257$
$F_{4}=2^{2^{4}}+1=65537$

Fermat's Principle

Fermat's Little Theorem

Clexmaty Larfle Theorem
 $a^{p} \equiv a(\bmod p)$

p is prime and $p \mid a \Rightarrow a^{p} \equiv a(\bmod p)$

Fermat's Last Theorem

There are no three positive integers x, y, and z for which

$$
x^{n}+y^{n}=z^{n}
$$

for any integer $n>2$.

Prince of Mathematics

Some of his contributions include number theory, binomial theorem, prime number theorem, arithmetic and geometric mean. At the age of seven, he summed the integers from 1 to 100 using 50 pairs of numbers each pair summing up to 101 .
Carl Friedrich Gauss
(1777-1855)

Binomial Theorem

$$
\begin{gathered}
(a+b)^{n}=\binom{n}{0} a^{n} b^{0}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} a^{0} b^{n} \\
\text { where }\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}
\end{gathered}
$$

There are $n+1$ terms and n is a positive integer.

Binomial coefficient (Pascal's Triangle)

Prime Number Theorem

$$
\begin{aligned}
& \text { Prime Number Theorem } \\
& \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1
\end{aligned}
$$

$\pi(x)$ is the number of primes less than or equal to x.

Arithmetic - Geometric Mean

Formula

$$
A=\frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

$$
\left(\prod_{i=1}^{\Pi_{i}}\right)^{\frac{1}{4}}=\sqrt{1 \pi_{1}\left(x_{2} \cdots x_{n}\right.}
$$

$A=$ arithmetic mean
$\prod=$ geometric mean
$n=$ number of values
$x_{i}=$ values to average

Number Theory

Number theory is the branch of mathematics that deals with the properties and relationships of numbers, especially the positive integers.

Natural Numbers - Whole Numbers - Integers

Definition 1: The set of natural numbers is $N=\{1,2,3,4,5, \ldots\} . N$ is also called the set of positive integers.

Definition 2: The set of whole numbers is $W=\{0,1,2,3,4,5, \ldots\} . W$ is also referred to the set of non-negative integers.
pefinition 3: The set of integers is $I=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.
I is also denoted by Z.

$$
N \subset W \subset I
$$

Properties of Integers

Properties of Addition

Property 1 Closure under Addition:

$$
a+b \text { is in } I \text { for all } a \text { and } b \text { in } I .
$$

Property 2 Associative Law of Addition

$$
a+(b+c)=(a+b)+c \text { for all } a, b \text { and } c \text { in } I .
$$

Properties of Integers (cont.)

Properties of Addition (cont.)
Property 3 Commutative Law of Addition:

$$
a+b=b+a \text { for all } a \text { and } b \text { in } I .
$$

Property 4 Additive Identity
There is an element 0 in I such that $a+0=0+a=a$ for all a in I.

Properties of Integers (cont.)

Properties of Addition (cont.)
Property 5 Additive Inverse:

For each element a in I, there is an element $-a$ in I such
that $a+(-a)=(-a)+a=0$.

Properties of Integers (cont.)

Properties of Multiplication
Property 6 Closure under Multiplication:

$$
a b \text { is in } I \text { for all } a \text { and } b \text { in } I .
$$

Property 7 Associative Law of Multiplication

$$
a(b c)=(a b) c \text { for all } a, b \text { and } c \text { in } I .
$$

Properties of Integers (cont.)

Properties of Multiplication (cont.)

Property 8 Commutative Law of Multiplication:

$a b=b a$ for all a and b in I.

Property 9 Multiplicative Identity
There is an element 1 in I such that $a(1)=(1) a=a$ for all a in I.
Remark: The inverse property is not satisfied for every element a in I. Because the identity element is equal to 1 , but no two integers multiply to give 1 except 1 itself.

Properties of Integers (cont.)

Property Relating Addition and Multiplication
Property 10 Distributive Laws:
i. $c \cdot(a+b)=c \cdot a+c \cdot b$ for all a, b and c in I.
(left distributive law)
ii. $(a+b) \cdot c=a \cdot c+b \cdot c$ for all a, b and c in I.
(right distributive law)

Even Numbers and Odd Numbers

Definition 4: A number is even if it can be written in the form $2 n$, where n is an integer; a number is odd if it can be written in the form $2 n+1$.

The set of even numbers is $E=\{\ldots,-4,-2,0,2,4,6, \ldots\}$.
The set of odd numbers is $O=\{\ldots,-5,-3,-1,1,3,5, \ldots\}$.

Even and Odd Number Theorems

Theorem 1: The sum of two odd numbers is even.
Proof: Let a and b be odd numbers. Then there exist integers m and n such that $a=2 m+1$ and $b=2 n+1$.

Thus, $\quad a+b=(2 m+1)+(2 n+1)=2 m+2 n+2=2(m+n+1)$.
Since, $m+n+1$ is an integer. (Closure law of integer addition)
Then, $a+b=2 p$ with $p=m+n+1 \in I$.
Therefore, $a+b$ is even. (Definition of even integer) \#

Even and Odd Number Theorems (cont.)

Theorem 2: Let n be an integer. If n is even, then n^{2} is even.
Proof: Assume n is an even integer.
Then $n=2 k$ for some $k \in I . \quad$ (Definition. of an even integer)
Squaring both sides, we get $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.
Since k is an integer, so is $2 k^{2}$. (Closure law of integer multiplication)
Hence $n^{2}=2 p$ with $p=2 k^{2} \in I$.
Therefore n^{2} is even (Definition. of an even integer) \#

The sum of consecutive odd numbers

The Fibonacci Sequence

The Fibonacci sequence of natural numbers is listed as follows:

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

Where each new term is formed by adding the last term to its
predecessor. Thus, $2=1+1,3=2+1,5=3+2,8=5+3, \ldots$
So, we can write the rule:

$$
x_{n}=x_{n-1}+x_{n-2}
$$

Fibonacci sequence and application

Arts

Number of petals of flower

Binomial coefficient

Practice 4.1 (page 6)

Primes and Composites

Definition 5: A prime number p is a positive integer greater than 1 whose only factors are 1 and itself.

Definition 6: A composite number q is a positive integer greater than 1 which is not prime.

Primes and Composites (cont.)

Number	Explanation	Prime/Composite
$\mathbf{1}$	not a prime number by definition	-
$\mathbf{2}$	factors are 1 and 2	Prime
$\mathbf{3}$	factors are 1 and 3	Prime
$\mathbf{4}$	factors are 1, 2, and 4	Composite
$\mathbf{5}$	factors are 1 and 5	Prime
$\mathbf{6}$	factors are 1, 2, 3, and 6	Composite
$\mathbf{7}$	factors are 1 and 7	Prime
$\mathbf{8}$	factors are 1, 2, 4, and 8	Composite
$\mathbf{9}$	factors are 1,3,9	Composite
$\mathbf{1 0}$	factors are 1,2,5, and 10	Composite

The Sieve of Eratosthenes

$$
\begin{aligned}
& 71 \text { 72 } 73 \text { 74 75 76 7 76 } 79 \text { 80 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 94 92 93 94 96 96 } 97 \text { 96 96 } 9600
\end{aligned}
$$

Distribution of Primes

From 1 to 1,000

Number from	1	100	200	300	400	500	600	700	800	900
to	100	200	300	400	500	600	700	800	900	1000
Number of primes	25	21	16	16	17	14	16	14	15	14

Distribution of Primes (cont.)

From 10^{12} to $10^{12}+1,000$

Number from	$10^{12}+$	0	100	200	300	400	500	600	700	800	900
to	$10^{12}+$	100	200	300	400	500	600	700	800	900	1000
Number of primes		4	6	2	4	2	4	3	5	1	6

Distribution of Primes (cont.)

If we wish to have 1000 consecutive numbers, we can start from 1001! as follows:

$$
1001!+2,1001!+3,1001!+4, \ldots, 1001!+1001
$$

Where the notation 1001! means
(1001)(1000)(999)(998)(997) ... (5)(4)(3)(2)(1).

Fundamental Theorem of Arithmetic

Fundamental theorem of arithmetic proved by Carl Friedrich Gauss in 1801.

Fundamental theorem of arithmetic states that: Any integer greater than 1 can be expressed as the product of prime numbers in only one way.

Factor Tree for Prime Factorization

Remark: We can change the order in which the prime factors occur but the set of prime factors is unique.

Euclid Proof Infinity of Number of Primes

1. Assume there are a finite number n of primes $p_{i}, i=1,2,3, \ldots, n$, i.e. $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$, where the largest prime is p_{n}.
2. Consider the number that is the product of these, plus one:

$$
N=p_{1} p_{2} p_{3} \ldots p_{n}+1
$$

3. Divide N by $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ leaves a remainder of 1 .
4. Hence it is either prime itself, or divisible by another prime greater than p_{n}, contradicting the assumption.
5. Therefore, we reject the assumption of the largest prime and conclude that the number of primes is infinite.

Mersenne Primes

At the beginning of the $17^{\text {th }}$ century, French monk Marin
Mersenne defined the prime numbers $M_{p}=2^{p}-1$,
where p is a prime number. Mersenne prime numbers are named for his name.

Mersenne Primes (cont.)

In 1996, George Woltman, from the Massachusetts Institute of Technology (MIT) founded the Great Internet Mersenne Prime Search (GIMPS), a distributed computing project that searches for new Mersenne primes and allows any user can participate by downloading the software Prime95, created by Woltman.

Mersenne Primes (cont.)

In 2018, Patrick Laroche of the Great Internet Mersenne Prime Search (GIMPS) found the largest
known prime number $2^{82,589,933}-1$, a number which
has 24,862,048 digits when written in base 10 .

Practice 4.2 (page 11)

Divisibility

Definition 8: Let $a, b \in I$ and $a \neq 0$, a divides b if there is an integer k such that $\quad b=a k$. This is denoted by $a \mid b$.

A consequence of this definition is that b is divisible by a (without remainder). Alternative terms for a divides b are: a is a divisor of b, or a is a factor of b, or b is a multiple of a. The symbol $a \nmid b$ means a does not divide b.

Divisibility (cont.)

Property 1: If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
Proof: Since $a \mid b$, there exists an integer k_{1} such that $b=a k_{1}$ (Def. of divisor) ... (1)
Since $a \mid c$, there exists an integer k_{2} such that $c=a k_{2}$ (Def. of divisor) \ldots (2)
(1) + (2); $b+c=a k_{1}+a k_{2} \quad$ (Addition property)

$$
=a\left(k_{1}+k_{2}\right) \quad \text { (Distributive law for addition) }
$$

Since, $k_{1}+k_{2}$ is an intege
Then, $a \mid(b+c)$.
(Closure law for addition)
(Def. of divisor) \#

Divisibility (cont.)

Property 2: If $a \mid b$ and $a \mid c$, then $a \mid b c$.
Property 3: If $a \mid b$ and $b \mid c$, then $a \mid c$.
Property 4: If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$
whenever m and n are integers.

Practice

The Number of Divisors of a Natural Number

No.	Divisor/Factor	No. of Divisors/Fact ors	Factorizat ion
15	$1,3,5,15$	4	3×5
30	$1,2,3,5,6,10,15,30$	8	$2 \times 3 \times 5$
60	$1,2,3,4,5,6,10,12,15,20,30,60$	12	$2^{2} \times 3 \times 5$
144	$1,2,3,4,6,8,9,12,16,18,24,36$,	15	$2^{4} \times 3^{2}$

The Number of Divisors of a Natural Number (cont.)

The number of divisors or factors is found for the following rule:
Let the natural number N have the factorization

$$
N=p^{a} q^{b} r^{c} \ldots
$$

Where p, q, r, \ldots are the prime factors raised to the powers a, b, c, \ldots, respectively. The number of divisors of N, denoted by $d(N)$, is found by the formula

$$
d(N)=(a+1)(b+1)(c+1) \ldots
$$

The Number of Divisors of a Natural Number (cont.)

Example

$144=2^{4} \times 3^{2}$
Since, $p=2, q=3, a=4, b=2$
Then, $d(144)=(4+1)(2+1)=15 \quad \#$

The Sum of the Divisor

Let the natural number N have the factorization: $N=p^{a} q^{b} r^{c} \ldots$
Where p, q, r, \ldots are the prime factors raised to the powers a, b, c, \ldots, respectively. The sum of divisors of N, denoted by $\sigma(N)$, is found by the formula

$$
\begin{gathered}
\sigma(N)=\left(p^{0}+p^{1}+p^{2}+\cdots+p^{a}\right)\left(q^{0}+q^{1}+q^{2}+\cdots+q^{b}\right)\left(r^{0}+r^{1}+r^{2}+\cdots+r^{c}\right) \cdots \\
\text { or } \\
\sigma(N)=\left(1+p^{1}+p^{2}+\cdots+p^{a}\right)\left(1+q^{1}+q^{2}+\cdots+q^{b}\right)\left(1+r^{1}+r^{2}+\cdots+r^{c}\right) \cdots
\end{gathered}
$$

The Sum of the Divisor (cont.)

Example 1: $\quad 30=2 \times 3 \times 5$

$$
\sigma(30)=(1+2)(1+3)(1+5)=3 \times 4 \times 6=72
$$

Check the divisors from Table 4.4: $1+2+3+5+6+10+15+30=72$ \#
Example 2: $144=2^{4} \times 3^{2}$

$$
\sigma(144)=\left(1+2+2^{2}+2^{3}+2^{4}\right)\left(1+3+3^{2}\right)=31 \times 13=403
$$

Check the divisors from Table 4.4:
$1+2+3+4+6+8+9+12+16+18+24+36+48+72+144=403 \#$

The Sum of the Divisor (cont.)

Remark: The formula for $\sigma(N)$ involves not only the exponents but also the prime factors themselves.

$$
N=p^{a} q^{b} r^{c} \ldots
$$

$$
d(N)=(a+1)(b+1)(c+1) \ldots
$$

$$
\sigma(N)=\left(1+p^{1}+p^{2}+\cdots+p^{a}\right)\left(1+q^{1}+q^{2}+\cdots+q^{b}\right)\left(1+r^{1}+r^{2}+\cdots+r^{c}\right) \ldots
$$

Practice 4.3 (page 13)

© $8 \mathbb{A}$

END

